
Federated Few-shot Learning
Song Wang

University of Virginia

sw3wv@virginia.edu

Xingbo Fu

University of Virginia

xf3av@virginia.edu

Kaize Ding

Arizona State University

kaize.ding@asu.edu

Chen Chen

University of Virginia

zrh6du@virginia.edu

Huiyuan Chen

Case Western Reserve University

hxc501@case.edu

Jundong Li

University of Virginia

jundong@virginia.edu

ABSTRACT
Federated Learning (FL) enables multiple clients to collaboratively

learn a machine learning model without exchanging their own local

data. In this way, the server can exploit the computational power of

all clients and train the model on a larger set of data samples among

all clients. Although such a mechanism is proven to be effective

in various fields, existing works generally assume that each client

preserves sufficient data for training. In practice, however, certain

clients may only contain a limited number of samples (i.e., few-shot

samples). For example, the available photo data taken by a specific

user with a new mobile device is relatively rare. In this scenario,

existing FL efforts typically encounter a significant performance

drop on these clients. Therefore, it is urgent to develop a few-shot

model that can generalize to clients with limited data under the FL

scenario. In this paper, we refer to this novel problem as federated
few-shot learning. Nevertheless, the problem remains challenging

due to two major reasons: the global data variance among clients

(i.e., the difference in data distributions among clients) and the

local data insufficiency in each client (i.e., the lack of adequate local

data for training). To overcome these two challenges, we propose a

novel federated few-shot learning framework with two separately

updated models and dedicated training strategies to reduce the

adverse impact of global data variance and local data insufficiency.

Extensive experiments on four prevalent datasets that cover news

articles and images validate the effectiveness of our framework

compared with the state-of-the-art baselines. Our code is provided
1
.
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1 INTRODUCTION
The volume of valuable data is growing massively with the rapid

development of mobile devices [4, 34]. Recently, researchers have

developed various machine learning methods [5, 57, 61] to analyze

and extract useful information from such large-scale real-world

data. Among these methods, Federated Learning (FL) is an effective

solution, which aims to collaboratively optimize a centralized model

over data distributed across a large number of clients [7, 13, 22, 62].

In particular, FL trains a global model on a server by aggregating the

local models learned on each client [2]. Moreover, by avoiding the

direct exchange of private data, FL can provide effective protection

of local data privacy for clients [31]. As an example, in Google

Photo Categorization [12, 33], the server aims to learn an image

classification model from photos distributed among a large number

of clients, i.e., mobile devices. In this case, FL can effectively conduct

learning tasks without revealing private photos to the server.

In fact, new learning tasks (e.g., novel photo classes) are con-

stantly emerging over time [50, 59]. In consequence, FL can easily

encounter a situation where the server needs to solve a new task

with limited available data as the reference. In the previous example

of Google Photo Categorization, as illustrated in Fig. 1, the server

may inevitably need to deal with novel photo classes such as the

latest electronic products, where only limited annotations are avail-

able. Nevertheless, existing FL works generally assume sufficient

labeled samples for model training, which inevitably leads to un-

satisfying classification performance for new tasks with limited

labeled samples [14]. Therefore, to improve the practicality of FL in

realistic scenarios, it is important to solve this problem by learning

an FL model that can achieve satisfactory performance on new

tasks with limited samples. In this paper, we refer to this novel

problem setting as federated few-shot learning.
Recently, many few-shot learning frameworks [15, 44, 52, 55]

have been proposed to deal with new tasks with limited samples.

Typically, themain idea is to learnmeta-knowledge from base classes
with abundant samples (e.g., photo classes such as portraits). Then

such meta-knowledge is generalized to novel classes with limited

samples (e.g., photo classes such as new electronic products), where

novel classes are typically disjoint from base classes. However, as

illustrated in Fig. 1, it remains challenging to conduct few-shot

learning under the federated setting due to the following reasons.

First, due to the global data variance (i.e., the differences in data

distributions across clients), the aggregation of local models on the

server side will disrupt the learning of meta-knowledge in each
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Figure 1: The two challenges of federated few-shot learning
as an example in Google Photo Categorization: local data
insufficiency and global data variance.

client [23]. Generally, the meta-knowledge is locally learned from

different classes in each client and thus is distinct among clients,

especially under the non-IID scenario, where the data variance

can be even larger among clients compared with the IID scenario.

Since the server will aggregate the local models from different

clients and then send back the aggregated model, the learning

of meta-knowledge in each client will be potentially disrupted.

Second, due to the local data insufficiency in clients, it is non-trivial

to learn meta-knowledge from each client. In FL, each client only

preserves a relatively small portion of the total data [1, 13]. However,

meta-knowledge is generally learned from data in a variety of

classes [15, 52]. As a result, it is difficult to learn meta-knowledge

from datawith less variety, especially in the non-IID scenario, where

each client only has a limited amount of classes.

To effectively solve the aforementioned challenges, we propose

a novel Federated Few-shot Learning framework, named F
2
L. First,

we propose a decoupled meta-learning framework to mitigate the

disruption from the aggregated model on the server. Specifically,

the proposed framework retains a unique client-model for each
client to learn meta-knowledge and a shared server-model to learn

client-invariant knowledge (e.g., the representations of samples), as

illustrated in Fig. 2. Specifically, the client-model in each client is up-

dated locally and will not be shared across clients, while the server-

model can be updated across clients and sent to the server for ag-

gregation. Such a design decouples the learning of meta-knowledge

(via client-model) from learning client-invariant knowledge (via

server-model). In this way, we can mitigate the disruption from

the aggregated model on the server caused by global data variance

among clients. Second, to compensate for local data insufficiency

in each client, we propose to leverage global knowledge learned

from all clients with two dedicated update strategies. In particular,

we first transfer the learned meta-knowledge in client-model to

server-model by maximizing the mutual information between their

output (i.e., local-to-global knowledge transfer). Then we propose a

partial knowledge distillation strategy for each client to selectively

extract useful knowledge from server-model (i.e., global-to-local

knowledge distillation). In this manner, each client can leverage the

beneficial knowledge in other clients to learn meta-knowledge from

more data. In summary, our contributions are as follows:

• Problem. We investigate the challenges of learning meta-

knowledge in the novel problem of federated few-shot learn-

ing from the perspectives of global data variance and local
data insufficiency. We also discuss the necessity of tackling

these challenges.

• Method. We develop a novel federated few-shot learning

framework F
2
L with three essential strategies: (1) a decou-

pled meta-learning framework to mitigate disruption from

the aggregated model on the server; (2) mutual information

maximization for local-to-global knowledge transfer; (3) a

novel partial knowledge distillation strategy for global-to-

local knowledge distillation.

• Experiments. We conduct experiments on four few-shot

classification datasets covering both news articles and im-

ages under the federated scenario. The results further demon-

strate the superiority of our proposed framework.

2 PRELIMINARIES
2.1 Problem Definition
In FL, given a set of 𝐼 clients, i.e., {C(𝑖 ) }𝐼

𝑖=1
, where 𝐼 is the number

of clients, each C(𝑖 ) owns a local dataset D (𝑖 )
. The main objective

of FL is to learn a global model over data across all clients (i.e.,

{D (𝑖 ) }𝐼
𝑖=1

) without the direct exchange of data among clients. Fol-

lowing the conventional FL strategy [13, 32, 36], a server S will
aggregate locally learned models from all clients for a global model.

Under the prevalent few-shot learning scenario, we consider a

supervised setting in which the data samples for client C(𝑖 ) are
from its local dataset: (𝑥,𝑦) ∈ D (𝑖 )

, where 𝑥 is a data sample, and

𝑦 is the corresponding label. We first denote the entire set of classes

on all clients as C. Depending on the number of labeled samples

in each class, C can be divided into two categories: base classes

C𝑏 and novel classes C𝑛 , where C = C𝑏 ∪ C𝑛 and C𝑏 ∩ C𝑛 = ∅. In
general, the number of labeled samples in C𝑏 is sufficient, while it is

generally small in C𝑛 [15, 44]. Correspondingly, each local dataset

can be divided into a base dataset D (𝑖 )
𝑏

= {(𝑥,𝑦) ∈ D (𝑖 )
: 𝑦 ∈ C𝑏 }

and a novel dataset D (𝑖 )
𝑛 = {(𝑥,𝑦) ∈ D (𝑖 )

: 𝑦 ∈ C𝑛}. In the

few-shot setting, the evaluation of the model generalizability to

novel classes C𝑛 is conducted onD (𝑖 )
𝑛 , which contains only limited

labeled samples. The data samples in D (𝑖 )
𝑏

will be used for training.

Then we can formulate the studied problem of federated few-shot

learning as follows:

Definition 1. Federated Few-shot Learning: Given a set of 𝐼
clients {C(𝑖 ) }𝐼

𝑖=1
and a server S, federated few-shot learning aims

to learn a global model after aggregating model parameters locally
learned from D (𝑖 )

𝑏
in each client such that the model can accurately

predict labels for unlabeled samples (i.e., query set Q) in D (𝑖 )
𝑛 with

only a limited number of labeled samples (i.e., support set S).
More specifically, if the support set S consists of exactly 𝐾 la-

beled samples for each of 𝑁 classes from D (𝑖 )
𝑛 , and the query set Q

is sampled from the same 𝑁 classes, the problem is defined as Feder-

ated 𝑁 -way 𝐾-shot Learning. Essentially, the objective of federated

2375



Federated Few-shot Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

few-shot learning is to learn a globally shared model across clients

that can be fast adapted to data samples in D (𝑖 )
𝑛 with only limited

labeled samples. Therefore, the crucial part is to effectively learn

meta-knowledge from the base datasets {D (𝑖 )
𝑏

}𝐼
𝑖=1

in all clients.

Such meta-knowledge is generalizable to novel classes unseen dur-

ing training and thus can be utilized to classify data samples in

each D (𝑖 )
𝑛 , which consists of only limited labeled samples.

2.2 Episodic Learning
In practice, we adopt the prevalent episodic learning framework for

model training and evaluation, which has proven to be effective in

various few-shot learning scenarios [9, 10, 40, 52, 56]. Specifically,

the model evaluation (i.e., meta-test) is conducted on a certain num-

ber of meta-test tasks, where each task contains a small number of

labeled samples as references and unlabeled samples for classifica-

tion. The local model training (i.e., meta-training) process in each

client is similarly conducted on a specific number of meta-training
tasks, where each task mimics the structure of meta-test tasks. It

is worth mentioning that meta-training tasks are sampled from

the local base dataset D (𝑖 )
𝑏

of each client, while meta-test tasks are

sampled from the local novel dataset D (𝑖 )
𝑛 . That being said, the

class set of samples in meta-training tasks is a subset of C𝑏 , while
the class set of samples in meta-test tasks is a subset of C𝑛 , which
is distinct from C𝑏 . The main idea of federated few-shot learning is

to preserve the consistency between meta-training and meta-test

so that the model can learn meta-knowledge from clients for better

generalization performance to novel classes C𝑛 .
Specifically, to construct a meta-training task T in client C(𝑖 )

from its local base datasetD (𝑖 )
𝑏

, we first randomly sample 𝑁 classes

fromD (𝑖 )
𝑏

. Then we randomly select 𝐾 samples from each of the 𝑁

classes (i.e., 𝑁 -way 𝐾-shot) to establish the support set S. Similarly,

the query set Q consists of 𝑄 different samples (distinct from S)
from the same 𝑁 classes. The components of the meta-training task

T is formulated as follows:

S = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑁×𝐾 , 𝑦𝑁×𝐾 )},
Q = {(𝑞1, 𝑦′1), (𝑞2, 𝑦

′
2
), . . . , (𝑞𝑄 , 𝑦′𝑄 )},

T = {S,Q},
(1)

where 𝑥𝑖 (or 𝑞𝑖 ) is a data sample in the sampled 𝑁 classes, and

𝑦𝑖 (or 𝑦
′
𝑖
) is the corresponding label. Note that during meta-test,

each meta-test task shares a similar structure to meta-training tasks,

except that the samples are from the local novel datasetD (𝑖 )
𝑛 , which

are distinct from D (𝑖 )
𝑏

.

3 METHODOLOGY
In this part, we introduce the overall design of our proposed frame-

work F
2
L in detail. Specifically, we formulate the federated few-

shot learning problem under the prevailing 𝑁 -way 𝐾-shot learning

framework. Our target of conducting federated few-shot learning

is to learn meta-knowledge from a set of 𝐼 clients {C(𝑖 ) }𝐼
𝑖=1

with

different data distributions, and generalize such meta-knowledge to

meta-test tasks. Nevertheless, it remains difficult to conduct feder-

ated few-shot learning due to the challenging issues of global data

variance and local data insufficiency as mentioned before. There-

fore, as illustrated in Fig 2, we propose a decoupled meta-learning

framework to mitigate disruption from the servers. We further

propose two update strategies to leverage global knowledge. The

overview process is presented in Fig 3.

3.1 Decoupled Meta-Learning Framework
3.1.1 Federated Learning Framework. We consider a server-model,

which consists of an encoder 𝑞𝜙 and a classifier 𝑓𝜙 that are shared

among clients. We denote the overall model parameters in the

server-model as 𝜙 . Specifically, 𝑞𝜙 : R𝑑 → R𝑘 is a function that

maps each sample into a low-dimensional vector h𝜙 ∈ R𝑘 , where 𝑑
is the input feature dimension, and 𝑘 is the dimension of learned

representations. Taking the representation h𝜙 as input, the classifier

𝑓𝜙 : R𝑘 → C𝑏 maps each h𝜙 to the label space of base classes C𝑏
and outputs the prediction p𝜙 ∈ R | C𝑏 | , where each element in p𝜙
denotes the classification probability regarding each class in C𝑏 .

Following the prevalent FedAvg [36] strategy for FL, the training

of server-model is conducted on all clients through 𝑇 rounds. In

each round 𝑡 , the server S first sends the server-model parameters

𝜙 to all clients, and each client will conduct a local meta-training

process on 𝜏 randomly sampledmeta-training tasks. Then the server

S will perform aggregation on parameters received from clients:

𝜙𝑡+1 =
1

𝐼

𝐼∑︁
𝑖=1

𝜙𝑡𝑖 , (2)

where 𝜙𝑡
𝑖
denotes the locally updated server-model parameters by

client C(𝑖 ) on round 𝑡 . 𝜙𝑡+1 denotes the aggregated server-model

parameters which will be distributed to clients at the beginning of

the next round. In this way, the server can learn a shared model for

all clients in a federated manner.

Although the standard strategy of learning a single shared model

for all clients achieves decent performance on general FL tasks [13,

36], it can be suboptimal for federated few-shot learning. Due to

the global data variance among clients, the aggregated model on

the server will disrupt the learning of meta-knowledge in each

client [23]. As a result, the local learning of meta-knowledge in

clients will become more difficult. In contrast, we propose to further

introduce a client-model, which is uniquely learned and preserved

by each client, to locally learn meta-knowledge. In other words, its

model parameters will not be sent back to the server for aggregation.

In this manner, we can separate the learning of client-model (meta-

knowledge) and server-model (client-invariant knowledge) so that

the learning of meta-knowledge is not disrupted.

Specifically, for client C(𝑖 ) , the client-model also consists of

an encoder 𝑞𝜓𝑖 and a classifier 𝑓𝜓𝑖 . We denote the overall model

parameters in the client-model for client C(𝑖 ) as𝜓𝑖 . In particular,

the encoder 𝑞𝜓𝑖 takes the representation h𝜙 learned by the encoder

𝑞𝜙 in server-model as input, and outputs a hidden representation

h𝜓 ∈ R𝑘 . Such a design ensures that the client-model encoder

𝑞𝜓𝑖 does not need to process the raw sample and thus can be a

small model, which is important when clients only preserve limited

computational resources [6]. Then the classifier 𝑓𝜓𝑖 maps h𝜓 to

predictions p𝜓 ∈ R𝑁 of the 𝑁 classes.
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Client 1

···𝝍𝟏 𝝓

Client 2

𝝍𝟐 𝝓

Client I

𝝍𝑰 𝝓

𝝓 𝝓 𝝓

𝝓

Send to Client Send to Server

𝝍𝒊 Client-model 𝝓 Server-model

Figure 2: The illustration of our decoupled meta-learning
framework.𝜓 denotes the client-model, which will be locally
kept in each client. 𝜙 denotes the server-model, which will
be aggregated and sent to the server.

3.1.2 Local Meta-training on Clients. Based on the episodic learn-

ing strategy, in each round, the training process of each client

C(𝑖 ) is conducted through 𝜏 steps, where each step is a local up-

date based on a meta-training task randomly sampled from the

local base dataset D (𝑖 )
𝑏

. In particular, for client C(𝑖 ) on round

𝑡 = 1, 2, . . . ,𝑇 and step 𝑠 = 1, 2, . . . , 𝜏 , we denote the sampled meta-

task as T 𝑡,𝑠
𝑖

= {S𝑡,𝑠
𝑖
,Q𝑡,𝑠

𝑖
}. To learn meta-knowledge from meta-

task T 𝑡,𝑠
𝑖

, we adopt the prevalent MAML [15] strategy to update

client-model in one fine-tuning step and one meta-update step. We

first fine-tune the client-model to fast adapt it to support set S𝑡,𝑠
𝑖

:

𝜓
𝑡,𝑠
𝑖

= 𝜓
𝑡,𝑠
𝑖

− 𝛼 𝑓 𝑡∇𝜓L𝑓 𝑡
(
S𝑡,𝑠
𝑖

; {𝜙𝑡,𝑠
𝑖
,𝜓
𝑡,𝑠
𝑖

}
)
, (3)

where L𝑓 𝑡 is the fine-tuning loss, which is the cross-entropy loss

calculated on the support set S𝑡,𝑠
𝑖

. Here, 𝛼 𝑓 𝑡 is the learning rate,

and𝜓
𝑡,𝑠
𝑖

(or 𝜙
𝑡,𝑠
𝑖

) denotes the parameters of client-model (or server-

model) on round 𝑡 and step 𝑠 . Then we update the client-model

based on the query set Q𝑡,𝑠
𝑖
:

𝜓
𝑡,𝑠+1
𝑖

= 𝜓
𝑡,𝑠
𝑖

− 𝛼𝜓∇𝜓L𝜓
(
Q𝑡,𝑠
𝑖
; {𝜙𝑡,𝑠

𝑖
,𝜓
𝑡,𝑠
𝑖

}
)
, (4)

where L𝜓 is the loss for client-model on the query set Q𝑡,𝑠
𝑖

, and 𝛼𝜓
is the meta-learning rate for𝜓 . In this regard, we can update client-

model with our global-to-local knowledge distillation strategy. For

the update of server-model, we conduct one step of update based

on the support set and parameters of client-model:

𝜙
𝑡,𝑠+1
𝑖

= 𝜙
𝑡,𝑠
𝑖

− 𝛼𝜙∇𝜙L𝜙
(
S𝑡,𝑠
𝑖

; {𝜙𝑡,𝑠
𝑖
,𝜓
𝑡,𝑠
𝑖

}
)
, (5)

where L𝜙 is the loss for the server-model, and 𝛼𝜙 is the meta-

learning rate for 𝜙 . In this manner, we can update the server-model

with our local-to-global knowledge transfer strategy. After repeat-

ing the above updates for 𝜏 steps, the final parameters of server-

model 𝜙
𝑡,𝜏
𝑖

is used as 𝜙𝑡
𝑖
in Eq. (2) and sent back to the server for

aggregation, while the client-model (with parameters𝜓
𝑡,𝜏
𝑖

) will be

kept locally. By doing this, we can decouple the learning of local

meta-knowledge in client-model while learning client-invariant

knowledge in server-model to avoid disruption from the server.

3.2 Local-to-Global Knowledge Transfer
With our decoupled meta-learning framework, we can mitigate the

disruption to the learning of local meta-knowledge in each client.

Nevertheless, we still need to transfer the learned meta-knowledge

to server-model (i.e., Local-to-global Knowledge Transfer), so that

it can be further leveraged by other clients to handle the local

data insufficiency issue. Specifically, to effectively transfer local

meta-knowledge, we propose to maximize the mutual information

between representations learned from server-model encoder𝑞𝜙 and

client-model encoder 𝑞𝜓 . In this way, the server-model can maxi-

mally absorb the information in the learned local meta-knowledge.

3.2.1 Mutual Information Maximization. Given a meta-training

task T = {S,Q}, as described in Sec. 3.1, the server-model encoder

𝑞𝜙 and client-model encoder 𝑞𝜓 will output h𝜙 and h𝜓 for each

sample, respectively. By stacking the learned representations of

samples in the support set S (|S| = 𝐷 , where 𝐷 = 𝑁 × 𝐾 ), we can
obtain the representations of support samples learned by the server-

model, i.e., H𝜙 ∈ R𝐷×𝑘
, and the client-model, i.e., H𝜓 ∈ R𝐷×𝑘

. For

simplicity, we omit the annotations of round 𝑡 , step 𝑠 , and client 𝑖 .

The objective of maximizing the information between H𝜙 and H𝜓
can be formally represented as follows:

max

𝜙
𝐼 (H𝜙 ;H𝜓 ) = max

𝜙

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=1

𝑝 (h𝑖
𝜙
, h𝑗
𝜓
;𝜙) log

𝑝 (h𝑗
𝜓
|h𝑖
𝜙
;𝜙)

𝑝 (h𝑗
𝜙
;𝜙)

, (6)

where h𝑖
𝜙
(or h𝑖

𝜓
) is the 𝑖-th row of H𝜙 (or H𝜓 ). Since the mutual

information 𝐼 (H𝜙 ;H𝜓 ) is difficult to obtain and thus infeasible to

be maximized [39], we re-write it to achieve a more feasible form:

𝐼 (H𝜙 ;H𝜓 ) =
𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=1

𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙)𝑝 (h𝑗

𝜓
;𝜙) log

𝑝 (h𝑗
𝜓
|h𝑖
𝜙
;𝜙)

𝑝 (h𝑗
𝜓
;𝜙)

.

(7)

Since the support set S of size 𝐷 is randomly sampled, we can

assume that the prior probability 𝑝 (h𝑗
𝜓
;𝜙) follows a uniform dis-

tribution, and set it as 𝑝 (h𝑗
𝜓
;𝜙) = 1/𝐷 . According to the Bayes’

theorem, the Eq. (7) becomes:

𝐼 (H𝜙 ;H𝜓 ) =
1

𝐷

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=1

𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙)

(
log(𝑝 (h𝑗

𝜓
|h𝑖
𝜙
;𝜙)) + log𝐷

)
.

(8)

We next present alternative strategies to estimate 𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙) and

𝑝 (h𝑗
𝜓
|h𝑖
𝜙
;𝜙) in detail.

3.2.2 Estimation of 𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙). Since the client-model is fine-

tuned on the support set S of the meta-task T , we can leverage the

classification results of the client-model to estimate 𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙).

We denote 𝐶 ( 𝑗) as the set of sample indices in the support set S
that shares the same class as the 𝑗-th sample (including itself),

i.e., 𝐶 ( 𝑗) ≡ {𝑘 : 𝑦𝑘 = 𝑦 𝑗 , 𝑘 = 1, 2, . . . , 𝐷}. Here, we first set

𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙) = 0 for all 𝑖 ∉ 𝐶 ( 𝑗), since we assume the client-model

can only infer representations from the same class. Intuitively, in the
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Figure 3: An illustration of the overall process of our framework F2L. Specifically, each client receives the server-model from
the server at the beginning of each round. To perform one step of local update, each client first samples a meta-task (2-way
2-shot in the illustration), which consists of a support set and a query set, from the local data. Then the server-model and
the client-model will both compute output for the support samples and query samples. After that, the server-model and
the client-model are updated via mutual information maximization and knowledge distillation, respectively. Finally, the
server-model is sent back to the server for aggregation, while the client-model is locally preserved by each client.

case of 𝑖 ∈ 𝐶 ( 𝑗), which means the 𝑖-th and the 𝑗-th samples share

the same class, 𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙) can be considered as the confidence of

client-model regarding the class of the 𝑗-the sample. Therefore, it

should reflect the degree to which the sample representation h𝑗
𝜓
is

relevant to its class. Utilizing the client-model classification output

(i.e., normalized class probabilities) for the 𝑖-th sample p𝑖
𝜓

∈ R𝑁 ,
we can compute 𝑝 (h𝑖

𝜙
|h𝑗
𝜓
;𝜙) as follows:

𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙) =


p𝑖
𝜓
(𝑦 𝑗 )∑

𝑘∈𝐶 ( 𝑗 ) p𝑘𝜓 (𝑦 𝑗 )
if 𝑖 ∈ 𝐶 ( 𝑗)

0 otherwise

, (9)

where p𝑖
𝜓
(𝑦 𝑗 ) ∈ R denotes the classification probability for the 𝑖-th

sample regarding class 𝑦 𝑗 (𝑦𝑖 = 𝑦 𝑗 when 𝑖 ∈ 𝐶 ( 𝑗)).

3.2.3 Estimation of 𝑝 (h𝑗
𝜓
|h𝑖
𝜙
;𝜙). Next we elaborate on how to

estimate 𝑝 (h𝑗
𝜓
|h𝑖
𝜙
;𝜙). Although we can similarly leverage the clas-

sification results of the server-model, such a strategy lacks gener-

alizability. This is because the server-model aims at classifying all

base classes instead of the 𝑁 classes in each meta-training task. We

instead propose to estimate 𝑝 (h𝑗
𝜓
|h𝑖
𝜙
;𝜙) based on the Euclidean

distance (divided by 2 for simplicity) between learned represen-

tations of the server-model and the client-model. Specifically, we

normalize the distances with a softmax function:

𝑝 (h𝑗
𝜓
|h𝑖
𝜙
;𝜙) =

exp

(
−∥h𝑖

𝜙
− h𝑗

𝜓
∥2
2
/2
)

∑
𝑘∈𝐶 (𝑖 ) exp

(
−∥h𝑖

𝜙
− h𝑘

𝜓
∥2
2
/2
) . (10)

Then if we further apply the ℓ2 normalization to both h𝑖
𝜙
and

h𝑗
𝜓
, we can obtain ∥h𝑖

𝜙
− h𝑗

𝜓
∥2
2
/2 = 1 − h𝑖

𝜙
· h𝑗
𝜓
. Moreover, since

the value of

∑𝐷
𝑖=1

∑𝐷
𝑗=1 𝑝 (h𝑖𝜙 |h

𝑗

𝜓
;𝜙) equals a constant 𝐷 , the term

∑𝐷
𝑖=1

∑𝐷
𝑗=1 𝑝 (h𝑖𝜙 |h

𝑗

𝜓
;𝜙) · log(𝐷)/𝐷 in Eq. (8) is also a constant and

thus can be ignored in the objective:

1

𝐷

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=1

𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙) log (𝐷) = 1

𝐷
· 𝐷 · log (𝐷) = log (𝐷) . (11)

Combining the above equations, the optimal server-model param-

eter 𝜙∗ for the final optimization objective (i.e., max𝜙 𝐼 (H𝜙 ;H𝜓 ))
can be obtained as follows:

𝜙∗ = argmax

𝜙

𝐼 (H𝜙 ;H𝜓 ) = argmin

𝜙

L𝑀𝐼 . (12)

Here L𝑀𝐼 is defined as follows:

L𝑀𝐼 =
1

𝐷

𝐷∑︁
𝑖=1

𝐷∑︁
𝑗=1

𝑝 (h𝑖
𝜙
|h𝑗
𝜓
;𝜙) log(𝑝 (h𝑗

𝜓
|h𝑖
𝜙
;𝜙))

=
1

𝐷

𝐷∑︁
𝑗=1

∑︁
𝑖∈𝐶 ( 𝑗 )

−
p𝑖
𝜓
(𝑦 𝑗 )

(
h𝑖
𝜙
· h𝑗
𝜓

)
∑
𝑘∈𝐶 ( 𝑗 ) p𝑘𝜓 (𝑦 𝑗 )

+
p𝑖
𝜓
(𝑦 𝑗 )∑

𝑘∈𝐶 ( 𝑗 ) p𝑘𝜓 (𝑦 𝑗 )
log

©­«
∑︁

𝑘∈𝐶 (𝑖 )
exp

(
h𝑖
𝜙
· h𝑘
𝜓

)ª®¬ ,
(13)

where we exchange the order of summation over 𝑖 and 𝑗 for clarity.

It is noteworthy that L𝑀𝐼 is different from the InfoNCE loss [18,

39], which considers different augmentations of samples, while

L𝑀𝐼 focuses on the classes of samples in S. Moreover, L𝑀𝐼 also
differs from the supervised contrastive loss [25], which combines

various augmentations of samples and label information. In contrast,

our loss targets at transferring the meta-knowledge by maximally

preserving themutual information between representations learned

by the server-model and the client-model. More differently, the term

p𝑖
𝜓
(𝑦 𝑗 )/

∑
𝑘∈𝐶 ( 𝑗 ) p𝑘𝜓 (𝑦 𝑗 ) acts as an adjustable weight that measures

the importance of a sample to its class. Combining the objective
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described in Eq. (13) and the standard cross-entropy loss, we can

obtain the final loss for the server-model:

L𝜙 = (1 − 𝜆𝑀𝐼 )L𝐶𝐸 (S) + 𝜆𝑀𝐼L𝑀𝐼 , (14)

where L𝐶𝐸 (S) is defined as follows:

L𝐶𝐸 (S) = − 1

𝐷

𝐷∑︁
𝑖=1

| C𝑏 |∑︁
𝑗=1

𝑦𝑖𝑐 𝑗 log p
𝑖
𝜙
(𝑐 𝑗 ), (15)

where p𝑖
𝜙
(𝑐 𝑗 ) ∈ R denotes the classification probability for the 𝑖-th

support sample belonging to the 𝑗-th class 𝑐 𝑗 in C𝑏 , computed by

the server-model. Here𝑦𝑖𝑐 𝑗 = 1 if the 𝑖-th support sample belongs to

𝑐 𝑗 , and 𝑦
𝑖
𝑐 𝑗

= 0, otherwise. Moreover, 𝜆𝑀𝐼 ∈ [0, 1] is an adjustable

hyper-parameter to control the weight of L𝑀𝐼 .

3.3 Global-to-Local Knowledge Distillation
With the learned meta-knowledge in each client transferred from

the client-model to the server-model, other clients can leverage

such meta-knowledge to deal with the local data insufficiency issue.

However, since each meta-task only contains 𝑁 classes, directly

extracting meta-knowledge in the server-model can inevitably in-

volve meta-knowledge from other classes, which can be harmful to

the learning of local meta-knowledge from these 𝑁 classes in each

client. Instead, we propose a partial knowledge distillation strategy

to selectively extract useful knowledge from the server-model, i.e.,

global-to-local knowledge distillation.

3.3.1 Partial Knowledge Distillation. Specifically, we focus on the

output classification probabilities of the server-model regarding

the 𝑁 classes in support set S while ignoring other classes. In this

regard, we can extract the information that is crucial for learning

local meta-knowledge from these 𝑁 classes and also reduce the

irrelevant information from other classes.

Particularly, we consider the same meta-task T = {S,Q}. We de-

note the output probabilities for the 𝑖-th query sample 𝑞𝑖 in Q (with

label𝑦𝑖 ) of the server-model and the client-model as p𝑖
𝜙
∈ R | C𝑏 | and

p𝑖
𝜓
∈ R𝑁 , respectively. It is noteworthy that the 𝑁 classes in this

meta-task, denoted as C𝑚 , are sampled from the base classes C𝑏 (i.e.,
|C𝑚 | = 𝑁 and C𝑚 ⊂ C𝑏 ). Therefore, the output of server-model

(i.e., p𝑖
𝜙
) will include the probabilities of classes in C𝑚 . In particu-

lar, we enforce the probabilities of in C𝑚 from the client-model to

be consistent with the probabilities of the same classes from the

server-model. As a result, the learning of local meta-knowledge can

leverage the information of data in the same 𝑁 classes from other

clients, which is encoded in the server-model. In this regard, we can

handle the local data insufficiency issue by involving information

from other clients while reducing the irrelevant information from

other classes not in C𝑚 . In particular, by utilizing the output of the

server-model as the soft target for the client-model, we can achieve

an objective as follows:

L𝐾𝐷 = − 1

𝑄

𝑄∑︁
𝑖=1

𝑁∑︁
𝑗=1

q𝑖
𝜙
(𝑐 𝑗 ) log q𝑖𝜓 (𝑐 𝑗 ), (16)

where 𝑐 𝑗 is the 𝑗-th class in C𝑚 (i.e., the 𝑁 classes in meta-task T ).

q𝑖
𝜙
(𝑐 𝑗 ) and q𝑖𝜓 (𝑐 𝑗 ) are the knowledge distillation values for 𝑐 𝑗 from

server-model and client-model, respectively. Specifically, the values

of q𝑖
𝜙
(𝑐 𝑗 ) and q𝑖

𝜓
(𝑐 𝑗 ) are obtained via the softmax normalization:

q𝑖
𝜙
(𝑐 𝑗 ) =

exp(z𝑖
𝜙
(𝑐 𝑗 )/𝑇𝑖 )∑𝑁

𝑘=1
exp(z𝑖

𝜙
(𝑐𝑘 )/𝑇𝑖 )

, (17)

q𝑖
𝜓
(𝑐 𝑗 ) =

exp(z𝑖
𝜓
(𝑐 𝑗 )/𝑇𝑖 )∑𝑁

𝑘=1
exp(z𝑖

𝜓
(𝑐𝑘 )/𝑇𝑖 )

, (18)

where z𝑖
𝜙
(𝑐 𝑗 ) are z𝑖𝜓 (𝑐 𝑗 )) are the logits (i.e., output before softmax

normalization) of class 𝑐 𝑗 from server-model and client-model, re-

spectively.𝑇𝑖 is the temperature parameter for the 𝑖-th query sample.

In this way, we can ensure that

∑𝑁
𝑗=1 q

𝑖
𝜙
(𝑐 𝑗 ) =

∑𝑁
𝑗=1 q

𝑖
𝜓
(𝑐 𝑗 ) = 1.

3.3.2 Adaptive Temperature Parameter. Generally, a larger value of
𝑇𝑖 denotes that the client-model focuses more on extracting infor-

mation from the other classes in C𝑚 [19] (i.e., {𝑐 |𝑐 ∈ C𝑚, 𝑐 ≠ 𝑦𝑖 }),
denoted as negative classes. Since the classification results can be

erroneous in the server-model, we should adaptively adjust the

value of 𝑇𝑖 for each meta-task to reduce the adverse impact of ex-

tracting misleading information from the server-model. However,

although negative classes can inherit useful information for clas-

sification, such information is generally noisier when the output

probabilities of these negative classes are smaller. Therefore, to

estimate the importance degree of each negative class, we consider

the maximum output logit for negative classes to reduce potential

noise. Particularly, if the probability of a negative class from the

server-model is significantly larger than other classes, we can con-

jecture that this class is similar to 𝑦𝑖 and thus potentially contains

the crucial information to distinguish them. Specifically, the tem-

perature parameter 𝑇𝑖 for the 𝑖-th query sample 𝑞𝑖 is computed as

follows:

𝑇𝑖 = 𝜎
©­«
max𝑐∈C𝑚,𝑐≠𝑦𝑖 exp(z𝑖𝜙 (𝑐))

exp(z𝑖
𝜙
(𝑦𝑖 ))

ª®¬ , (19)

where 𝜎 (·) denotes the Sigmoid function, and 𝑦𝑖 is the label of

𝑞𝑖 . In this way, the temperature parameter 𝑇𝑖 will increase when

the ratio between the largest probability in negative classes and

the probability for 𝑦𝑖 is larger. As a result, the client-model will

focus more on the negative class information. Then by further

incorporating the cross-entropy loss on the query set Q, we can
obtain the final loss for the client-model:

L𝜓 = (1 − 𝜆𝐾𝐷 )L𝐶𝐸 (Q) + 𝜆𝐾𝐷L𝐾𝐷 , (20)

where L𝐶𝐸 (Q) is defined as follows:

L𝐶𝐸 (Q) = − 1

𝑄

𝑄∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦𝑖𝑐 𝑗 log p
𝑖
𝜓
(𝑐 𝑗 ), (21)

where p𝑖
𝜓
(𝑐 𝑗 ) is the probability of the 𝑖-th query sample belonging

to class 𝑐 𝑗 computed by the client-model. 𝑦𝑖𝑐 𝑗 = 1 if the 𝑖-th query

sample belongs to 𝑐 𝑗 , and 𝑦
𝑖
𝑐 𝑗

= 0, otherwise. Moreover, 𝜆𝐾𝐷 ∈
[0, 1] is an adjustable hyper-parameter to control the weight of

L𝐾𝐷 . In this manner, the client-model can selectively learn useful

knowledge from both the local and global perspectives, i.e., global-

to-local knowledge distillation.

2379



Federated Few-shot Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

3.4 Overall Learning Process
With the proposed losses L𝜙 and L𝜓 , on each round, we can con-

duct meta-training on each client C(𝑖 ) by sampling 𝜏 meta-training

tasks from the local base dataset D (𝑖 )
𝑏

. The detailed process is

described in Algorithm 1. After 𝑇 rounds of meta-training on all

the clients, we have obtained a model that accommodates com-

prehensive meta-knowledge for federated few-shot learning. For

the meta-test phase, since we have aggregated learned local meta-

knowledge from each client to the server-model, we can leverage

the server-model to generate data representations for classification.

Specifically, during evaluation, for each meta-test task T = {S,Q}
sampled from local novel datasets {D (𝑖 )

𝑛 }𝐼
𝑖=1

in all clients, we follow

the same process as meta-training including fine-tuning, except that

the meta-update process is omitted. The output of the client-model

will be used for classification.

4 EXPERIMENTS
In this part, we conduct extensive experiments to evaluate our

framework F
2
L on four few-shot classification datasets covering

both news articles and images under the federated scenario.

4.1 Datasets
In this section, we introduce four prevalent real-world datasets

used in our experiments, covering both news articles and images:

20 Newsgroup [28], Huffpost [38], FC100 [40], and miniIma-
geNet [52]. In particular, 20 Newsgroup and Huffpost are online

news article datasets, while FC100 and miniImageNet are image

datasets. The details are as follows:

• 20 Newsgroup [28] is a text dataset that consists of informal

discourse from news discussion forums. There are 20 classes

for documents in this dataset, where each class belongs to

one of six top-level categories. The classes are split as 8/5/7

for training/validation/test, respectively.

• Huffpost [38] is a text dataset containing news headlines

published on HuffPost
2
between 2012 and 2018. Generally,

the headlines are significantly shorter and less grammatical

than the 20 Newsgroup dataset. Moreover, each headline

belongs to one of 41 classes, which are then split as 20/5/16

for training/validation/test, respectively.

• FC100 [40] is an image classification dataset based on CIFAR-

100 [27]. Specifically, this dataset contains 100 image classes,

where each class maintains 600 images with a low 32 ×
32 resolution. The classes are split as 60/20/20 for train-

ing/validation/test, respectively.

• miniImageNet [52] is an image dataset extracted from the

full ImageNet dataset [8]. This dataset consists of 100 im-

age classes, and each class maintains 600 images with a

resolution of 84 × 84. The classes are split as 64/16/20 for

training/validation/test, respectively.

4.2 Experimental Settings
To validate the performance of our framework F

2
L, we conduct

experiments with the following baselines for a fair comparison:

2
https://www.huffpost.com/

• Local. This baseline is non-distributed, which means we train

an individual model for each client on the local data. The

meta-test process is conducted on all meta-test tasks, and

the averaged results of all models are reported.

• FL-MAML. This baseline leverages the MAML [15] strategy

to perform meta-learning on each client. The updated model

parameters will be sent back to the server for aggregation.

• FL-Proto. This baseline uses ProtoNet [44] as the model in

each client. The classification is based on the Euclidean dis-

tances between query samples and support samples.

• FedFSL [14]. This method combines MAML and an adversar-

ial learning strategy [17, 43] to construct a consistent feature

space. The aggregation is based on FedAvg [36].

During meta-training, we perform updates for the client-model

and the server-model according to Algorithm 1. Finally, the server-

model that achieves the best result on validation will be used for

meta-test. Then during meta-test, we evaluate the server-model

on a series of 100 randomly sampled meta-test tasks from local

novel datasets {D (𝑖 )
𝑛 }𝐼

𝑖=1
in all clients. For consistency, the class

split of C𝑏 and C𝑛 is identical for all baseline methods. The clas-

sification accuracy over these meta-test tasks will be averaged as

the final results. The specific parameter settings are provided in

Appendix C.3. For the specific choices for the encoder and classifier

in server-model and client-model (i.e., 𝑞𝜙 , 𝑓𝜙 , 𝑞𝜓 , and 𝑓𝜓 ) and model

parameters, we provide further details in Appendix C.1. Note that

for a fair comparison, we utilize the same encoder for all methods.

4.3 Overall Evaluation Results
We present the overall performance comparison of our framework

and baselines on federated few-shot learning in Table 1. Specifically,

we conduct experiments under two few-shot settings: 5-way 1-

shot and 5-way 5-shot. Moreover, to demonstrate the robustness

of our framework under different data distributions, we partition

the data in both IID and non-IID settings. For the IID partition, the

samples of each class are uniformly distributed to all clients. For

non-IID partition, we follow the prevailing strategy [21, 60] and

distribute samples to all clients based on the Dirichlet distribution

with its concentration parameter set as 1.0. The evaluation metric

is the average classification accuracy over ten repetitions. From the

overall results, we can obtain the following observations:

• Our framework F
2
L outperforms all other baselines on vari-

ous news article and image datasets under different few-shot

settings (1-shot and 5-shot) and data distributions (IID and

non-IID). The results validate the effectiveness of our frame-

work on federated few-shot learning.

• Conventional few-shot methods such as Prototypical Net-

work [44] and MAML [15] exhibit similar performance com-

pared with the Local baseline. The result demonstrates that

directly applying few-shot methods to federated learning

brings less competitive improvements over local training.

This is because such methods are not proposed for feder-

ated learning and thus lead to unsatisfactory training per-

formance under the federated setting.

• The performance of all methods degrades at different extents

when the data distribution is changed from IID to non-IID.

The main reason is that the variety of classes in each client
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Table 1: The overall federated few-shot learning results of various models on four datasets under IID and Non-IID settings
(5-way), where accuracy and standard deviation are reported in %. The best results are presented as bold.

Dataset 20 Newsgroup Huffpost

Distribution IID Non-IID IID Non-IID

Setting 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Local 31.53 ± 1.68 42.73 ± 1.51 29.64 ± 1.81 41.01 ± 2.40 34.02 ± 1.67 49.95 ± 1.54 33.09 ± 2.28 47.18 ± 1.43

FL-MAML 32.89 ± 1.86 44.34 ± 1.66 31.60 ± 1.44 43.84 ± 1.97 37.47 ± 1.43 52.85 ± 1.43 36.01 ± 2.17 50.56 ± 2.08

FL-Proto 35.62 ± 2.07 46.04 ± 1.92 32.79 ± 1.41 43.82 ± 1.85 37.87 ± 1.23 51.90 ± 1.43 34.05 ± 1.35 50.52 ± 1.33

FedFSL 36.56 ± 1.41 46.37 ± 1.82 35.84 ± 1.49 45.89 ± 1.72 39.18 ± 1.42 53.81 ± 1.36 37.86 ± 1.46 52.18 ± 1.82

F
2
L 39.80 ± 1.80 49.64 ± 1.32 39.00 ± 1.36 49.44 ± 1.98 42.12 ± 2.12 57.88 ± 2.17 41.64 ± 1.81 57.12 ± 1.87

Dataset FC100 miniImageNet

Distribution IID Non-IID IID Non-IID

Setting 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Local 33.45 ± 1.68 50.89 ± 1.56 32.40 ± 1.76 50.29 ± 2.24 47.82 ± 1.68 64.30 ± 1.59 46.81 ± 2.03 64.06 ± 1.45

FL-MAML 34.10 ± 1.29 50.66 ± 1.68 36.06 ± 1.78 50.35 ± 1.57 49.74 ± 1.40 65.55 ± 1.57 47.64 ± 1.36 63.56 ± 1.13

FL-Proto 36.11 ± 1.49 54.74 ± 2.05 35.54 ± 1.71 52.31 ± 1.76 51.32 ± 1.41 66.67 ± 2.06 50.82 ± 1.82 65.09 ± 1.90

FedFSL 39.38 ± 1.95 52.25 ± 1.84 38.60 ± 2.00 53.90 ± 1.80 55.75 ± 2.06 70.59 ± 1.97 53.52 ± 2.01 69.56 ± 1.86

F
2
L 42.52 ± 2.06 58.60 ± 2.09 42.56 ± 2.25 59.52 ± 2.14 56.72 ± 1.79 74.23 ± 2.32 56.16 ± 2.05 73.24 ± 2.02
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Figure 4: Ablation study of our framework on FC100 and
Huffpost. I-𝐾 (or N-𝐾) denotes the setting of 5-way 𝐾-shot
under IID (or non-IID) distributions.M denotes the decoupled
framework, T means the local-to-global knowledge transfer,
and A demotes the global-to-local knowledge distillation.

results in a more complex class distribution and brings diffi-

culties to the classification task. Nevertheless, by effectively

transferring the meta-knowledge among clients, our frame-

work is capable of alleviating such a problem under the

non-IID scenario.

• When increasing the value of 𝐾 (i.e., more support samples

in each class), all methods achieve considerable performance

gains. In particular, our framework F
2
L obtains better results

compared to other baselines, due to our decoupled meta-

learning framework, which promotes the learning of meta-

knowledge in the support samples.

4.4 Ablation Study
In this part, we conduct an ablation study on FC100 and Huffpost

to validate the effectiveness of three crucial designs in F
2
L (similar

results observed in other datasets). First, we remove the decoupled

strategy so that the client-model will also be sent to the server for

aggregation. We refer to this variant as F2L\M. Second, we remove

the local-to-global knowledge transfer module so that the meta-

knowledge in the client-model will be effectively transferred to

the server-model. This variant is referred to as F2L\T. Third, we
eliminate the global-to-local knowledge distillation loss. In this

way, the client-model cannot leverage the global knowledge in

the server-model for learning meta-knowledge. We refer to this

variant as F2L\A. The overall ablation study results are presented

in Fig. 4. From the results, we observe that F
2
L outperforms all

variants, which verifies the effectiveness of the three designs in

F
2
L. Specifically, removing the design of local-to-global knowledge

transfer leads to significant performance degradation. This result

demonstrates that such a design can effectively aggregate learned

meta-knowledge among clients and thus bring performance im-

provements. More significantly, without our decoupled strategy, the

performance deteriorates rapidly when federated few-shot learning

is conducted in the non-IID scenario. This phenomenon verifies

the importance of mitigating the disruption from the server in the

presence of complex data distributions among clients.

4.5 Parameter Sensitivity Study
4.5.1 Effect of 𝜆𝑀𝐼 and 𝜆𝐾𝐷 . In this section, we further conduct

experiments to study the sensitivity of several parameters in our

framework F
2
L. During the process of transferring and achieving

meta-knowledge, we introduce two novel losses L𝑀𝐼 and L𝐾𝐷 ,
respectively, along with the traditional cross-entropy loss. To em-

pirically evaluate the impact brought by different values of 𝜆𝑀𝐼
and 𝜆𝐾𝐷 in Eq. (14) and Eq. (20) , we adjust the values of 𝜆𝑀𝐼 and

𝜆𝐾𝐷 from 0 to 1 and present the results in Fig 5. From the results,

we can observe that the performance generally increases with a
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Figure 5: The results with different values of 𝜆𝑀𝐼 and 𝜆𝐾𝐷 on
Huffpost under the non-IID setting.
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Figure 6: The results of non-IID federated 1-shot and 5-shot
learning on FC100 regarding the number of clients.

larger value of 𝜆𝑀𝐼 , while decreasing with 𝜆𝑀𝐼 approaches 1. The

results indicate the importance of transferring learned local meta-

knowledge, while also demonstrating that the cross-entropy loss is

necessary. On the other hand, the performance first increases and

then degrades when a larger value of 𝜆𝐾𝐷 is presented. That being

said, although partial knowledge distillation can enable each client

to benefit from the global data, a larger 𝜆𝐾𝐷 can potentially lead to

more irrelevant information when learning local meta-knowledge.

4.5.2 Effect of Client Number. In this section, we study the robust-

ness of our framework under the scenario with a varying number

of clients. In particular, we keep the total training data unchanged,

which means with more clients participating in the training pro-

cess, each client preserves fewer training samples. As a result, the

training performance will be inevitably reduced. Specifically, we

partition the total training data into 𝐼 = 1, 2, 5, 10, 20, and 50 clients.

Note that 𝐼 = 1 denotes the setting of completely centralized train-

ing. The results on FC100 with 1-shot and 5-shot settings are pre-

sented in Fig 6 (we have similar results for other datasets and omit

them for brevity). From the results, we can observe that all meth-

ods encounter a performance drop in the presence of more clients.

Nevertheless, our framework F
2
L can reduce the adverse impact

brought by more clients through effectively leveraging the global

knowledge learned from all clients. In consequence, the perfor-

mance degradation is less significant for F
2
L.

5 RELATEDWORK
5.1 Few-shot Learning
The objective of Few-shot Learning (FSL) is to learn transferable

meta-knowledge from tasks with abundant information and gen-

eralize such knowledge to novel tasks that consist of only lim-

ited labeled samples [9, 11, 45, 49, 56]. Existing few-shot learning

works can be divided into two categories: metric-based methods

and optimization-based methods. The metric-based methods target

at learning generalizable metric functions to classify query samples

by matching them with support samples [35, 46, 54]. For instance,

Prototypical Networks [44] learn a prototype representation for

each class and conduct predictions based on the Euclidean distances

between query samples and the prototypes. Relation Networks [46]

learn relation scores for classification in a non-linear manner. On

the other hand, optimization-based approaches generally optimize

model parameters based on the gradients calculated from few-shot

samples [24, 37, 41, 53]. As an example, MAML [15] proposes to

optimize model parameters based on gradients on support sam-

ples to achieve fast generalization. In addition, LSTM-based meta-

learner [41] adjusts the step size to adaptively update parameters

during meta-training.

5.2 Federated Learning
Federated Learning (FL) enables multiple clients to collaboratively

train amodel without exchanging the local data explicitly [16, 22, 30,

47, 58, 63]. As a classic example, FedAvg [36] performs stochastic

gradient descent (SGD) on each client to update model parame-

ters and send them to the server. The server averages the received

model parameters to achieve a global model for the next round.

FedProx [32] incorporates a proximal term into the local update of

each client to reduce the distance between the global model and

the local model. To deal with the non-IID problem in FL, recent

works also focus on personalization in FL [1, 3, 13, 48]. For instance,

FedMeta [6] incorporates MAML [15] into the local update pro-

cess in each client for personalization. FedRep [7] learns shared

representations among clients. Moreover, FedFSL [14] proposes to

combine MAML and an adversarial learning strategy [17, 43] to

learn a consistent feature space.

6 CONCLUSION
In this paper, we study the problem of federated few-shot learning,

which aims at learning a federated model that can achieve satisfac-

tory performance on new tasks with limited labeled samples. Never-

theless, it remains difficult to perform federated few-shot learning

due to two challenges: global data variance and local data insuffi-

ciency. To tackle these challenges, we propose a novel federated

few-shot learning framework F
2
L. In particular, we handle global

data variance by decoupling the learning of local meta-knowledge.

Then we leverage the global knowledge that is learned from all

clients to tackle the local data insufficiency issue. We conduct ex-

tensive experiments on four prevalent few-shot learning datasets

under the federated setting, covering both news articles and images.

The experimental results further validate the superiority of our

framework F
2
L over other state-of-the-art baselines.
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A NOTATIONS
In this section, we provide details for the used notations in this

paper and their corresponding descriptions.

Table 2: Notations used in this paper.

Notations Definitions or Descriptions
S the server

𝐼 the number of clients

C(𝑖 ) the 𝑖-th client

C𝑏 , C𝑛 the base class set and the novel class set

D (𝑖 )
𝑏

, D (𝑖 )
𝑛 the local base and novel datasets in C(𝑖 )

T , S, Q a meta-task and its support set and query set

𝜓 , 𝜙 the client-model and the server-model

h𝜓 representations learned by client-model

h𝜙 representations learned by server-model

p𝜓 the output probabilities by client-model

p𝜙 the output probabilities by server-model

𝑁 the number of support classes in each meta-task

𝐾 the number of labeled samples in each class

𝐷 the number of support samples in each meta-task

𝑄 the number of query samples in each meta-task

𝛼 𝑓 𝑡 the learning rate for fine-tuning

𝛼𝜙 , 𝛼𝜓 the meta-learning rates for 𝜙 and𝜓

𝑇 the number of training rounds

𝜏 the number of local training steps

𝜆𝑀𝐼 the loss weight for the mutual information loss

𝜆𝐾𝐷 the loss weight for the knowledge distillation loss

B ALGORITHM
We provide the detailed training process of our framework F

2
L in

Algorithm 1.

Algorithm 1 Detailed training process of our framework F
2
L.

Input: A set of 𝐼 federated clients; a local update objective L𝜙
for server-model; a local update objective L𝜓 for client-model;

number of training rounds 𝑇 ; number of local training steps 𝜏 .

Output: A trained server-model 𝜙 and a unique client-model 𝜓𝑖

for each client C(𝑖 ) in {C(𝑖 ) }𝐼
𝑖=1

.

1: for 𝑡 = 1, 2, . . . ,𝑇 do
2: for each client C(𝑖 ) in {C(𝑖 ) }𝐼

𝑖=1
in parallel do

3: for 𝑠 = 1, 2, . . . , 𝜏 do
4: Sample a meta-task T 𝑡,𝑠

𝑖
= {S𝑡,𝑠

𝑖
,Q𝑡,𝑠

𝑖
};

5: Fine-tune client-model𝜓𝑖 on S𝑡,𝑠
𝑖

according to Eq. (3);

6: Update server-model on S𝑡,𝑠
𝑖

with Eq. (5) and Eq. (14);

7: Update client-model on Q𝑡,𝑠
𝑖

with Eq. (4) and Eq. (20);

8: end for
9: end for
10: Each client returns the updated parameters of server-model

to the server;

11: The server sends back averaged parameters of server-model

to each client;

12: end for

C REPRODUCIBILITY
C.1 Model Details
In this section, we introduce the specific choices for the encoders

and classifiers in both server-model and client-model (i.e., 𝑞𝜙 , 𝑓𝜙 ,

𝑞𝜓 , and 𝑓𝜓 ).

C.1.1 Server-model Encoder 𝑞𝜙 . For the server-model encoder, we

adopt different models for news article datasets and image datasets.

In particular, for news article datasets 20 Newsgroup and Huff-

post, we leverage a biLSTM [20] with 50 units as the server-model

encoder. For the image datasets FC100 and miniImageNet, follow-

ing [42, 50], we utilize a ResNet12 as the server-model encoder.

Similar to [29], the Dropblock is used as a regularizer. The number

of filters is set as (64, 160, 320, 640).

C.1.2 Client-model Encoder 𝑞𝜓 . Considering that the client-model

is required to process the entire support set in a meta-task for

learning local meta-knowledge, we propose to further utilize a

set-invariant function that takes a set of samples as input while

capturing the correlations among these samples. In practice, we

leverage the Transformer [51] as the client-model encoder 𝑞𝜓 to

process the entire support set:(
h1
𝜓
, h2
𝜓
, . . . , h𝐷

𝜓

)
= Transformer

(
h1
𝜙
, h2
𝜙
, . . . , h𝐷

𝜙

)
, (22)

where h𝑖
𝜙
(or h𝑖

𝜓
) denotes the representation of the 𝑖-th sample in

S learned by the server-model encoder 𝑞𝜙 (or client-model encoder

𝑞𝜓 ). With the Transformer, the representations learned by the client-

model can effectively capture the correlations among samples in

the entire support set S for learning meta-knowledge.

C.1.3 Server-model Classifier 𝑓𝜙 and Client-model Classifier 𝑓𝜓 .
The classifiers 𝑓𝜙 and 𝑓𝜓 are both implemented as a fully-connected

layer, where the output size is |C𝑏 | for 𝑓𝜙 and 𝑁 for 𝑓𝜓 , as described

in Sec. 3.1.

C.2 Baseline Settings
In this section, we provide further details in the implementation of

baselines in our experiments.

• Local. For this baseline, an individual model is trained for

each client over the local data. Specifically, we use the same

architecture of encoders in our framework to learn sample

representations.

• FL-MAML. For this baseline, we leverage the MAML [15]

strategy and set the meta-learning rate as 0.001 and the

fine-tuning rate as 0.01. The encoders are the same as our

framework.

• FL-Proto. For this baseline, we follow the setting in Pro-

toNet [44] with the same encoders in our framework. The

learning rate is set as 0.001.

• FedFSL [14]. For this baseline, which combines MAML and an

adversarial learning strategy [17, 43], we follow the settings

in the public code and set the learning rate as 0.001. The

adaptation step size is set as 0.01.
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C.3 Parameter Settings
For our framework F

2
L, we set the number of clients as 10. The

number of training steps 𝜏 in each client is set as 10, and the number

of training rounds 𝑇 is set as 200. Moreover, the meta-learning

rates 𝛼𝜓 and 𝛼𝜙 are both set as 0.001 with a dropout rate of 0.1.

The fine-tuning learning rate 𝛼 𝑓 𝑡 is set as 0.01. We leverage the

Adam [26] optimization strategy with the weight decay rate set

as 10
−4
. During the meta-test, we randomly sample 100 meta-test

tasks from novel classes C𝑛 with a query set size |Q| of 5. In order

to preserve consistency for fair comparisons, we keep identical

meta-test tasks for all baselines. The loss weights 𝜆𝑀𝐼 and 𝜆𝐾𝐷 are

both set as 0.5. The default value of 𝐼 is set as 10.
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