
FederatedScope: A Flexible Federated Learning Platform
for Heterogeneity

Yuexiang Xie
∗
, Zhen Wang

∗
, Dawei Gao, Daoyuan Chen

†
, Liuyi Yao

†
, Weirui Kuang

†
,

Yaliang Li
‡
, Bolin Ding

‡
, Jingren Zhou

Alibaba Group

ABSTRACT
Although remarkable progress has been made by existing federated

learning (FL) platforms to provide infrastructures for development,

these platforms may not well tackle the challenges brought by

various types of heterogeneity, including the heterogeneity in par-

ticipants’ local data, resources, behaviors and learning goals. To

fill this gap, in this paper, we propose a novel FL platform, named

FederatedScope, which employs an event-driven architecture to

provide users with great flexibility to independently describe the

behaviors of different participants. Such a design makes it easy

for users to describe participants with various local training pro-

cesses, learning goals and backends, and coordinate them into an

FL course with synchronous or asynchronous training strategies.

Towards an easy-to-use and flexible platform, FederatedScope en-
ables rich types of plug-in operations and components for efficient

further development, and we have implemented several important

components to better help users with privacy protection, attack

simulation and auto-tuning. We have released FederatedScope at
https://github.com/alibaba/FederatedScope to promote academic

research and industrial deployment of federated learning in a wide

range of scenarios.

1 INTRODUCTION
As one of the feasible solutions to address the privacy leakage

issue when utilizing isolated data from multiple sources, Federated

Learning (FL) [44, 61, 97] has rapidly gained enormous popularity

in both academia and industry [34, 49, 94, 96]. Such widespread

adoption of FL is inextricably tied to the support of FL platforms,

such as TFF [12], FATE [97], PySyft [105] and FedML [37], which

provide users with functionalities to get started quickly and focus

on developing new FL algorithms and applications.

Although the existing FL platforms have made remarkable

progress, there are more burgeoning demands from FL research

and deployment, which are mainly brought by the heterogeneity

of FL. Specifically, we summarize the heterogeneity of FL as the

following four aspects.

(1) Heterogeneity in Local Data. The isolated data in FL,

which are often owned by different parties or generated by dif-

ferent edge devices, vary a lot among the FL participants in terms

of quality, quantity, underlying distributions, etc. Such heterogene-

ity in data can lead to the sub-optimal performance when applying

the vanilla FedAvg [61], i.e., producing one global model for all the

participants by the same local training process. Recent studies on

∗
Co-first authors.

†
Equal contribution, listed in alphabetical order.

‡
Corresponding authors, email addresses: {yaliang.li, bolin.ding}@alibaba-inc.com

Personalized FL [28, 76] customize the local training processes of

the participants according to their local data, including applying

client-specific parameters, training schedules, submodules, and fus-

ing approaches. Supporting these customizations brings challenges

to the extensibility and flexibility of FL platforms.

(2) Heterogeneity in Participants’ Resources. Apart from
the heterogeneity of data, the participants’ resources can also be

very different, including computation resources, storage resources,

communication bandwidths, reliability, and so on. However, most of

the existing FL platforms [12, 37, 97] adopt a synchronous training

strategy for FL, which might lead to additional overhead caused

by the heterogeneity in participants’ resources. For example, with

the synchronous training strategy, the whole FL system could usu-

ally suffer from the slow clients that might be caused by network

congestion, sluggish local training, or even device crash. Thus, it

would be better if FL platforms allow users to implement/execute

FL with asynchronous training strategies [19, 90] to ensure both

efficiency and effectiveness in real-world FL applications.

(3) Heterogeneity in Participants’ Behaviors. In the vanilla

FedAvg [61], the participants only exchange homogeneous infor-

mation (e.g., model parameters or gradients) and have the same

behaviors (e.g., updating models based on the local data via SGD).

However, the practical and recent FL applications often require

to exchange various types of information among participants and

execute diverse training processes, which leads to rich behaviors.

For example, in the emerging federated graph learning applica-

tions [86, 89, 93, 100], participants exchange and handle multiple

types of information, including model parameters, gradients, node

embeddings, etc; Real-world FL applications might involve partic-

ipants with different backends, which indicates that participants

need backend-dependent computation graphs and accordingly per-

form diverse training processes. Besides, due to the heterogeneity

in local data discussed above, participants could locally train with

client-specific configurations that are suitable for their local data

to achieve a better model utility. The heterogeneity in participants’

behaviors, caused by handling various exchanged information, exe-

cuting diverse training processes and applying client-specific con-

figurations in local training, prompts the FL platforms to support

flexible expression for rich behaviors of participants.

(4)Heterogeneity in LearningGoals. Towards a more general

scope of utilizing isolated data, some recent FL studies [60, 74, 93]

propose to allow participants to collaboratively learn common

knowledge while optimizing for different learning goals. For exam-

ple, several research institutes can federally train a graph neural net-

work to capture the generalizable structural patterns of molecules

by using their own molecule data that correspond to different learn-

ing goals, such as predicting solubility, enzyme type, penetration,

ar
X

iv
:2

20
4.

05
01

1v
5

 [
cs

.L
G

]
 1

5
N

ov
 2

02
2

https://github.com/alibaba/FederatedScope

etc. Another example, which can benefit from such heterogeneous

federated learning, is the pre-trained language models in natural

language processing [79], since participants can collaboratively

train with different objectives based on their private corpora that

cannot be directly shared in some scenarios such as medicine and

finance. To handle the heterogeneity in learning goals, FL platforms

should allow participants to locally train with different learning ob-

jectives and only share parts of the local models for collaboratively

learning.

The aforementioned aspects of heterogeneity are commonly ob-

served in real-world FL applications. Although we discuss them in

the above four aspects, they can appear jointly in a single applica-

tion. Facing such mixed heterogeneity, users are eager for an FL

platform that is flexible: Participants should be allowed to express

their diverse behaviors and different learning goals according to

their own local data and system resources, and these participants

can be effortlessly coordinated with synchronous or asynchronous

training strategies for completing the federal training procedure

based on a pre-defined consensus. Towards such a purpose, in this

paper, we propose FederatedScope, a novel FL platform to handle

the heterogeneity of FL.

To provide such flexibility, we propose FederatedScope, a novel
FL platform that employs the event-driven architecture [45, 65]

to frame FL courses into <event, handler> pairs. Note that it is

not trivial to build up a comprehensive FL platform with such a

formalization. In particular, considering the heterogeneity of fed-

erated learning, such formalization is expected to express diverse

behaviors of servers and clients for handling the heterogeneity, and

be well-modularized so that users can conveniently develop new FL

algorithms and applications. To fulfill this goal, the events provided

in FederatedScope can be categorized into two types, i.e., events
related to message passing and events related to condition checking,
which are used to describe what happens in the FL courses from the

perspective of an individual participant. For example, in a vanilla

FedAvg, a typical event of clients is “receiving_models”, which indi-

cates that clients receive the global model from the server, and the

corresponding handler can be “train the received global model based
on the local data, and then return the model updates”. The handlers,
triggered by events, describe what actions should be taken when a

specific event happens. These events happen in the intended logical

order and naturally trigger the corresponding handlers, which can

precisely express various FL algorithms and procedures. All the

participants can be coordinated with the pre-defined events related

to message passing and condition checking to construct suitable FL

course for specific scenarios and applications.

Besides the flexibility, as an FL platform, FederatedScope also
provide great usability, that is, FederatedScope provides different
levels of programming interfaces to meet different requirements

from users, as demonstrated in Figure 1. For the users who want

to design new FL algorithms, as discussed above, FederatedScope
allows them to add new <event, handler> pairs to implement their

ideas. For the users who want to directly apply existing FL tech-

niques to certain application scenarios, FederatedScope provides
rich sets of events and corresponding handlers, core functionalities

and several important plug-in components, all of which can be

directly called, and thus users only need to focus on a necessary

set of interfaces to be integrated or implemented. For example, we

Personalization
Algorithms

Asynchronous Training

Auto-Tuning

Attack Simulation

Privacy Protection

Server

Message Communicator

Client
Trainer

Aggregator

Monitor

Hetero-Task Learning

Event Handler

Plug-ins

Workers

Different Levels of Programming
Interfaces for Users

… …

… …

Deep
Customization

Simple
Configuration

Figure 1: FederatedScope provides different levels of program-
ming interfaces for users.

have implemented several personalization federated algorithms,

including applying client-wise configuration, maintaining client-

wise sub-modules, global-local fusing, etc, for users’ convenient

usage. Besides personalization, FederatedScope provides users with
functionalities such as asynchronous training, privacy protection

and cross-backend FL, and several important plug-ins such as attack

simulation for protection verification, and auto-tuning for helping

users to automatically seek suitable hyperparameters.

Last but not least, FederatedScope also has great extensibility,
which is brought by the fact that the set of <event, handler> pairs

can be easily extended by adding new ones. Take personalization

again as an example: to add a new personalization, users only need

to add new behaviors (e.g., adopting client-specific training course)

in the corresponding handlers. Such extension convenience also

holds for all the other functions such as federated aggregators,

asynchronous training, privacy-protection, etc. Through this way,

FederatedScope can be easily extended to include new functions or

plug-ins to satisfy new requirements brought by new developments

and support a variety of new scenarios.

Contributions. Our contributions can be summarized as: (1) Moti-

vated by the heterogeneity challenges from a wide range of FL ap-

plications, we propose and release FederatedScope, a novel FL plat-

form to handle heterogeneity in FL. The proposed FederatedScope
promotes the development of FL techniques and the deployment of

FL applications. (2) With the event-driven architecture, Federated-
Scope provides users with rich yet extendable sets of events and

corresponding handlers, core functionalities such as asynchronous

training, personalization and cross-backend FL, and several impor-

tant plug-in components. These implementations make it easy for

users to apply FL algorithms in both academia and industry appli-

cations. (3) FederatedScope brings great flexibility, usability and

extensibility to users, broadens the application scope and enables

more tasks that would otherwise be infeasible due to challenges

brought by various types of heterogeneity in FL.

2 PRELIMINARY
2.1 Problem Definition
Federated Learning (FL) [44, 61, 97], a learning paradigm for col-

laboratively training models from dispersed data without directly

sharing private information, involves multiple participants who are

willing to contribute their local data and computation resources.

2

We use server to denote the participant(s) who are responsible for

coordinating and aggregating, while other participants are clients.
During a typical training round of an FL course, clients update the

global model received from the server by training it with local data,

and send the model updates back to the server for collaborative

aggregation. In repeated training rounds, the (possibly sensitive)

training data is always kept locally in each client; the server and

clients only exchange aggregated and meta information, such as

model parameters, gradients, public keys, hyperparameters, etc,

which, to some degree, alleviates concerns about data privacy. To

further satisfy different types of formal privacy protection require-

ments, various privacy protection techniques can be integrated

into FL, such as Differential Privacy (DP) [80, 88], Homomorphic

Encryption (HE) [29, 35], and Secure Multi-Party Computation

(MPC) [13, 63]. In short, the goal of FL is to jointly train a global

model in a privacy-preserving manner and achieve a better perfor-

mance compared to that without collaboration.

Formally, there are𝑀 clients, and the𝑚-th client owns a private
training dataset D𝑚 = {(𝑥 (𝑚)

𝑖
, 𝑦

(𝑚)
𝑖

) ∈ X × Y, 𝑖 = 1, 2, . . . , |D𝑚 |},
where X and Y are the input feature space and the label space,

respectively. D𝑚 is stored in the𝑚-th client’s private space, and

𝑛 =
∑𝑀
𝑚=1 |D𝑚 | is the total number of training instances. Without

sharing D𝑚 directly with each other and the server, the𝑀 clients

together aim to train a model ℎ𝜃 : X → Y parameterized by 𝜃 ,

with the loss 𝐹 : Y ×Y → R+ ∪ {0}. The FL loss function is:

L =
1

𝑛

𝑀∑︁
𝑚=1

∑︁
(𝑥 (𝑚)

𝑖
,𝑦

(𝑚)
𝑖

) ∈D𝑚

𝐹

(
ℎ𝜃 (𝑥

(𝑚)
𝑖

), 𝑦 (𝑚)
𝑖

)
. (1)

Extensions. For the simplicity of presentation, we focus on a

vanilla FL to minimize the loss function in Equation (1) in most parts

of this paper. Our FederatedScope easily supports different feder-

ated settings in real-world FL applications, with more complicated

loss functions, in order to handle the heterogeneity as discussed in

Section 1. For example, for the purpose of personalization, the input

feature spaces, the label spaces, and the underlying learning goals

can be different for different clients. In FederatedScope, clients can
adopt different models and loss functions in local training, and only

federally train the shared parts of the models. We will discuss more

details in Section 3.4.

2.2 Related Works
Comparisons with existing FL platforms. In the recent years,

growing along with the development of federated learning, feder-

ated learning platforms, including TFF [12], FATE [97], LEAF [14],

PySyft [105], FedML [37], FedScale [47], etc., are proposed to sup-

port various kinds of applications. These federated learning plat-

forms provide data, models and algorithms, which saves users’ effort

on implementing from scratch and makes it easy for developers.

Most of these existing platforms adopt a procedural programming

paradigm, which requires users to explicitly declare a sequential

training process and computational graph from the global perspec-

tive. However, such a design makes the existing FL platforms unable

to provide the required flexibility and extendability for the burgeon-

ing demands from FL research and deployment, which limits the

promotion and broadened the application scenarios of federated

learning. Meanwhile, users also expect FL platforms to become

more convenient and simple to handle the aforementioned hetero-

geneity in real-world FL applications. To tackle these challenges,

we propose FederatedScope to provide great flexibility and extend-

ability for users to handle the heterogeneity in FL. FederatedScope
provides rich implementations of FL algorithms for convenient

usage, and provides different levels of programming interfaces for

users to develop new algorithms.

Comparisons with distributed machine learning. In dis-

tributed machine learning, the server has the rights to control the

behaviors of clients; While in federated learning, all the participants

could have their own behaviors following the achieved consensus

to collaboratively train the model. For example, given the consensus

that participants only need to share parts of the model parameters,

clients can apply client-wise training configurations (e.g., training

steps, learning rate, regularizer, optimizer, and so on) to locally train

themodel, and keep the non-sharedmodel parameters and the learn-

ing goals (might be different among clients) private. To satisfy such

requirements, FederatedScope give the rights to the participants to

describe behaviors from their own respective perspectives. Besides,

in federated learning, the quality, quantity, and distributions of

clients’ local data can be very diverse. Such heterogeneity in data

makes it challenging to collaboratively learn, which motivates Fed-
eratedScope to provide novel functionalities, such as asynchronous

training strategies (in Section 3.3) and personalized federated learn-

ing algorithms (in Section 3.4), to make better use of their isolated

data. Furthermore, there exist more privacy/security protection re-

quirements in federated learning compared to distributed machine

learning. To tackle this, FederatedScope provides some Byzantine

fault tolerance algorithms to defend the malicious participants (in

Section 3.6), and privacy protection component (in Section 4.1) and

attack simulation component (in Section 4.2) to enhance and verify

the privacy protection strength of FL applications.

3 DESIGN OF FEDERATEDSCOPE
In this section, we introduce the design of FederatedScope, showing
how an FL training course can be framed and implemented using an

event-driven architecture and why FederatedScope makes it easy

to handle heterogeneity in federated learning. The overall structure

is illustrated in Appendix D.

3.1 Overview
An FL course consists of multiple rounds of training, and a typical

round implemented with FederatedScope is illustrated in Figure 2,

which includes four major steps: (1) Broadcast Models: the server
broadcasts the up-to-date global model to the involved clients; (2)

Local Training: once received the global model, clients perform

local training using their trainer based on their private data; (3)

Return Updates: after local training, clients return the model up-

dates to the server; (4) Federated Aggregation: with the help of

an aggregator, the server performs federated aggregation on the re-

ceived model updates, and optimizes the global model. To facilitate

efficient development and deployment of such an FL course with

multiple computation/communication rounds and different roles,

there are two important design principles of FederatedScope.
3

Server

Aggregator4. Federated
Aggregation Aggregation Algorithm

Staleness Toleration

3. Return Updates

Client #1 …

···

1. Broadcast M
odels

Local training,
return updates

Save updates, check
aggregation condition

Federated
aggregation

2. Local
Training

Trainer #M
OptimizerLoss Function ···

Local training,
return updates

Trainer #2

Apply
personalization

algorithms

Client #2
Local training,

add noise,
return updates

Client #M

Trainer #1

receiving_
model

receiving_
model

receiving_
model

receiving_
updates

goal_achieved

performance_
drop

Figure 2: Overview of an FL round implemented with FederatedScope.

• Minimal dependency between different roles. In FederatedScope,
each client or the server takes care of only the minimal portion

of job it needs to collaboratively accomplish, including the model

to be collaboratively learned and the exchanged messages. While

allowing both synchronous and asynchronous training, we want

to avoid introducing too much duty of coordinating and schedul-

ing to the server. This is important especially when we consider

the heterogeneity of resources and learning goals for the clients.

• Flexible and expressive programming interfaces for algorithm devel-
opment and plug-in. FederatedScope aims to enable efficient de-

velopment of FL algorithms via proper abstraction of FL courses

and providing a necessary set of interfaces that developers need

to implement. Moreover, for the purpose of privacy protection

and other functionalities, operators (e.g., for noise injection and

encryption) and components (e.g., for auto-tuning) need to be

plugged into the FL course in a flexible way.

Based on these principles, we first give an overview of our design.

Basic infrastructure. FederatedScope employs an event-driven
architecture within which the behaviors of different clients and

the server in an FL course can be programmed (relatively) inde-

pendently. The information exchange among participants and con-

ditions to be checked by participants during the FL course are

described as events (trapezoids within pink areas in Figure 2); when

an event occurs, the corresponding handlers (hexagons within pink

areas) that describes the behavior of a participant is triggered. For

example, when “receiving_models” occurs, “local training” in a

client is triggered; when “goal_achieved” occurs, “federated aggre-

gation” in the server is triggered. It turns out that the pairs of events

and handlers are sufficiently expressive to describe all the existing

(both synchronous and asynchronous) FL algorithms, as well as

new ones we implement in FederatedScope.

With such an infrastructure, FederatedScope can easily sup-

port different machine learning backends (e.g., PyTorch [70] and

TensorFlow [5]). All users need to do is to transform exchanged in-

formation (called messages), which might be related to participants’

local backends, into backend-independent ones before sharing, and

parse the received messages according to the receiver’s backend

for further usage. We call this procedure message translation.
Programming interfaces. Within the above infrastructure Fed-
eratedScope provides, for each client or server, we only need to

implement a Trainer (green dashed rectangles in Figure 2) or Aggre-
gator (blue dashed rectangles), respectively, which encapsulates the

details of local training or federated aggregation with well-defined

interfaces, e.g., the loss function, optimizer, training step, aggrega-

tion algorithms, etc. A Trainer can be implemented as if a machine

learning model is trained on the local data owned by a client.

Besides Trainer and Aggregator, the design of FederatedScope
allows flexible plug-in operators and components. For example, in

order to ensure differential privacy, noise injection operators can

be plugged to perturb the messages to be sent, where the amount

of noise can be customized for different training tasks. More details

of the programming interfaces can be found in Section 3.6.

Why event-driven? Benefited from such event-driven design, Fed-
eratedScope provides users with expressiveness and flexibility to

handle various types of heterogeneity in FL. Users would not be

required to implement the FL courses from a centralized perspec-

tive as in a procedural programming paradigm, which might be

rather complicated for real-world FL tasks due to the heterogeneity.

Instead, each individual participant (a server or a client) is instanti-

ated with its own events and handlers to independently describe

its behaviors, such as what actions to take when receiving a cer-

tain type of message from others, how to perform local training

and what information should be returned (for a client), and when

4

to perform federated aggregation and start/terminate the training

process (for a server).

In this way, the server performs federated aggregation under

flexibly triggered conditions, which can prevent the training pro-

cess from being blocked by unreliable or slow clients (more details

in Section 3.3). Different clients may customize their training con-

figurations according to their own data distributions, tasks, and

resources, such as training with different trainers for personaliza-

tion (Section 3.4.1), learning toward different goals (Section 3.4.2),

and running on different backends (Section 3.5). FederatedScope
also provides some native plug-in modules (Section 4) for various

important functionalities, including privacy protection, attack sim-

ulation, and auto-tuning. Before diving into these parts, we first

provide more details about the event-driven design of Federated-
Scope in Section 3.2.

3.2 Event-driven Architecture
Event-driven architectures are widely adopted in distributed sys-

tems [45, 65]. With such an architecture, an FL training course in

FederatedScope can be framed into <event, handler> pairs: the

participants wait for certain events (e.g., receiving model parame-

ters broadcast from the server) to trigger corresponding handlers
(e.g., training models based on the local data). Hence, developers

can express the behaviors of a participant (a server or a client)

independently from its own perspective, rather than sequentially

from a global perspective (considering all the participants together),

and the implementations can be better modularized.

The events in FederatedScope are categorized into two classes.

One is related to message passing (e.g., exchanging information

with others), which is also considered in previous FL platforms,

e.g., receiving user-defined messages in FedML [37] and invoking

requests in FedKeeper [15]. The other class of events checks the

satisfaction of customizable conditions (e.g., whether a pre-defined

percentage of feedback from clients has been received). Some ex-

amples of events provided in FederatedScope are presented in

Appendix B. Next we will introduce these types of events in more

detail.

• Events Related to Message Passing. The exchanged information

among participants are abstracted as messages, and an FL training

course consists of several rounds of message passing. Multiple

types of messages are involved in an FL course, including but not

limited to building up (e.g., join_in and id_assignment), training
(e.g., model_param and gradients), and evaluating (e.g., metrics).
For the participants, receiving a message can be regarded as an

event, and their follow-up behaviors can be described in handling

functions (i.e., the handlers) to handle the received messages. A

handling function can be invoked by the event of receiving one or

more types of messages, while receiving a certain type of message

should only trigger one handling function directly.

Take the vanilla FedAvg as an example, the clients’ handling

function for the event “receiving_models” can be described as “train
the received global model based on the local data, and then return the
model updates”, and the servers’ handling function for the event

“receiving_updates” can be described as “save the model updates,
and check whether all the feedback has been received”.

Generally, by defining the events related to message passing,

FederatedScope provides users with expressiveness to flexibly de-

scribe heterogeneous message exchange, such as exchanging model

parameters, gradients, public keys, embeddings, generators, and so

on. Meanwhile, through customizing the operations in the corre-

sponding handlers, users can conveniently describe rich behaviors

of participants, including training models based on the local data

with personalized configurations, performing federated aggrega-

tion, predicting, clustering, generating, etc. We will discuss more

about this in Section 3.4.

• Events Related to Condition Checking.Apart from the events related

to message passing, the events related to condition checking are

also indispensable for FL implementations. These events and the

corresponding handlers describe the participants’ behaviors when

certain conditions are satisfied. For example, in an FL course, for the

purpose of synchronization in training, the server checks whether

the updated gradients or model parameters have been received

from all the clients; if yes, it invokes an event “all_received”, and
this event triggers the federated aggregation and pushes forward

the training process.

One important usage of the events related to condition check-

ing is to express the customizable conditions for triggering the

federated aggregation. Besides “all_received”, in order to sup-

port asynchronous training, FederatedScope also provides events

“goal_achieved” and “time_up” for such purpose. Specifically,

“goal_achieved” indicates that a certain percentage of feedback

(so-called aggregation goal) has been received, and “time_up” de-
notes that the user-allocated time budget for each training round

has run out. Different from the event “all_received” that forces the
server to wait for feedback from all the clients, “goal_achieved”
allows the training process to move forward once the server has

received enough feedback, while “time_up” encourages the server
to collect as much feedback as possible within the time budget, both

of which enable different asynchronous training strategies in FL.

Furthermore, the events related to condition checking also can

be used to describe the behaviors of participants. For example, the

server can be equipped with the events “all_joined_in” (i.e., all the
clients have joined in the FL course) and “early_stop” (i.e., pre-
defined early stop conditions are satisfied) to describe when to start

and terminate the training process, respectively, while the clients

can use the events “performance_drop” to trigger personalization

when the received global model causes the performance drop, and

use “low_bandwidth” to reduce the communication frequencywhen

the available bandwidth is not enough.

FederatedScope provides warnings if there exist conflicts, and
adopts a default resolution following the “overwriting” principle.

Specifically, in an FL course implemented with FederatedScope,
each event is only permitted to be linked with one handler directly

during the execution process. If an event is linked with more than

one handler, which might cause conflicts in an FL course, a warning

would be raised for users by FederatedScope, and the latest linked

handler would overwrite the older ones (e.g., the default handler is

overwritten by the user-customized handlers). Finally, the handlers

that take effect in an FL course would be printed out and recorded

in the experimental logs. Users can remove some handlers or adjust

5

the linked orders to make sure the intended handlers would take

effect in the constructed FL courses.

FederatedScope provides lots of predefined <event, handler>

pairs, which cover the rich implementation of existing FL algo-

rithms, such as FedAvg [61], personalization [52, 55, 75], federated

graph learning approaches [86], and so on. Users can implement

their own algorithms based on these provided <event, handler>

pairs. However it is out of our scope here to exhaustively list all the

possible events related to message passing and condition checking.

The most important advantage is that the event-driven design of

FederatedScope provides users with expressiveness and flexibility

to implement and customize diverse FL algorithms. Next, with Fed-
eratedScope, we will demonstrate how to execute asynchronous

federated training (Section 3.3), how to describe rich behaviors of

the participants (Section 3.4) and how to conduct cross-backend FL

(Section 3.5) in order to handle the heterogeneity of FL.

3.3 Supporting Asynchronous Training
The asynchronous training strategies have been successfully ap-

plied in distributed machine learning to improve training effi-

ciency [19, 57, 101]. Considering the aforementioned heterogeneity

of FL in Section 1, the asynchronous training strategy is important

to balance the model performance and training efficiency, especially

in cross-device scenarios that involve a large number of unreliable

and diverse clients. With the provided events and handlers, which

specify what actions to take (i.e., handlers) when certain customiz-

able conditions are satisfied (i.e., events), FederatedScope supports
users to conveniently design and implement suitable asynchronous

training strategies for their FL applications.

3.3.1 Behaviors for asynchronous FL. Compared with the synchro-

nous training strategy, several unique behaviors of participants

might happen in asynchronous FL, which are modularized and

provided in FederatedScope as follows:
(i) Tolerating staleness in federated aggregation. The term “stale-

ness” denotes the version difference between the up-to-date global

model maintained at the server and the model that a client starts

from for local training, which should be tolerable to some extent

in asynchronous FL. Specifically, in the federated aggregation, the

staled updates from slow clients might be discounted in the aggre-

gator but they still contribute to the aggregation. Of course, when

the staleness is larger than a pre-defined threshold, the updates

become outdated and thus can be directly dropped out.

(ii) Sampling clients with responsiveness-related strategies. The
uniform strategy for sampling clients [61] might bring model bias in

asynchronous FL, since the clients with low response speeds would

contribute staled updates with higher probabilities compared with

those who respond fast, which implies that the contributions of

slow clients would be discounted or even dropped out in feder-

ated aggregation. Similar phenomena are happened in synchronous

FL using over-selection mechanism [12], as pointed out by pre-

vious studies [41, 53, 67]. To tackle such an issue, with the prior

knowledge of response speeds (it can be estimated from device

information or historical responses), FederatedScope provides a
responsiveness-related sampling strategy (i.e., the sampled proba-

bilities are related to the response speeds) and a group sampling

strategy (i.e., clients with similar response speeds are grouped).

(iii) Broadcasting models after receiving update. With the syn-

chronous training strategy, the server broadcasts the up-to-date

model to the sampled clients after performing federated aggrega-

tion. Such a broadcasting manner, denoted as after aggregating
here, can also be adopted in asynchronous FL [90]. We also pro-

vide another broadcasting manner to achieve asynchronous FL,

named after receiving [67], in which the server sends out the cur-

rent (up-to-date) model to a sampled idle client once the feedback is

received. Compared with after aggregating, the after receiving man-

ner can keep the consistent concurrency and promotes an efficient

FL systems [41].

To the best of our knowledge, with the provided events and the

corresponding handlers that describe the above behaviors, most of

the existing studies on asynchronous FL can be conveniently imple-

mented with FederatedScope. For example, FedBuff [67] proposes

to register the event “goal_achieved” and apply the after receiv-
ing broadcasting manner, while SAFA [90] suggests to equip after
aggregating broadcasting manner with event “goal_achieved” and
manages clients based on their stalenesses. Particularly, a synchro-

nous FL course with the over-selection mechanism can be easily

implemented in FederatedScope by using event “goal_achieved”
and setting the toleration to 0 (i.e., dropout all staled update).

In a nutshell, FederatedScope is well-modularized toward flex-

ibility and extensibility for handling the heterogeneity of FL via

applying asynchronous training strategies.

3.3.2 An example of asynchronous FL with FederatedScope.

Example 3.1. An example of asynchronous training strategy for

FL is demonstrated in Figure 3. At the beginning of training process,

the server samples a subset of the clients and broadcasts the model

parameters (denoted as 𝜃 (𝑖) for the 𝑖-th round in the figure) to the

sampled clients (e.g., Clients A/B/C in round 0 and A/C/D in round

1). These sampled clients perform local training based on their local

data, and return the updated model parameters (e.g., 𝜃
(0)
𝐴

, 𝜃
(0)
𝐵

and

𝜃
(0)
𝐶

) to the server once they finish training.

If the server could receive all the feedback from the sampled

clients in time, as demonstrated in round 0, event “all_received”
happens, and the corresponding handler is triggered and federated

aggregation is performed to generate the new global model (e.g.,

𝜃 (1)) for the next training round.

However, in some cases, such as round 1, some of the clients

(e.g., Client D) fail to return the updated model in time due to some

exceptions such as sluggish local training or device crash. With the

asynchronous training strategy implemented in FederatedScope,
when the allocated time budget has been run out, the “time_up”
event would occur, and the server starts performing federated aggre-

gation if the feedback has been received from a sufficient number of

clients, otherwise the server executes “remedial measures”, such as

restarting the training round, sampling reliable clients additionally,

or adaptively adjusting the time budget. The staled feedback, such

as 𝜃
(1)
𝐷

in round 2, can be saved and contributed to the aggrega-

tion if such staleness is still tolerable according to the user-defined

threshold in the corresponding events. △
As shown in this example, applying asynchronous training can

improve the learning efficiency and ensure the effectiveness of the

learned model when facing the aforementioned heterogeneity of

6

Server

Client A

Client B

Client C

Client D

Sample
& Broadcast

		𝜃(")

		𝜃(")

		𝜃(")

	𝜃$
"

	𝜃%
"

	𝜃&
"

Local
Training

Aggregation: 	𝜃$
" 		𝜃%

" 		𝜃&
" 		𝜃(')

		𝜃(')

		𝜃(')

		𝜃(')

		𝜃(
'

		𝜃)
'

		𝜃*
'

Time Out

Aggregation:		𝜃(
' 		𝜃)

' 		𝜃(+)

		𝜃(+)

		𝜃(+)

		𝜃(+)

		𝜃(
+

		𝜃,
+

		𝜃)
+

Aggregation: 		𝜃(-)		𝜃(
+ 		𝜃,

+ 		𝜃)
+		𝜃*

'

		𝜃(-)

		𝜃(-)

		𝜃(-)

Figure 3: An example of asynchronous training strategy in federated learning.

FL. More fancy strategies for asynchronous machine learning and

FL [19, 57, 90, 101] have been integrated into FederatedScope, such
as discounting the staled update, grouping clients according to their

responsiveness, and so on.

3.3.3 Convergence analysis. We provide a theoretical analysis of

convergence when applying the asynchronous training strategies

in FL, under some widely-adopted assumptions [16, 67, 83] includ-

ing smoothness and convexity of the loss function, the bounded

gradient variances, and the bounded staleness.

Proposition 1. Consider the optimization problem defined in
Equation (1). For each sampled client, it takes 𝑄 local SGD steps with
learning rate 𝜂 and returns model update to the server for federated
aggregation. Assume that the loss function 𝐹 is 𝐿-smooth and 𝜇-
strongly convex, when setting 0 < 𝜇𝑄𝜂 < 1, the convergence of global
model 𝜃 (𝑡) to the optimum 𝜃 (∗) after 𝑇 rounds satisfies:

E
[
𝐹 (𝜃 (𝑇)) − 𝐹 (𝜃 (∗))

]
≤ (1 − 𝜇𝑄𝜂)𝑇E

[
𝐹 (𝜃 (0)) − 𝐹 (𝜃 (∗))

]
+3𝐿𝑄𝜂

𝜇

(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

) [
𝜂𝑄𝐿(𝜏2

max
+ 1) + 1

2

]
, (2)

where 𝜏max denotes the maximum value of staleness caused by the
asynchronous training strategies.

The above result shows the value of implementing asynchronous

training strategies with FederatedScope. The detailed proof can be

found in Appendix A. Compared to previous studies [16, 83], we

extend the convergence analysis to more challenging asynchronous

FL, where we quantify the effect of staled model updates for the fed-

erated aggregation and give a general analysis on the convergence

rate rather than an ergodic version [67].

3.4 Supporting Personalization & Multi-Goal
In many real-world applications, handling the heterogeneity of FL

brings the requirements of the flexibility of participants’ training

behaviors. That is, clients need client-specific training processes

and/or different formats of loss functions to meet their resource

limitations, data properties and learning goals, all of which can be

diverse as discussed in Section 1. Formally speaking, for the𝑚-th

client, the local training dataset D𝑚 might correspond to client-

specific feature space X𝑚 and label space Y𝑚 , which can lead to

sub-optimal performance of the global model ℎ𝜃 or even makes it

unusable. To tackle this, the client could (1) maintain a local model

ℎ𝜃𝑚 with personalized parameters 𝜃𝑚 (i.e., personalization) and/or

(2) minimize the local loss function 𝐹𝑚 (i.e., multiple learning goals),

while only sharing parts of the models with others for federal train-

ing. Therefore, the loss function in Equation (1) can be extended

as:

L′ =
1

𝑛

𝑀∑︁
𝑚=1

∑︁
(𝑥 (𝑚)

𝑖
,𝑦

(𝑚)
𝑖

) ∈D𝑚

𝐹𝑚

(
ℎ𝜃𝑚 (𝑥 (𝑚)

𝑖
), 𝑦 (𝑚)

𝑖

)
. (3)

Note that there exists some shared parameters among clients, i.e.,

𝑀⋂
𝑚=1

𝜃𝑚 ≠ ∅, and all the clients collaboratively learn 𝜃1, 𝜃2, . . . , 𝜃𝑀

to jointly minimize L′
.

Benefited from the event-driven architecture, FederatedScope
provides users with flexible expressiveness to describe the behav-

ior of an individual participant (a server or a client) from its own

perspective, which is crucial for handling the heterogeneity of FL

via allowing the differences among participants. In this section, we

present how FederatedScope supports such differences among par-

ticipants for handling the heterogeneity of FL through the following

two ways.

3.4.1 Personalized training behaviors. As discussed by previous

work [17, 28, 76], the heterogeneity of FL (e.g., the heterogeneity

in local data and participants’ resources) might hurt the model

performance for some clients and lead to the sub-optimal perfor-

mance when sharing the same global model among all participants,

such as vanilla FedAvg [61], which motivates the study of personal-

ized federated algorithms [52, 55, 60, 75]. Specifically, personalized

federated algorithms are proposed to apply client-specific local

training courses based on their private data, including client-wise

training configuration, sub-modules, global-local fusing weights,

etc. The convergence of the federal learning process is not be de-

termined solely by the learning process of the global model. Each

participant can independently choose the most suitable snapshot of

7

the global model. Therefore, users are expected to describe diverse

behaviors of clients to develop personalized federated algorithms,

which might be rather complicated and inconvenient when using a

procedural programming paradigm since lots of effort is put into

sequentially coordinating and describing the participants.

With the event-driven architecture, FederatedScope allows users
to describe the behaviors of participants independently, which pro-

vides great flexibility to develop new personalization algorithms.

Users are able but not limited to (1) specify the training configura-

tions, such as local training steps and learning rate, for an individ-

ual client; (2) define new events related to new types of exchanged

messages and/or events related to customized conditions to ap-

ply personalization algorithms (e.g., performance_drop); (3) add
personalized behaviors into handlers that are triggered for local

training, such as fusing the received global model with local models

before performing local training. In most cases, such customization

can be inherited from the general training behaviors and only need

to focus on the differences. Considering that clients might have

different privacy protection requirements, some privacy protection

techniques can be adopted. For example, clients might choose to

inject noise into the model parameters before sharing them. More

details of the privacy protection of messages can be found in Sec-

tion 4.1.

We provide several representative personalized federated algo-

rithms [17] in FederatedScope for handling the heterogeneity in

FL, including pFedMe [75], FedBN [55], FedEM [60], and Ditto [52].

These built-in algorithms serve as examples for showing how to

easily and flexibly develop new personalized federated algorithms,

and can also be conveniently adopted via configuring by users in

real-world applications.

3.4.2 Multiple Learning Goals. Note that the scope of FL also covers
the scenarios where participants learn common knowledge while

optimizing different learning goals [60, 74, 93, 98]. The participants

of an FL course reach a consensus on what needs to be shared

while keeping other learning parts private, especially in cross-silo

scenarios. For example, several medical research institutes would

like to collaboratively learn a graph neural network for capturing

the common structure knowledge of molecules, but they will not

disclose what is the usage of the learned structure knowledge. They

might exchange the update of the graph convolution layers while

maintaining the encode layers, readout layers, and headers (such as

classifier) private. In this andmore similar scenarios frommodel pre-

training, it can be difficult or even intractable for users to develop

with a procedural programming paradigm via defining the static

computation graph of the FL course.

Fortunately, the event-driven design of FederatedScope makes

it easy to express and implement the FL courses with multiple

learning goals. Each participant owns its local model and private

data, defines its computation graph, locally trains with private

learning objective, and only exchanges messages of the shared

layers with others through FL.

Currently, FederatedScope provides three representative scenar-
ios of FL with multiple learning goals, including graph classification,

molecular property inference, and natural language understanding

(NLU). In the graph classification scenario, clients own different

graph classification tasks and aim to collaboratively improve their

own performance due to the limitation of available training data.

In the molecular property inference scenario, different clients have

different property inference goals, such as the solubility (regression

task), the enzyme type (classification task), and the penetration

(classification task), which leads to heterogeneity in terms of task

type. In the NLU scenario, clients are also heterogeneous in terms

of task type, and they own different NLU tasks, including sentiment

classification, reading compression, and sentence pair similarity

prediction. Since the development of FL with multiple learning

goals is still in the early stage, FederatedScope provides these sce-
narios to broaden the scope of FL applications and promote the

development of innovative methods. More details of these scenarios

of FL with multiple learning goals can be found in our open source

repository [4].

In summary, FederatedScope allows users to describe partici-

pants’ behaviors from their respective perspectives and thus pro-

vides flexibility in applying different training processes and learning

goals to the participants to handle the heterogeneity of FL.

3.5 Supporting Cross-backend FL
Motivated by the strong need from real-world applications, Fed-
eratedScope supports constructing cross-backend FL courses. For

example, in an FL task, some of the involved clients are equipped

with TensorFlow while others might run with PyTorch. Thanks to

the event-driven architecture, FederatedScope can conveniently

provide such functionality via a mechanism called message transla-
tion. Note that such support of cross-backend FL is different from

those provided by the universal languages such as ONNX [9] and

the existing FL platforms such as TFF [12].

Conceptually, ONNX and TFF adopt a global perspective of con-

structing an FL course, which implies that the complete computa-

tion graph is globally defined and shared among all participants. In

order to make it compatible with different (versions of) machine

learning backends on different clients, the global computation graph

is serialized into platform-independent and language-independent

representations, sent to the clients, and interpreted or compiled

accordingly for different backends.

Message translation. FederatedScope, in contrast, gives each par-

ticipant the right of describing the computation graph on its own

(for the portion it takes charge of). Hence, participants can de-

fine the computation graph based on their running backends. Fol-

lowing a pre-defined consensus on the format of messages, the

participants transform the messages, e.g., gradients and model pa-

rameters, generated from the local backends into the pre-defined

backend-independent format, e.g., an array of pairs of parameters

and values, before sharing them with others. This procedure is

called encoding. For the other direction, once an encoded message

is received, the participant parses the message, e.g., the above array,

into backend-dependent tensors in its own computation graph and

backend, which is called the decoding procedure.
The encoding and decoding procedures are abstracted as two

special programming interfaces in FederatedScope with default

implementations; they can also be customized for each participant

based on its backend and the FL algorithm to be deployed. Federat-
edScope provides several examples of constructing cross-backend

federated learning [3].

8

class CustomizedServer(Server):
def customized_handler(args):

Do sth. # Describe the operations for handling the event
... ...
Register the customized handlers for customized events
registered_handlers = dict() # Expected type {event: handler}
register(customized_event, customized_handler)
... ...
if customized_event == True:

Call the corresponding customized_handler
registered_handlers[customized_event](args)

Figure 4: Behaviors description with events and handlers.

In supporting cross-backend FL, the advantage of Federated-
Scope is two-fold: (1) FederatedScope provides more flexibility to

handle the heterogeneity of FL than other platforms that adopt a

global perspective since each participant has the right to declare

its computation graph independently. Specifically, the developer

of each participant can focus on expressing its own computation

graph, such as client-specific embedding layers and output layers,

adapting to its input instance and task. There is no need to declare

a super graph (i.e., the global perspective) and care about how to

distribute it, reducing the implementation difficulty. (2) Federat-
edScope follows the principle of information minimization, where

participants only need to achieve a consensus on the format of mes-

sages and exchange necessary information. Thus, the exchanged

model parameters will not leak the whole model architecture, the

local training algorithm, or the personalization-related operators

to other participants, which would otherwise be inferable from

the global computation graph of ONNX and TFF. When such in-

formation leakage happens, malicious participants benefit from it

because they can conduct a white-box attack rather than the more

challenging black-box one in FederatedScope. We will talk more

about privacy attacks in Section 4.1.

3.6 Usage of FederatedScope
In this section, we give a full example of how to set up an FL

course, so that users can gain a clear and vivid understanding of

FederatedScope. At a high level, users should define a series of

events and their corresponding handlers, which characterize the

behaviors of participants. As shown in Figure 4, the handlers are

expressed as callable functions and bound to the corresponding

events with a register mechanism. When an event happens, the

corresponding handler will be called to handle it. The example is

as follows:

Example 3.2. Consider that a server and several clients would

like to construct an FL course and they agree to exchange certain

model parameters during the training process.

For clients, the event related to message passing is “receiv-
ing_models”, and the corresponding handler can be “train the re-
ceived global models based on local data, and then return the model
updates”. The local training process is executed by a Trainer object
held by the client. As illustrated in Figure 5, the trainer encapsulates

the training details, entirely decoupled from the client’s behaviors.

Hence, the training process can be described as those of the cen-

tralized learning case, and the trainer can be flexibly extended with

class Client(object):
trainer = CustomizedTrainer(args)
... ...
def handler_for_receiving_models(args):

Perform local training when receiving the global models
model_update = trainer.train(args.model, args.data)
send(message=model_update, receiver=server)

class CustomizedTrainer(Trainer):
... ...
Describe training behaviors (same as centralized training)
def train(received_models, data):

Personalized algorithms might be applied here
local_model = update_from_global_models(received_models)
preds = local_model.forward(data.x)
args = [optimizer, loss_function, regularizer, ...]
model_updates = local_model.backward(data.y, preds, args)
return model_updates

Figure 5: The training behaviors and clients are decoupled
for supporting flexible customization.

fancy optimizers, regularizers, personalized algorithms, etc. Such a

design makes it easy for user customizations.

For the server, the event related to message passing is “receiv-
ing_updates” and the corresponding handler can be “save the model
updates, and check the aggregation condition”, which requires an-

other event related to condition checking. For the synchronous

training strategy, such event can be “all_received” and the corre-

sponding handler will be “perform federated aggregation, and broad-
cast the updated globalmodels”. For the asynchronous training strate-
gies, the event “all_received” can be replaced with “goal_achieved”
or “time_up”, which adds flexible behaviors during sampling clients

or performing aggregation (More details can be found in Section 3.3).

The federated aggregation is executed by an aggregator, which

is also decoupled with the server for flexibly supporting various

state-of-the-art (SOTA) aggregation algorithms, such as FedOpt [7],

FedNova [84], FedProx [54], etc.

Note that when events such as “all_received” or “goal_achieved”
happens, the clients would receive the up-to-date global models

after the server performs federated aggregation, which naturally

causes the following event “receiving_models” and triggers the

handlers for performing a new round of local training. In this way,

although we have not explicitly declared a sequential training pro-

cess, the events happen in the intended logical order to trigger

the corresponding handlers, which can precisely express the FL

procedure and promote modularization. Further, events such as

“maximum_iterations_reached” or “early_stopped” can be adopted

to specify when the FL courses should be terminated. △

With such event-driven architecture, FederatedScope allows

users to use existing or add new <event, handler> pairs for flex-

ible customization, rather than inserting the new behaviors into

the sequential FL course carefully as those in the procedural pro-

gramming paradigm. For example, by simply changing the event

“all_received” to other events related to condition checking such

as “goal_achieved”, users can conveniently apply asynchronous

training strategies. Users also can add some new events related

to message passing to enable the heterogeneous information ex-

change, such as node embeddings in graph federated learning [93]

and encrypted results in cross-silo federated learning [35]. Several

9

representative examples from end-user perspective can be found

on our website, including constructing FL courses via simple con-

figuring [2] and developing new functionalities [1].

Trainer & Aggregator. The details of the adopted algorithms in

trainer and aggregator are decoupled with the behaviors of partici-

pants. Therefore, when users develop their own trainer/aggregator

with FederatedScope, they only need to care about the details of

training/aggregating algorithms. For example, users are expected to

implement several basic interfaces of trainers, including train, eval-

uation, update model, etc., which is the same as those in centralized

training and serves as “must-do” items. For the aggregator, which

takes the received messages as inputs and returns the aggregated

results, users only need to implement how to aggregate.

Programming Interfaces and Completeness Checking. Fed-
eratedScope provides base classes to aware users of the necessary

interfaces for an FL course, such as BaseTrainer and in BaseWorker.
These base classes can be used to check the completeness of the

defined FL courses, since an “Not Implementation Error” would be

raised to abort the execution if users fail to implement the necessary

interfaces. With the base classes, FederatedScope provides rich im-

plementation of existing FL algorithms. Therefore users can inherit

the provided implementation and focus on the development of new

functions and algorithms, which also ensures the completeness

of FL courses. Besides, FederatedScope provides a completeness

checking mechanism to generate a directed graph to verify the flow

of message transmission in the constructed FL course (an example

is illustrated in Appendix E).

Robustness Against Malicious Participants. To defend mali-

cious participants and make the system more robust, some Byzan-

tine fault tolerance algorithms are provided in FederatedScope. For
example, we can apply the Krum [11] aggregation rule in federated

aggregation. Note that these Byzantine fault tolerance algorithms

can be regarded as the aggregation behaviors of server and imple-

mented in the aggregator, which is decoupled with other behaviors

to make it flexible and extendable for users to develop their own

fault tolerance algorithms.

4 IMPORTANT PLUG-IN COMPONENTS
In this section, we present several important plug-in components in

FederatedScope for convenient usage. These components provide

functionalities including privacy protection, attack simulation, and

auto-tuning, all of which are tightly coupled with the design of

FederatedScope and serve as plug-ins.

4.1 Behavior Plug-In: Privacy Protection
Real-world FL applications might prefer different privacy protection

algorithms due to their diversity in types of private information,

protection strengths, computation and communication resources,

etc., which motivates us to provide various privacy protection algo-

rithms in FederatedScope.
With the design of FederatedScope, privacy protection algo-

rithms can be implemented as behavior plug-ins, which indicates

that the privacy protection algorithms bring new behaviors of par-

ticipants. For example, before the participants share messages, the

encryption algorithms might be applied on the messages, or the

messages would be partitioned into several frames, or certain noise

class Client(object):
def handler_for_receiving_models(args):

... ...
if config.inject_noise_before_sharing == True:

Inject certain noise before sharing the message
args = [noise_distribution, budget, ...]
protected_messages = add_noise(messages, args)
send(message=protected_messages, receiver=server)

else:
send(message=messages, receiver=server)

Figure 6: Behavior plug-in: injecting noise.

can be injected into the messages. These behaviors have been pre-

defined in FederatedScope (so-called the behavior plug-in), and can
be easily called to protect privacy via simple configuration.

Specifically, we implement a widely-used homomorphic encryp-

tion algorithm Paillier [69] and apply it in a cross-silo FL task [35];

and we develop a secret sharing mechanism for FedAvg. These

provided examples demonstrate how to apply privacy protection

algorithms with FederatedScope. Furthermore, to satisfy the het-

erogeneity in privacy protection strengths, we provide tunable

modules for applying Differential Privacy (DP) in FL, which has

been a popular technique for privacy protection and has achieved

great success in database and FL applications [24, 25, 80, 88]. An ex-

ample is illustrated in Figure 6, fromwhichwe can see that users can

utilize the configuration to modify the client’s behavior: injecting

certain noise into the messages before sharing. Users can combine

different behaviors together to implement fancy DP algorithms

such as NbAFL [88]. Note that to achieve a theoretical guarantee

of privacy protection, users still need to specify some necessary

settings according to their own data and tasks, including the noise

distribution [26, 71] and privacy budget allocation [56, 59, 85].

4.2 Participant Plug-In: Attack Simulation
Attacks, growing along with the development of FL, are impor-

tant for users to verify the availability and the privacy protection

strength of their FL systems and algorithms. Typical attacks include

privacy attack and performance attack: the former aims to steal the

information related to clients’ private data, while the latter aims to

intentionally guide the learned model to misclassify a specific sub-

set of data for malicious purposes such as back-door. However, most

of the existing FL platforms ignore such an important functional

component.

Note that it is non-trivial to provide attack simulation in an FL

platform, since the diversity of privacy and performance attacks

brings challenges to the platform’s flexibility and extensibility. Ben-

efited from the design of FederatedScope, the behaviors of mali-

cious participants can be expressed independently, thus the attack

simulation can be implemented as the participant plug-in in Fed-
eratedScope. To be more specific, as shown in Figure 7, users can

conveniently choose some of the participants to become malicious

clients via configuring, and attack algorithms can be added to their

own trainers. These malicious clients are able to collect or inject cer-

tain messages among victims, and further recover or infer the target

information accordingly. The simulated attacks provided in Feder-
atedScope can be used to verify the privacy protection strength of

their FL systems and algorithms. For example, when users develop

10

class Fed_Runner(object):
... ...
def setup_client(config):

if config.is_malicious == True:
Instantiate a malicious client with attack behavior
client = MaliciousClient(attack_algorithms, args)

else:
Instantiate a normal client
client = Client(args)

client.join_in_FL_course()

Figure 7: Participant plug-in: malicious client.

a new FL algorithm, they want to know the protection level of the

proposed algorithm from some perspectives, such as whether the

dataset properties or private training samples would be inferred

by attacks. They can use several state-of-the-art attack algorithms,

which have been provided in FederatedScope for convenient usage,
to check the privacy protection strength of their FL algorithms, and

enhance the privacy protection strength if necessary according to

the results of simulated attacks.

FederatedScope provides rich types of attack. For privacy attack,

FederatedScope provides the implementation of the following algo-

rithms: (i) Gradient inversion attack [66] for membership inference;

(ii) PIA [64] for property inference attack; (iii) DMU-GAN [38]

for class representative attack; (iv) DLG [104], iDLG [103], GRAD-

INV [30] for training data/label inference attack. In terms of perfor-

mance attack, FederatedScope currently focuses on the backdoor

attack, a representative type of performance attack, whose objective

is to mislead the model to classify some selected samples to the

attacker-specified class. The implementations of SOTA backdoor

attacks include: (i) Edge-case backdoor attacks [82], BadNets [32],

Blended [18], WaNet [68], NARCISSUS [99], which perform back-

door attack by poisoning the dataset; (ii) Neurotoxin [102] and

DBA [91], which perform back-door attack by poisoning the model.

4.3 Manager Plug-In: Auto-tuning
FL algorithms generally expose hyperparameters that can signifi-

cantly affect their performance. Without suitable configurations,

users cannotmanage their FL applications well. Hyperparameter op-

timization (HPO) methods, both traditional methods (e.g., Bayesian

optimization [72] and multi-fidelity methods [6, 8, 27, 51]) and

Federated-HPO methods [22, 42] (denoting very recent ones that

deliberately take the FL setting into account) can help users manage

FL applications by automatically seeking suitable hyperparameter

configurations.

Therefore, in FederatedScope, we provide an auto-tuning plug-in,
which incorporates various HPO methods. Conceptually, Bayesian

optimization, multi-fidelity, and Federated-HPO methods treat a

complete FL course, a few FL rounds, and client-wise local update

procedures as black-box functions to be evaluated, respectively. Fed-
eratedScope provides a unified interface to manage the underlying

FL procedure in various granularities so that different HPOmethods

can interplay with their corresponding black-box functions. This

unification is nontrivial for the last case, where we leverage our

event-driven architecture to achieve the client-wise exploration of

Federated-HPO methods. When they are plugged in, the exchanged

messages are extended with HPO-related samples/models/feedback,

class Server(object):
def handler_for_receiving_updates(args):

... ...
if config.apply_fedex == True:

Choose hyperparameters for the client
cfg = sample_cfg(cfg_candidates, args.hpo_feedback)

Continue to handling the message accordingly
... ...

class Client(object):
def handler_for_receiving_models(args):

... ...
if config.apply_fedex == True:

Apply the received hyperparameters
trainer.apply_cfg(args.received_config)

Continue to handling the message accordingly
... ...

Figure 8: Manager plug-in: re-specify configuration.

and the participants would handle them with extended behaviors

accordingly.

For Bayesian optimization methods, we showcase applying vari-

ous open-sourced HPO packages to interact with FederatedScope.
Each time they propose a specific configuration, FederatedScope
executes an FL course accordingly and returns a specified metric

(e.g., validation loss) as the function’s output.

As for multi-fidelity methods, we have implemented Hyper-

band [51] and PBT [50] in FederatedScope. Specifically, Federated-
Scope can export the snapshot of a training course to a correspond-

ing checkpoint, from which another training course can restore.

With such a checkpoint mechanism, these multi-fidelity methods

can evaluate the configurations that have survived previous low-

fidelity comparisons by restoring from the last checkpoints rather

than learning from scratch.

Furthermore, FederatedScope provides FedEx [42] as an exem-

plary implementation of Federated-HPOmethods. Specifically, once

FedEx is plugged in, we sample configurations for each client in-

dependently in each FL round. Then each client re-specifies its

native configuration and conducts local updates accordingly, as

shown in Figure 8. Finally, the client-wise feedback is aggregated

to update the policies responsible for determining the optimal con-

figuration(s).

In summary, the auto-tuning plug-in can manage FL applica-

tions in various granularities. Traditional HPO methods interplay

with FederatedScope by configuring and running one or more com-

plete FL rounds, while Federated-HPO methods explore client-wise

configurations concurrently in a single FL round. With flexibility

provided by the event-driven architecture, we have implemented

these HPO methods in a unified way [87], and novel HPO methods

can be easily developed and contributed to FederatedScope.

5 EXPERIMENTS
5.1 DataZoo and ModelZoo
For convenient usage, we collect and preprocess ten widely-used

datasets from various FL application scenarios, including computer

vision datasets (FEMNIST [21], CelebA [58] and CIFAR-10 [46]), nat-

ural language processing datasets (Shakespeare [61], Twitter [31]

and Reddit [62]) from LEAF [14], and graph learning datasets

11

Table 1: The comparison between applying synchronous and asynchronous training strategies in federated learning, in terms
of the virtual time cost (hours) to achieve the targeted test accuracy.

Dataset (Target Acc.)

Sync. Async.

Vanilla OS OS (FedScale) Goal-Aggr-Unif Goal-Rece-Unif Time-Aggr-Unif Goal-Aggr-Group

FEMNIST (85%) 61.46 27.34 2.25× 28.78 2.14× 11.29 5.44× 11.36 5.41× 11.70 5.25× 10.42 5.90×
CIFAR-10 (70%) 66.99 26.42 2.54× 28.98 2.31× 7.73 8.67× 7.98 8.39× 8.87 7.55× 7.54 8.88×
Twitter (69%) 9.41 3.84 2.45× 4.14 2.27× 0.78 12.06× 0.64 14.70× 0.50 18.82× 0.65 14.48×

(DBLP [78], Ciao [77] and MultiTask [93]) from FederatedScope-

GNN (FS-G) [86]. The statistics of these datasets can be found in

Appendix C. Meanwhile, we provide off-the-shelf neural network

models via our ModelZoo, which includes widely-adopted model ar-

chitectures, such as ConvNet [48] and VGG [73] for computer vision

tasks, BERT [23] and LSTM [39] for natural language processing

tasks, and various GNNs [20, 33, 43, 81, 95] for graph learning. Such

ModelZoo allows users to conveniently develop various trainers

for clients.

5.2 Experiment Settings
Here we conduct a series of experiments with FederatedScope on
three representative datasets as follows:

FEMNIST. FEMNIST consists of 805,263 handwritten digits in 62

classes, which are partitioned into 3,597 clients according to the

writers. With FL, a CNN with two convolutional layers is trained

for image classification task on this dataset.

CIFAR-10. As suggested by previous studies [40], we partition the

dataset into 1,000 clients with a Dirichlet distribution, and federally

train a CNN with two convolutional layers for image classification.

Twitter. We sample a subset from Twitter, which consists of 6,602

twitter users’ 16,077 texts. Each twitter user can be regarded as a

client for constructing an FL course. Following previous study [14],

we embed the texts with a bag-of-words model [36] and collabora-

tively train a logistic regression model on these sampled clients for

sentiment analysis.

More implementation details can be found in Appendix F and H.

5.3 Results and Analysis
5.3.1 Asynchronous Federated Learning. We first conduct experi-

ments to compare the performance of applying synchronous and

asynchronous training strategies in FL.

Virtual Timestamp. Following the best practice in prior FL

works [47], we conduct the experiments by simulation while track-

ing the execution time with virtual timestamps. Specifically, the

server begins to broadcast messages containing initial model pa-

rameters at timestamp 0. Then each client sends updates back with

a timestamp as the received one plus the execution time of local

computation and communication estimated by FedScale [47]. The

server handles the received messages in the order of their times-

tamps and lets the next broadcast inherit the timestamp from the

message that triggers it, assuming the time cost of the server is

negligible. Along with an FL course, we record the performance of

the global model with respect to such virtual timestamps.

Baselines. We implement FedAvg with two synchronous train-

ing strategies including Sync-vanilla (i.e., the vanilla synchronous

strategy) and Sync-OS (i.e., the synchronous strategy with over-

selection mechanism [12]). As Sync-OS is originally proposed and

implemented in FedScale [47], we also adapt it for our experiments

and report its performance (denoted as Sync-OS (FedScale)) for cor-
rectness verification.

For asynchronous FL, we instantiate different asynchronous

behaviors discussed in Section 3.3.1, and different strategies are

named in the format of Async-AdoptedEvent-BroadcastManner-
SampleStrategy. For example, Async-Goal-Rece-Unif denotes that

this strategy adopts the event “goal_achieved”, the after receiv-
ing broadcasting manner and the uniform sampling strategies for

asynchronous FL, which can be regarded as the implementation

of FedBuff [67]; and Async-Time-Aggr-Group denotes we adopt the

event “time_up”, the after aggregating broadcasting manner and

a group sampling strategy (the client would be grouply sampled

according to their responsiveness [16]).

Analysis. We adopt the virtual time cost (hours) to achieve

the targeted test accuracy as the performance metric for compar-

ing synchronous and asynchronous FL. The experimental results

are shown in Table 1 (more experimental results can be found

in Appendix G and I), from which we can observe that asynchro-

nous training strategies achieve significant efficiency improvements

(5.25×~18.82×) compared to the vanilla synchronous training strat-

egy on all the benchmark datasets. Meanwhile, we plot the learning

curves in Figure 9. Due to the space limitation, we only show some

asynchronous training strategies on CIFAR-10 dataset and omit

other similar results. From Figure 9, we can observe the existence

of noticeable gaps between synchronous and asynchronous train-

ing strategies for a long time during the training process. These

experimental results are consistent with previous studies [41, 92]

and confirm that the asynchronous training strategies provided in

FederatedScope can significantly improve the training efficiency

while achieving competitive model performance.

Both our implementation Sync-OS and the original implementa-

tion in FedScale show that applying over-selection mechanism in

synchronous FL can improve the efficiency to some degree. How-

ever, it might cause unfairness among participants and then lead

to model bias, as demonstrated in Figure 10. From the figure we

can observe that when applying over-selection mechanism Sync-
OS, some clients never contribute to the federated aggregation, i.e.,

Pr[effective_aggregation_count = 0] > 0. The reason is that these

clients need more computation or communication time, and thus

their feedback would always be dropped since the server has fin-

ished the federated aggregationwith the feedback from those clients

having faster response speeds. In other words, these clients always

become the victims among the over-selected clients, which results in

12

0 5 10 15 20
Virtual Run Time (hour)

0.1

0.3

0.5

0.7

Te
st

 A
cc

ur
ac

y

Sync-Vanilla
Sync-OS
Sync-OS (FedScale)
Async-Goal-Aggr-Unif
Async-Goal-Rece-Unif

Figure 9: The comparison between syn-
chronous and asynchronous strategies.

0 30 60 90 120 150
Effective Aggregation Count

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ili

ty
 D

en
si

ty

Sync-Vanilla
Sync-OS
Async-Goal-Aggr-Unif
Async-Goal-Rece-Unif

Figure 10: The distributions of the aggre-
gated count of the clients.

0 1 2 3 4 5 6 7 8 9 ≥ 10
Staleness

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ili

ty
 D

en
si

ty

Async-Goal-Aggr-Unif
Async-Goal-Rece-Unif

Figure 11: The distributions of the stale-
ness in asynchronous strategies.

unfairness among participants, and then causes the learned models

to bias towards those clients with fast response speeds. In contrast,

the asynchronous learning strategies provided in FederatedScope
can improve the efficiency without introducing such unfairness and

model bias, due to the fact that staled feedback would be tolerated

in the federated aggregation. Hence the distribution of effective

aggregation count of asynchronous learning strategies plotted in

Figure 10 is more concentrated and similar to that of the vanilla

synchronous training strategy.

Further, in Figure 11, we illustrate the characteristics of different

asynchronous training strategies in terms of staleness (i.e., the ver-

sion difference between the up-to-date global model and the model

used for local training) of the updates when performing federated

aggregation. By comparing Async-Goal-Aggr-Unif and Async-Goal-
Rece-Unif, we can see that after aggregating broadcasting manner

causes less staleness than after receiving. It implies that after ag-
gregating is more suitable for those FL tasks with a low staleness

toleration threshold, but such a broadcasting manner requires more

available bandwidths at the server since multiple messages are sent

out at the same time.

5.3.2 Personalization. To demonstrate how personalization can

handle the heterogeneity among participants, we compare Fe-

dAvg [61] with several built-in SOTA personalized FL algorithms,

including FedBN [55], FedEM [60], pFedMe [75] and Ditto [52].

The experimental results are illustrated in Figure 12, which

shows the client-wise test accuracies on FEMNIST dataset. We

can observe that the average accuracy (denoted as the red dots) and

the 90% quantile accuracy (denoted as the red horizontal lines) of

vanilla FedAvg are both significantly lower than those of person-

alized FL algorithms. This indicates that applying personalized FL

algorithms can improve the client-wise performance, also covering

the bottom clients, and then lead to a better overall performance.

Besides, in terms of the standard deviation among the client-wise

accuracy (shown as 𝜎 at the top of the figure), personalized FL

algorithms can reduce the performance differences to some de-

gree, which confirms the advantages of enabling personalization

behaviors for handling the heterogeneity among participants in

real-world FL applications.

Personalized federated learning algorithms might need differ-

ent computation and computation resources compared to vanilla

FedAvg [61]. The computation and communication costs in each

training round are determined by the adopted algorithms. Take the

comparisons between vanilla FedAvg and two representative Per-

sonalized federated learning algorithms FedBN [55] and Ditto [52]

as examples, in each training round [17], (i) FedBN needs the same

computation but fewer communication costs, since it proposes to

not share the parameters of BacthNorm layer; and (ii) Ditto needs

the same communication but more local computation costs, since

it suggests to train the local models additionally. Further, from the

perspective of an FL course, i.e., iteratively performing the FL train-

ing rounds until termination, the communication and computation

costs depend on the convergence of learned models.

5.3.3 Privacy Protection and Attack. We conduct an experiment to

show the effect of applying privacy protection algorithms provided

in FederatedScope. We take DP as an example, and study its effect

on the utility of learned model and the effectiveness in defending

against privacy attack. Specifically, we train a ConvNet2 model

on FEMNIST, and randomly choose some of the clients to inject

Gaussian noise into the returned model updates to strengthen their

privacy. We construct multiple FL courses with respect to varying

the percentage of clients that injects noise, changing from 0% to

100%, and plot the performance of the learned models in Figure 13.

From this figure we can observe that as more and more clients

choose to inject the noise into the returned model updates, the test

accuracy achieved by the learned global model decreases gradually,

from 84% to 65%, which shows the trade-off between the privacy

protection strength and model utility.

Moreover, we apply the DLG algorithm [104] implemented in

FederatedScope to conduct privacy attack, aiming to reconstruct

private training data of other users. As shown on the left-hand side

of Figure 13, the reconstructed images from the clients who have

not injected noises are clear and the privacy attacker successfully

recovers clients’ training data to the extent that the groundtruth

digits are exposed. On the right-hand side of the figure, we plot

the reconstructed images from those clients injecting noises, which

confirms the effectiveness of the privacy protection provided by

DP since the attacker fails to recover meaningful information.

5.3.4 Auto-Tuning. As mentioned in Section 4.3, we have imple-

mented several HPO methods in FederatedScope, which enables

users to auto-tune hyperparameters of FL courses. Here we exper-

imentally compare some representative HPO methods, including

random search (RS) [10], successive halving algorithm (SHA) [51]

and recently proposed Federated-HPO method FedEx [42], by ap-

plying them to optimize hyperparameters of FedAvg on FEMNIST

dataset. We follow the protocol used in FedHPO-B [87], where RS

13

Figure 12: Client-wise test accuracy on
FEMNIST dataset.

Figure 13: Accuracy w.r.t. varying pro-
tection strength and recovered images.

Figure 14: Best-seen validation loss over
time on FEMNIST dataset.

and SHA try configurations one by one, and FedEx wrapped by

RS/SHAmanages the search procedure in a fine-grained granularity

to explore hyperparameter space concurrently.

We present the results in Figure 14, where the best-seen valida-

tion loss is depicted, and the test accuracy of the searched optimal

configuration is reported in the legend. The best-seen validation

losses of wrapped FedEx decrease slower than their corresponding

wrappers, where such a poorer regret seems to indicate poorer

searched hyperparameter configurations. However, their searched

configurations’ test accuracies are remarkably better than their

wrappers, implying the superiority of managing the search proce-

dure in a fine-grained granularity.

6 CONCLUSIONS
In this paper, we introduce FederatedScope, a novel federated learn-
ing platform, to provide users with great supports for various FL

development and deployment. Towards both convenient usage and

flexible customization, FederatedScope exploits an event-driven

architecture to frame an FL course into <events, handlers> pairs so

that users can describe participants’ behaviors from their respective

perspectives. Such an event-driven design makes FederatedScope
suitable for handling various types of heterogeneity in FL, due to

the advantages that (i) FederatedScope enables participants to ex-

change rich types of messages, express diverse training behaviors,

and optimize different learning goals, and (ii) FederatedScope offers
rich condition checking events to support various coordinations

and corporations among participants, such as different asynchro-

nous training strategies. Further, the design of FederatedScope
allows us to conveniently implement and provide several important

plug-in components, such as privacy protection, attack simulation,

and auto-tuning, which are indispensable for practical usage. We

have released FederatedScope to help researchers and developers

quickly get started, develop new FL algorithms, and build new

FL applications, with the goal of promoting and accelerating the

progress of FL.

REFERENCES
[1] The examples of constructing FL courses via developing new functionalities in

FederatedScope. https://federatedscope.io/docs/own-case/

[2] The examples of constructing FL courses via simple configuring in Federated-

Scope. https://federatedscope.io/docs/examples/

[3] The examples of cross-backend federated learning in FederatedScope.

https://github.com/alibaba/FederatedScope/tree/master/federatedscope/cross_

backends

[4] The examples of three scenarios of FL with multiple learning goals in Federated-

Scope. https://github.com/alibaba/FederatedScope/tree/master/benchmark/B-

FHTL

[5] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

arXiv preprint arXiv:1603.04467 (2015).

[6] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-

work. In Proc. of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD’19). 2623–2631.

[7] Muhammad Asad, Ahmed Moustafa, and Takayuki Ito. 2020. FedOpt: Towards

Communication Efficiency and Privacy Preservation in Federated Learning.

Applied Sciences 10, 8 (2020).
[8] Noor Awad, Neeratyoy Mallik, and Frank Hutter. 2021. DEHB: Evolutionary

Hyberband for Scalable, Robust and Efficient Hyperparameter Optimization.

In Proc. of the International Jont Conference on Artifical Intelligence (IJCAI’21).
2147–2153.

[9] JunFjie Bai, Fang Lu, Ke Zhang, et al. 2019. ONNX: Open Neural Network

Exchange. https://github.com/onnx/onnx.

[10] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of machine learning research 13, 2 (2012), 281–305.

[11] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

2017. Machine learning with adversaries: Byzantine tolerant gradient descent.

Advances in Neural Information Processing Systems 30 (2017).
[12] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,

Brendan McMahan, et al. 2019. Towards federated learning at scale: System

design. Proceedings of Machine Learning and Systems 1, 0 (2019), 374–388.
[13] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical secure aggregation for privacy-preserving machine learning. In Proc. of
the ACM SIGSAC Conference on Computer and Communications Security (CCS’17).
1175–1191.

[14] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,

H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A

benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[15] Mohak Chadha, Anshul Jindal, and Michael Gerndt. 2020. Towards federated

learning using faas fabric. In Proc. of the the 2020 Sixth International Workshop
on Serverless Computing. 49–54.

[16] Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa

Rangwala. 2021. FedAT: a high-performance and communication-efficient

federated learning system with asynchronous tiers. In Proc. of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(ResilientFL’21). 1–16.

[17] Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li, and Bolin Ding. 2022.

pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning.

In Thirty-sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track.

[18] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted

Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv
preprint arXiv:1712.05526 (2017).

[19] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. 2020. Asynchro-

nous online federated learning for edge devices with non-iid data. In Proc. of
the IEEE International Conference on Big Data (BigData’20). 15–24.

14

https://federatedscope.io/docs/own-case/
https://federatedscope.io/docs/examples/
https://github.com/alibaba/FederatedScope/tree/master/federatedscope/cross_backends
https://github.com/alibaba/FederatedScope/tree/master/federatedscope/cross_backends
https://github.com/alibaba/FederatedScope/tree/master/benchmark/B-FHTL
https://github.com/alibaba/FederatedScope/tree/master/benchmark/B-FHTL
https://github.com/onnx/onnx

[20] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In Proc. of the International
Conference on Learning Representations (ICLR’21).

[21] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.

EMNIST: Extending MNIST to handwritten letters. In Proc. of the International
Joint Conference on Neural Networks (IJCNN’17). 2921–2926.

[22] Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. 2020. Federated

Bayesian Optimization via Thompson Sampling. In Proc. of the Advances in
Neural Information Processing Systems (NeurIPS’20).

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In Proc. of the North American Chapter of the Association for Computational
Linguistics (NAACL-HLT’19). 4171–4186.

[24] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. 2011. Differentially

private data cubes: optimizing noise sources and consistency. In Proc. of the
ACM SIGMOD International Conference on Management of Data (SIGMOD’11).
217–228.

[25] Cynthia Dwork. 2008. Differential privacy: A survey of results. In Proc. of the
International Conference on Theory and Applications of Models of Computation
(TAMC’08). 1–19.

[26] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[27] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient

hyperparameter optimization at scale. In Proc. of the International Conference on
Machine Learning (ICML’18). 1437–1446.

[28] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized

federated learning: A meta-learning approach. arXiv preprint arXiv:2002.07948
(2020).

[29] Wenjing Fang, Derun Zhao, Jin Tan, Chaochao Chen, Chaofan Yu, Li Wang,

Lei Wang, Jun Zhou, and Benyu Zhang. 2021. Large-scale Secure XGB for

Vertical Federated Learning. In Proc. of the ACM Conference on Information and
Knowledge Management (CIKM’21). 443–452.

[30] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller.

2020. Inverting gradients-how easy is it to break privacy in federated learning?.

In Proc. of the Advances in Neural Information Processing Systems (NeurIPS’20).
16937–16947.

[31] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification

using distant supervision. CS224N project report, Stanford 1, 12 (2009), 2009.

[32] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets:

Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 7 (2019),
47230–47244.

[33] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representa-

tion Learning on Large Graphs. In Proc. of the Advances in Neural Information
Processing Systems (NeurIPS’17). 1024–1034.

[34] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise

Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-

age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[35] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Pa-

trini, Guillaume Smith, and Brian Thorne. 2017. Private federated learning on

vertically partitioned data via entity resolution and additively homomorphic

encryption. arXiv preprint arXiv:1711.10677 (2017).

[36] Zellig S. Harris. 1954. Distributional Structure. WORD 10, 2-3 (1954), 146–162.

[37] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang,

Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan

Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman

Avestimehr. 2020. FedML: A Research Library and Benchmark for Federated

Machine Learning. arXiv preprint arXiv:2007.13518 (2020).
[38] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models

under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 603–618.

[39] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.

Neural computation 9, 8 (1997), 1735–1780.

[40] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the

effects of non-identical data distribution for federated visual classification. arXiv
preprint arXiv:1909.06335 (2019).

[41] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan

Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,

et al. 2022. Papaya: Practical, private, and scalable federated learning. Proceedings
of Machine Learning and Systems 4, 0 (2022).

[42] Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia

Smith, and Ameet Talwalkar. 2021. Federated hyperparameter tuning: Chal-

lenges, baselines, and connections to weight-sharing. In Proc. of the Advances in
Neural Information Processing Systems (NeurIPS’21). 19184–19197.

[43] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with

graph convolutional networks. In Proc. of the International Conference on Learn-
ing Representations (ICLR’17).

[44] Jakub Konečný, H. BrendanMcMahan, Daniel Ramage, and Peter Richtárik. 2016.

Federated optimization: Distributed machine learning for on-device intelligence.

arXiv preprint arXiv:1610.02527 (2016).

[45] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging

system for log processing. In Proc. of the NetDB workshop. 1–7.
[46] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.

Technical report, University of Toronto (2009).
[47] Fan Lai, Yinwei Dai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf

Chowdhury. 2021. FedScale: Benchmarking model and system performance of

federated learning. In Proceedings of the First Workshop on Systems Challenges
in Reliable and Secure Federated Learning. 1–3.

[48] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[49] David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph

Dureau. 2019. Federated learning for keyword spotting. In Proc. of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’19).
6341–6345.

[50] Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu,

David Budden, Tim Harley, and Pramod Gupta. 2019. A generalized frame-

work for population based training. In Proc. of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’19). 1791–1799.

[51] Lisha Li, Kevin G Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet

Talwalkar. 2017. Hyperband: Bandit-Based Configuration Evaluation for Hy-

perparameter Optimization. In Proc. of the International Conference on Learning
Representations (ICLR’17).

[52] Tian Li, ShengyuanHu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair and

robust federated learning through personalization. In Proc. of the International
Conference on Machine Learning (ICML’21). 6357–6368.

[53] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated

learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50–60.

[54] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,

and Virginia Smith. 2020. Federated optimization in heterogeneous networks.

Proceedings of Machine Learning and Systems 2 (2020), 429–450.
[55] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. 2021.

Fedbn: Federated learning on non-iid features via local batch normalization. In

Proc. of the International Conference on Learning Representations (ICLR’21).
[56] Zitao Li, Bolin Ding, Ce Zhang, Ninghui Li, and Jingren Zhou. 2021. Federated

matrix factorization with privacy guarantee. PVLDB 15, 4 (2021), 900–913.

[57] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. 2015. Asynchronous

parallel stochastic gradient for nonconvex optimization. In Proc. of the Advances
in Neural Information Processing Systems (NeurIPS’15). 2737–2745.

[58] Ziwei Liu, Ping Luo, XiaogangWang, and Xiaoou Tang. 2015. Deep learning face

attributes in the wild. In Proc. of the IEEE international conference on computer
vision (ICCV’15). 3730–3738.

[59] Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon, Roxana Geambasu, and

Mathias Lécuyer. 2021. Privacy budget scheduling. In Proc. of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI’21). 55–74.

[60] OthmaneMarfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard

Vidal. 2021. Federated Multi-Task Learning under a Mixture of Distributions.

In Proc. of the Advances in Neural Information Processing Systems (NeurIPS’21).
15434–15447.

[61] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Agüera y Arcas. 2017. Communication-efficient learning of deep networks from

decentralized data. In Proc. of the Artificial intelligence and statistics (AISTATS’17).
1273–1282.

[62] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learn-

ing Differentially Private Recurrent Language Models. In Proc. of the Interna-
tional Conference on Learning Representations (ICLR’18).

[63] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In Proc.
of the IEEE Symposium on Security and Privacy (SP’19). 691–706.

[64] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In Proc.
of the IEEE Symposium on Security and Privacy (SP’19). 691–706.

[65] Brenda MMichelson. 2006. Event-driven architecture overview. Patricia Seybold
Group 2, 12 (2006), 10–1571.

[66] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy

analysis of deep learning: Passive and active white-box inference attacks against

centralized and federated learning. In Proc. of the IEEE Symposium on Security
and Privacy (SP’19). 739–753.

[67] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rab-

bat, Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered

asynchronous aggregation. In Proc. of the Artificial intelligence and statistics
(AISTATS’22). 3581–3607.

15

[68] Tuan Anh Nguyen and Anh Tuan Tran. 2021. WaNet - Imperceptible Warping-

based Backdoor Attack. In Proc. of the International Conference on Learning
Representations (ICLR’21).

[69] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree

residuosity classes. In Proc. of the international conference on the theory and
applications of cryptographic techniques (EUROCRYPT’19). 223–238.

[70] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In Proc. of the Advances in Neural Information Processing
Systems (NeurIPS’19). 8024–8035.

[71] NhatHai Phan, Xintao Wu, Han Hu, and Dejing Dou. 2017. Adaptive laplace

mechanism: Differential privacy preservation in deep learning. In Proc. of the
IEEE international conference on data mining (ICDM’17). 385–394.

[72] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-

itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.

Proc. IEEE 104, 1 (2015), 148–175.

[73] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In Proc. of the International Conference
on Learning Representations (ICLR’15).

[74] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.

Federated multi-task learning. In Proc. of the Advances in Neural Information
Processing Systems (NeurIPS’17). 4424–4434.

[75] Canh T Dinh, Nguyen Tran, and Josh Nguyen. 2020. Personalized federated

learning with moreau envelopes. In Proc. of the Advances in Neural Information
Processing Systems (NeurIPS’20). 21394–21405.

[76] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2021. Towards person-

alized federated learning. IEEE Transactions on Neural Networks and Learning
Systems PP (2021).

[77] Jiliang Tang, Huiji Gao, and Huan Liu. 2012. mTrust: Discerning multi-faceted

trust in a connected world. In Proc. of the ACM International Conference on Web
Search and Data Mining (WSDM’12). 93–102.

[78] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008.

Arnetminer: extraction and mining of academic social networks. In Proc. of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’08). 990–998.

[79] Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong Yao, Hai Jin, and Lichao

Sun. 2022. FedBERT: When Federated Learning Meets Pre-Training. ACM
Transactions on Intelligent Systems and Technology (TIST) (2022).

[80] Aleksei Triastcyn and Boi Faltings. 2019. Federated learning with bayesian

differential privacy. In Proc. of the IEEE International Conference on Big Data
(BigData’19). 2587–2596.

[81] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proc. of the Inter-
national Conference on Learning Representations (ICLR’18).

[82] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma,

Saurabh Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris S. Papailiopoulos.

2020. Attack of the Tails: Yes, You Really Can Backdoor Federated Learning.

In Proc. of the Advances in Neural Information Processing Systems (NeurIPS’20),
Vol. 33. 16070–16084.

[83] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMa-

han, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly,

Deepesh Data, et al. 2021. A field guide to federated optimization. arXiv preprint
arXiv:2107.06917 (2021).

[84] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020.

Tackling the Objective Inconsistency Problem in Heterogeneous Federated

Optimization. In Proc. of the Advances in Neural Information Processing Systems
(NeurIPS’20). 7611–7623.

[85] TianhaoWang, Bolin Ding, Jingren Zhou, ChengHong, ZhicongHuang, Ninghui

Li, and Somesh Jha. 2019. Answering multi-dimensional analytical queries under

local differential privacy. In Proc. of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’19). 159–176.

[86] Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, and

Jingren Zhou. 2022. FederatedScope-GNN: Towards a Unified, Comprehensive

and Efficient Package for Federated Graph Learning. In Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’22).

[87] ZhenWang, Weirui Kuang, Ce Zhang, Bolin Ding, and Yaliang Li. 2022. FedHPO-

B: A Benchmark Suite for Federated Hyperparameter Optimization. arXiv
preprint arXiv:2206.03966 (2022).

[88] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi,

Shi Jin, Tony Q. S. Quek, and H. Vincent Poor. 2020. Federated Learning With

Differential Privacy: Algorithms and Performance Analysis. IEEE Transactions
on Information Forensics and Security 15 (2020), 3454–3469.

[89] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021.

Fedgnn: Federated graph neural network for privacy-preserving recommenda-

tion. arXiv preprint arXiv:2102.04925 (2021).

[90] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis.

2020. SAFA: A Semi-Asynchronous Protocol for Fast Federated Learning With

Low Overhead. IEEE Trans. Comput. 70, 5 (2020), 655–668.
[91] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. DBA: Distributed Back-

door Attacks against Federated Learning. In Proc. of the International Conference
on Learning Representations (ICLR’20).

[92] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated

optimization. arXiv preprint arXiv:1903.03934 (2019).
[93] Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification

over non-iid graphs. In Proc. of the Advances in Neural Information Processing
Systems (NeurIPS’21). 18839–18852.

[94] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei

Wang. 2021. Federated learning for healthcare informatics. Journal of Healthcare
Informatics Research 5, 1 (2021), 1–19.

[95] Keyulu Xu,Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In Proc. of the International Conference on Learning
Representations (ICLR’19).

[96] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated

machine learning: Concept and applications. ACM Transactions on Intelligent
Systems and Technology 10, 2 (2019), 12:1–12:19.

[97] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. 2019.

Federated learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 13, 3 (2019), 1–207.

[98] Liuyi Yao, Dawei Gao, Zhen Wang, Yuexiang Xie, Weirui Kuang, Daoyuan Chen,

Haohui Wang, Chenhe Dong, Bolin Ding, and Yaliang Li. 2022. A Benchmark

for Federated Hetero-Task Learning. arXiv preprint arXiv:2206.03436 (2022).
[99] Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi

Jia. 2022. Narcissus: A Practical Clean-Label Backdoor Attack with Limited

Information. arXiv preprint arXiv:2204.05255 (2022).
[100] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Subgraph

federated learning with missing neighbor generation. In Proc. of the Advances
in Neural Information Processing Systems (NeurIPS’21), Vol. 34.

[101] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-Aware

Async-SGD for Distributed Deep Learning. In Proc. of the International Jont
Conference on Artifical Intelligence (IJCAI’16). 2350–2356.

[102] Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael W.

Mahoney, Joseph E. Gonzalez, Kannan Ramchandran, and Prateek Mittal.

2022. Neurotoxin: Durable Backdoors in Federated Learning. arXiv preprint
arXiv:2206.10341 (2022).

[103] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. iDLG: Improved Deep

Leakage from Gradients. arXiv preprint arXiv:2001.02610 (2020).
[104] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients.

In Proc. of the Advances in Neural Information Processing Systems (NeurIPS’19).
14747–14756.

[105] Alexander Ziller, Andrew Trask, Antonio Lopardo, Benjamin Szymkow, Bobby

Wagner, Emma Bluemke, Jean-Mickael Nounahon, Jonathan Passerat-Palmbach,

Kritika Prakash, Nick Rose, et al. 2021. Pysyft: A library for easy federated

learning. In Federated Learning Systems: Towards Next-Generation AI. 111–139.

16

A CONVERGENCE ANALYSIS
Without loss of generality, we assume the numbers of training in-

stances are same among clients and simplify Eq. (1) as the following

optimization problem:

min

𝜃 ∈R𝑑
𝐹 (𝜃) := 1

𝑀

𝑀∑︁
𝑖=1

𝐹𝑖 (𝜃), (4)

where𝑀 is the number of participated clients, 𝐹𝑖 denotes the loss

function of client 𝑖 . We use S (𝑡) ⊆ [𝑀] to denote the index set

of the clients that participate in the 𝑡-th training round. For each

client 𝑖 ∈ S (𝑡)
, it takes 𝑄 local SGD steps with learning rate 𝜂. The

model update at the 𝑡-th round is:

𝜃 (𝑡+1) − 𝜃 (𝑡) = Δ(𝑡)

=
1

|S (𝑡) |

∑︁
𝑖∈S (𝑡)

Δ
(𝑡)
𝑖

= − 1

|S (𝑡) |

∑︁
𝑖∈S (𝑡)

𝑄∑︁
𝑞=1

𝜂𝑔𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞
), (5)

where 𝑔𝑖 (·) denotes stochastic gradient of client 𝑖 . We use 𝜏𝑖 (𝑡) to
denote the version staleness of initialization model that is used for

local training in client 𝑖 at 𝑡-th training round. And we simplify it

as 𝜏𝑖 when it would not cause any ambiguity.

Firstly, we given some widely-adopted assumptions [16, 67, 83]:

AssumptionA.1 (Smoothness). The loss function 𝐹 has Lipschitz
continuous gradients with a constant 𝐿 > 0, i.e., ∀𝜃1, 𝜃2:

| |∇𝐹 (𝜃1) − ∇𝐹 (𝜃2) | |2 ≤ 𝐿2 | |𝜃1 − 𝜃2 | |2, (6)

and further:

𝐹 (𝜃1) − 𝐹 (𝜃2) ≤ ⟨∇𝐹 (𝜃2), 𝜃1 − 𝜃2⟩ +
𝐿

2

| |𝜃1 − 𝜃2 | |2 . (7)

Assumption A.2 (Convexity). The loss function 𝐹 is 𝜇-strongly
convex with a constant 𝜇 > 0, i.e., ∀𝜃1, 𝜃2:

𝐹 (𝜃1) − 𝐹 (𝜃2) ≥ ⟨∇𝐹 (𝜃2), 𝜃1 − 𝜃2⟩ +
𝜇

2

| |𝜃1 − 𝜃2 | |2 . (8)

Assumption A.3 (Unbiasedness). The estimation of stochastic
gradient is unbiased: E[𝑔𝑖 (𝜃)] = ∇𝐹𝑖 (𝜃).

Assumption A.4 (Bounded variances). The local and global
variances are bounded for all clients, i.e., ∀𝑖 , there exist constants 𝜎𝑙
and 𝜎𝑔 , s.t.,

E
[
| |𝑔𝑖 (𝜃) − ∇𝐹𝑖 (𝜃) | |2

]
≤ 𝜎2

𝑙
, (9)

1

𝑀

𝑀∑︁
𝑖=1

| |∇𝐹𝑖 (𝜃) − ∇𝐹 (𝜃) | |2 ≤ 𝜎2𝑔 . (10)

Assumption A.5 (Bounded gradients). The gradients of clients
are bounded, i.e., | |∇𝐹𝑖 | |2 ≤ 𝐶,∀𝑖 ∈ [𝑀]. Specifically, | |∇𝐹 | |2 =

| | 1
𝑀

∑𝑀
𝑖=1 ∇𝐹𝑖 | |2 ≤ 1

𝑀

∑𝑀
𝑖=1 | |∇𝐹𝑖 | |2 ≤ 𝐶 .

Assumption A.6 (Bounded staleness). ∀𝑖 ∈ [𝑀], the staleness
𝜏𝑖 is not larger than 𝜏max.

Based on these assumptions and inspired by previous studies [16,

67], we have two lemmas:

Lemma 1. The expectation of the 𝐿2 norm of the estimated gradi-
ents for all clients are bounded:

E
[
| |𝑔𝑖 (𝜃 (𝑡)) | |2

]
≤ 3

(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

)
. (11)

Proof.

E
[
| |𝑔𝑖 (𝜃 (𝑡)) | |2

]
=E

[
| |𝑔𝑖 (𝜃 (𝑡)) − ∇𝐹𝑖 (𝜃 (𝑡)) + ∇𝐹𝑖 (𝜃 (𝑡)) − ∇𝐹 (𝜃 (𝑡)) + ∇𝐹 (𝜃 (𝑡)) | |2

]
≤ 3E

[
| |𝑔𝑖 (𝜃 (𝑡)) − ∇𝐹𝑖 (𝜃 (𝑡)) | |2 + ||∇𝐹𝑖 (𝜃 (𝑡)) − ∇𝐹 (𝜃 (𝑡)) | |2

+||∇𝐹 (𝜃 (𝑡)) | |2
]

= 3

(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

)
, (12)

where the last equality follows Assumption A.4 and A.5. □

Lemma 2. The expectation of 𝐿2 norm of Δ(𝑡) ,∀𝑡 ∈ [𝑇], is
bounded:

E
[
| |Δ(𝑡) | |2

]
≤ 3𝑄2𝜂2

(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

)
, (13)

where 𝑄 denotes the local SGD steps and 𝜂 denotes the learning rate.

Proof. According to Eq. (5), we have:

| |Δ(𝑡) | |2 = 1

|S (𝑡) |2
������ ∑︁
𝑖∈S (𝑡)

𝑄∑︁
𝑞=1

𝜂𝑔𝑖 (𝜃𝑡−𝜏𝑖𝑖,𝑞
)
������2

≤ 𝑄𝜂

|S (𝑡) |

∑︁
𝑖∈S (𝑡)

𝑄∑︁
𝑞=1

����𝑔𝑖 (𝜃𝑡−𝜏𝑖𝑖,𝑞
)
����2 . (14)

Take the expectation over the randomness w.r.t. the client partici-

pation and the stochastic gradients:

E
[
| |Δ(𝑡) | |2

]
≤ 𝑄𝜂2

|S (𝑡) |

∑︁
𝑖∈S (𝑡)

𝑄∑︁
𝑞=1

E
[
| |𝑔𝑖 (𝜃𝑡−𝜏𝑖𝑖,𝑞

) | |2
]

≤ 3𝑄2𝜂2
(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

)
, (15)

where the last inequality follows from Lemma 1 □

Next we provide the convergence analysis for the proposed asyn-

chronous training protocol in federated learning, inspired by previ-

ous studies [16, 67, 83]. With Eq. (5) and the assumption of smooth-

ness (Assumption A.1), we have:

𝐹 (𝜃 (𝑡+1)) − 𝐹 (𝜃 (𝑡))

≤ ⟨∇𝐹 (𝜃 (𝑡)), 𝜃 (𝑡+1) − 𝜃 (𝑡) ⟩ + 𝐿

2

| |𝜃 (𝑡+1) − 𝜃 (𝑡) | |2

= ⟨∇𝐹 (𝜃 (𝑡)),Δ(𝑡) ⟩ + 𝐿

2

| |Δ(𝑡) | |2 . (16)

Take the total expectation:

E
[
𝐹 (𝜃 (𝑡+1)) − 𝐹 (𝜃 (𝑡))

]
≤ E

[
⟨∇𝐹 (𝜃 (𝑡)),Δ(𝑡) ⟩

]
+ 𝐿

2

E
[
| |Δ(𝑡) | |2

]
≤ E

[
⟨∇𝐹 (𝜃 (𝑡)),Δ(𝑡) ⟩︸ ︷︷ ︸

𝐻1

]
+ 3𝐿𝑄2𝜂2

2

(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

)
(With Lemma 2) .

(17)

17

Consider the bound of 𝐻1:

𝐻1 = ⟨∇𝐹 (𝜃 (𝑡)),− 1

|S (𝑡) |

∑︁
𝑖∈S (𝑡)

𝑄∑︁
𝑞=1

𝜂𝑔(𝜃 (𝑡−𝜏𝑖)
𝑖,𝑞

)⟩

= − 1

|S𝑡 |
∑︁

𝑖∈S (𝑡)

𝑄∑︁
𝑞=1

𝜂⟨∇𝐹 (𝜃 (𝑡)), 𝑔(𝜃 (𝑡−𝜏𝑖)
𝑖,𝑞

)⟩. (18)

We take the total expectation E[·] := EFE𝑖∼[𝑀]E𝑔𝑖 |𝑖,F [·] (F de-

notes the historical information):

E[𝐻1] = −EF

1

𝑀

𝑀∑︁
𝑖=1

𝑄∑︁
𝑞=1

𝜂E𝑔𝑖 |𝑖∼[𝑀]
[
⟨∇𝐹 (𝜃 (𝑡)), 𝑔(𝜃 (𝑡−𝜏𝑖)

𝑖,𝑞
)⟩
]

= −EF

𝑄∑︁
𝑞=1

𝜂⟨∇𝐹 (𝜃 (𝑡)), 1
𝑀

𝑀∑︁
𝑖=1

∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞
)⟩
 . (19)

Given ⟨𝑎, 𝑏⟩ = 1

2
(| |𝑎 | |2 + ||𝑏 | |2 − ||𝑎 − 𝑏 | |2), we have:

E[𝐻1] =
𝑄∑︁
𝑞=1

𝜂

2

EF
[
− ||∇𝐹 (𝜃 (𝑡)) | |2 − || 1

𝑀

𝑀∑︁
𝑖=1

∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞
) | |2

+ ||∇𝐹 (𝜃 (𝑡)) − 1

𝑀

𝑀∑︁
𝑖=1

∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞
) | |2

]
≤ −𝜇𝑄𝜂EF

[
𝐹 (𝜃 (𝑡)) − 𝐹 (𝜃 (∗))

]
+

𝑄∑︁
𝑞=1

𝜂

2

EF
[
| |∇𝐹 (𝜃 (𝑡)) − 1

𝑀

𝑀∑︁
𝑖=1

∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞
) | |2︸ ︷︷ ︸

𝐻2

]
, (20)

where the last inequality follows from Assumption A.2 and 𝜃 (∗)

denotes the optimum of minimizing 𝐹 (·). Further, with Eq. (4), we

have:

𝐻2 =

������ 1
𝑀

𝑀∑︁
𝑖=1

∇𝐹𝑖 (𝜃 (𝑡)) −
1

𝑀

𝑀∑︁
𝑖=1

∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞
)
������2

≤ 1

𝑀

𝑀∑︁
𝑖=1

����∇𝐹𝑖 (𝜃 (𝑡)) − ∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞
)
����2

≤ 2

𝑀

𝑀∑︁
𝑖=1

[����∇𝐹𝑖 (𝜃 (𝑡)) − ∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖))
����2 + ����∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖)) − ∇𝐹𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞

)
����2]

≤ 2𝐿2

𝑀

𝑀∑︁
𝑖=1

[����𝜃 (𝑡) − 𝜃 (𝑡−𝜏𝑖)
����2 + ����𝜃 (𝑡−𝜏𝑖) − 𝜃

(𝑡−𝜏𝑖)
𝑖,𝑞

����2] . (21)

Take the expectation, we have:

E[𝐻2] ≤
2𝐿2

𝑀

𝑀∑︁
𝑖=1

[
E
[����𝜃 (𝑡) − 𝜃 (𝑡−𝜏𝑖)

����2] + E[����𝜃 (𝑡−𝜏𝑖) − 𝜃
(𝑡−𝜏𝑖)
𝑖,𝑞

����2]]
≤ 2𝐿2

𝑀

𝑀∑︁
𝑖=1

[
E
[���� 𝑡−1∑︁

𝜌=𝑡−𝜏𝑖

1

|S𝜌 |
∑︁
𝑖∈S𝜌

𝑄∑︁
𝑞=1

𝜂𝑔𝑖 (𝜃 (𝜌)𝑖,𝑞
)
����2]

+ E
[���� 𝑄∑︁

𝑞=1

𝜂𝑔𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞
)
����2]]

≤ 2𝐿2

𝑀

𝑀∑︁
𝑖=1

[
𝑄𝜂2𝜏𝑖

𝑡−1∑︁
𝜌=𝑡−𝜏𝑖

1

|S𝜌 |
∑︁
𝑖∈S𝜌

𝑄∑︁
𝑞=1

E
[
| |𝑔𝑖 (𝜃 (𝜌)𝑖,𝑞

) | |2
]

+𝑄𝜂2
𝑄∑︁
𝑞=1

E
[
| |𝑔𝑖 (𝜃 (𝑡−𝜏𝑖)𝑖,𝑞

) | |2
]]

≤ 2𝐿2

𝑀

𝑀∑︁
𝑖=1

[
3𝑄2𝜂2𝜏2

max
(𝜎2

𝑙
+ 𝜎2𝑔 +𝐶) + 3𝑄2𝜂2 (𝜎2

𝑙
+ 𝜎2𝑔 +𝐶)

]
= 6𝐿2𝑄2𝜂2 (𝜏2

max
+ 1) (𝜎2

𝑙
+ 𝜎2𝑔 +𝐶), (22)

where the last inequality follows from Lemma 1 and Assump-

tion A.6. By inserting Eq. (22) and Eq. (20) into Eq. (17), we have:

E
[
𝐹 (𝜃 (𝑡+1)) − 𝐹 (𝜃 (𝑡))

]
≤ −𝜇𝑄𝜂E

[
𝐹 (𝜃 (𝑡)) − 𝐹 (𝜃 (∗))

]
+ 3𝐿𝑄2𝜂2

(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

) [
𝜂𝑄𝐿(𝜏2

max
+ 1) + 1

2

]
. (23)

By rearranging, we have:

E
[
𝐹 (𝜃 (𝑡+1)) − 𝐹 (𝜃 (∗))

]
− 3𝐿𝑄𝜂

𝜇
(𝜎2

𝑙
+ 𝜎2𝑔 +𝐶) [𝜂𝑄𝐿(𝜏2

max
+ 1) + 1

2

]

≤ (1 − 𝜇𝑄𝜂)
[
E[𝐹 (𝜃 (𝑡)) − 𝐹 (𝜃 (∗))]

− 3𝐿𝑄𝜂

𝜇
(𝜎2

𝑙
+ 𝜎2𝑔 +𝐶) [𝜂𝑄𝐿(𝜏2

max
+ 1) + 1

2

]
]
, (24)

which implies a geometric series with ratio 1 − 𝜇𝑄𝜂. Thus we can

obtain:

E
[
𝐹 (𝜃 (𝑇)) − 𝐹 (𝜃 (∗))

]
≤ (1 − 𝜇𝑄𝜂)𝑇E

[
𝐹 (𝜃 (0)) − 𝐹 (𝜃 (∗))

]
+
[
1 − (1 − 𝜇𝑄𝜂)𝑇

]
3𝐿𝑄𝜂

𝜇

(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

) [
𝜂𝑄𝐿(𝜏2

max
+ 1) + 1

2

]
.

(25)

When 𝜇𝑄𝜂 <= 1, we have the following model convergence con-

clusion:

E
[
𝐹 (𝜃 (𝑇)) − 𝐹 (𝜃 (∗))

]
≤ (1 − 𝜇𝑄𝜂)𝑇 E

[
𝐹 (𝜃 (0)) − 𝐹 (𝜃 (∗))

]
+ 3𝐿𝑄𝜂

𝜇

(
𝜎2
𝑙
+ 𝜎2𝑔 +𝐶

) [
𝜂𝑄𝐿(𝜏2

max
+ 1) + 1

2

]
. (26)

18

Table 2: Examples of events in FederatedScope.

Category Event Event Description

Related to Message Passing

receiving_join_in The server receives join-in requirements from clients.

receiving_model Clients receive the global model from the server.

receiving_updates The server receives model updates from clients.

receiving_eval_request Clients receive the request of evaluation from the server.

...

Related to Condition Checking

all_received All the model updates have been received.

time_up The allocated time budget for the training round has run out.

early_stop The pre-defined early stop conditions are satisfied.

performance_drop The received global model causes a performance drop.

...

Table 3: The statistics of the datasets provided in DataZoo.

Dataset Task Number of Instance Number of Clients

FEMNIST Image Classification 817,851 3,597

CelebA Image Classification 200,288 9,323

CIFAR-10 Image Classification 60,000 1,000

Shakespeare Next Character Prediction 4,226,158 1,129

Twitter Sentiment Analysis 1,600,498 660,120

Reddit Language Modeling 56,587,343 1,660,820

DBLP (partitioned by venue) Node Classification 52,202 20

DBLP (partitioned by publisher) Node Classification 52,202 8

Ciao Link Classification 565,300 28

MultiTask Graph Classification 18,661 7

B EXAMPLES OF EVENTS
Some examples of events provided in FederatedScope are presented
in Table 2. These events and the corresponding handlers are used

to describe participants’ behaviors in FederatedScope, which is

introduced in Section 3.2.

C DATAZOO
The statistics of the datasets provided in DataZoo are summarized

in Table 3. Our DataZoo contains ten widely-used datasets collected

from various FL applications and standardizes the data preprocess-

ing.

D OVERALL STRUCTURE
The overall structure is illustrated in Figure 15.

E COMPLETENESS CHECKING
As shown in Figure 16, FederatedScope provides a completeness

checking to verify the flow of message transmission in the con-

structed FL courses. A complete FL course should contain at least

one path from the “start” node to the “termination” node.

F IMPLEMENTATION DETAILS
We conduct the experiments show in Section 5 on 8 GeForce RTX

2080Ti GPUs.

Applications

Personalization

Algorithms

Asynchronous Training

Auto-Tuning Attack Simulation

Plug-in Components

Privacy Protection

Communication

Server

Worker

Message

Communicator Client

NLPCV Graph Learning Rec. System

Trainer

Aggregator

Monitor

Hetero-Task

Event Handler

⋯

⋯

⋯

Figure 15: The overall structure of FederatedScope.

For the experiments on FEMNIST and CIFAR-10, we train a CNN

with two convolutional layers. We set the hidden size to 2048 and

the dropout ratio to 0.5 to prevent overfitting. At each round of

training, the clients execute 4 SGD steps with a batch size of 20,

and the learning rate is set to 0.5. The concurrency number (i.e., the

number of clients that perform local training at each training round)

is 100. For the experiments on Twitter, we set the embedding size

to 300 and the maximum length to 140 to embed the texts with a

bag-of-words model, and train a logistic regression model. At each

19

Start

Server-handlers Client-handlersMessages

End

M0

M1

M2

M3

M4

Start

Server-handlers Client-handlersMessages

End

M0

M1

M2

M3

M4

Start

Server-handlers Client-handlersMessages

M4

M0

M1

M2

End

M3

Figure 16: The graphs to verify the flow of message transmission in a constructed FL course. In the left and middle subgraphs,
there exists at least one path from the “start” node to the “termination” node, which indicates the FL courses are complete. In
themiddle subgraph, the nodes that are unreachable from the start node, .e.g, “M3" and “M4", are redundant, and FederatedScope
would provide warnings for these redundant nodes. The subgraph on the right side denotes an incomplete FL course since no
start-to-end path, and FederatedScope would raise an error in the completeness checking to help users.

round of training, the clients execute 4 SGD steps with a batch size

of 2, and the learning rate is set to 0.05. The concurrency number

is set to 200.

For all the implemented synchronous and asynchronous strate-

gies, we tune the hyperparameter on the validation set. For Sync-

OS, at each training round, we over-select 30% more clients upon

the corresponding concurrency number, i.e., 130 on FEMNIST and

CIFAR-10, and 260 on Twitter. For asynchronous settings, we set the

aggregation goal to 40, 20, and 40 for the experiments conducted

on FEMNIST, CIFAR-10, and Twitter, respectively. And the thresh-

old of staleness toleration is set to 20 for all the datasets. For the

asynchronous strategies equipped with "time_up", the time budget

of each training round is set to the same value as the averaged

time cost for achieving the defined aggregation goal when using

"goal_achieved".

G DATASETS WITH IID DISTRIBUTION
VERSUS NON-IID DISTRIBUTION

We split CIFAR-10 into 100 clients, following the uniform distribu-

tion and the Dirichlet distribution (the Dirichlet factors 𝛼 are set

to 1.0, 0.5, and 0.2, a smaller factor value implies a higher hetero-

geneous degree) to synthesize distributed datasets with IID distri-

bution and non-IID distribution, respectively. Then we federally

train a CNN with two convolutional layers, adopting vanilla Fe-

dAvg [61] and two representative personalized federated learning

algorithms, i.e., FedBN [55] and Ditto [52]. The experimental results

are demonstrated in Table 4.

From the experimental results we can observe that, although

vanilla FedAvg can achieve competitive performance on CIFAR-10

with IID distribution, it cannot performwell on non-IID distribution

datasets and has larger performance drops when the heterogeneity

degree increases. The heterogeneity in clients’ data, which is wide-

spread in FL applications, could lead to sub-optimal performance

when participants learn a simple global model as what they do in

Table 4: Experimental results (accuracy) on CIFAR-10 with
IID distribution and non-IID distributions.

Methods IID Distribution

Non-IID Distribution

𝛼 = 1.0 𝛼 = 0.5 𝛼 = 0.2

FedAvg 0.8049 0..7929 0.7905 0.7700

FedBN 0.7908 0.8106 0.8311 0.8817

Ditto 0.7708 0.8087 0.8278 0.8840

distributed machine learning. Therefore, to handle such heterogene-

ity, clients are encouraged to apply client-specific training based on

their private data, and share parts of the global model while locally

maintaining others. As a result, FedBN and Ditto obtain notice-

able improvement on datasets with non-IID distributions compared

to FedAvg, which indicates their effectiveness in handling such

heterogeneity of FL.

H EXAMPLE OF AMOUNT OF
PROGRAMMING

For the users who construct FL courses based on the built-in func-

tionalities, they can adopt provided data, models, and plug-in oper-

ations via simply configuring, or using their own data or models

without changing the implementation of the federated behaviors

in the provided FL courses. For example, excluding the codes for

dataset preprocessing, users only need to modify two lines of code

for adopting a customized dataset: one line for registering the

dataset class and one line for changing the dataset name in the

configuration.

For the users who aim to do further customization, they can

inherit from clients or servers (e.g., from the vanilla FedAvg) and

add new <event, handler> pairs to express the new behaviors of

servers and clients accordingly. For example, to implement the

20

0 5 10 15 20
Virtual Run Time (hour)

0.1

0.3

0.5

0.7

0.9

Te
st

 A
cc

ur
ac

y

Sync-Vanilla
Sync-OS
Asyn-Goal-Aggr-Unif
Asyn-Goal-Aggr-Resp
Asyn-Goal-Aggr-Group
Asyn-Goal-Rece-Unif

0 5 10 15 20
Virtual Run Time (hour)

0.1

0.3

0.5

0.7

0.9

Te
st

 A
cc

ur
ac

y

Sync-Vanilla
Sync-OS
Asyn-Goal-Aggr-Unif
Asyn-Goal-Rece-Unif
Asyn-Goal-Rece-Resp
Asyn-Goal-Rece-Group

0 5 10 15 20
Virtual Run Time (hour)

0.1

0.3

0.5

0.7

0.9

Te
st

 A
cc

ur
ac

y Sync-Vanilla
Sync-OS
Asyn-Goal-Aggr-Unif
Asyn-Time-Aggr-Unif
Asyn-Time-Aggr-Resp
Asyn-Time-Rece-Unif
Asyn-Time-Rece-Resp

Figure 17: The experimental results of different asynchronous strategies provided in FederatedScope.

0 1 2 3 4 5 6 7 8 9
Label Index

0

500

1000

1500

2000

N
um

be
r o

f I
ns

ta
nc

es

Top 1/3 of the clients
Middle 1/3 of the clients
Bottom 1/3 of the clients

Figure 18: The data distributions among
different clustered clients (top clients
response faster than bottom clients) in
CIFAR-10.

0 1 2 3 4 5 6 7 8 9
Label Index

0

500

1000

1500

2000
N

um
be

r o
f I

ns
ta

nc
es

Top 1/3 of the clients
Middle 1/3 of the clients
Bottom 1/3 of the clients

Figure 19: The data distributions among
different clustered clients (top clients
response faster than bottom clients) in
bias-CIFAR-10.

0 10 20 30 40 50 60
Virtual Run Time (hour)

0.1

0.3

0.5

0.7

Te
st

 A
cc

ur
ac

y

Sync-Vanilla
Sync-OS
Asyn-Goal-Aggr-Unif
Asyn-Goal-Aggr-Resp
Asyn-Goal-Aggr-Group

Figure 20: The experimental results on
bias-CIFAR-10.

personalized federated algorithms FedBN and Ditto based on the

vanilla FedAvg, users only need to add/modify 19 and around 100

lines of code respectively.

I EXPERIMENTS AND ANALYSIS ON
ASYNCHRONOUS TRAINING STRATEGIES

We add more experimental results of the asynchronous training

strategies provided in FederatedScope, as shown in Figure 17. From

the figures we can observe that, asynchronous training strategies

can achieve better performance compared to synchronous training

strategies.

Note that different asynchronous training strategies might have

different characteristics. For example, after aggregating broadcast-
ing manner causes less staleness than after receiving (as shown in

Figure 11), but after aggregating requires more available bandwidths

at the server since multiple messages are sent out at the same time.

These different characteristics can guide users to choose the more

suitable asynchronous training strategies for their own applica-

tion, considering model performance, system resource, staleness

toleration, etc.

Generally speaking, there is no conclusion on which provided

sampling strategy is better than another one, and the effectiveness

of the sampling strategies is case dependent. Instead of providing

the “best” asynchronous training strategies (in fact it is impossible

because of “No Free Lunch”), FederatedScope aim to provide a

good abstraction and modularization of asynchronous federated

learning, which can both cover most of the existing studies and

provide flexibility for customization. Users can conveniently choose

the suitable asynchronous training strategies accordingly.

As shown in Figure 17, from the experiments conducted on

CIFAR-10, we find that the performance of applying response-

related and group sampling strategies are similar to that of applying

uniform strategy for this specific case. It is not a surprising result,

since both response-related and group sampling strategies are pro-

posed to alleviate the model bias caused by the heterogeneity in

participants’ system resources, e.g., clients with weak responsive-

ness might contribute little to federated aggregation as their (staled)

updates might be discounted or even dropped out. However, the

distributions of client data are independent of their distributions

of system resources, which causes that when clustering the clients

according to their system resources, the data distributions among

different clusters are similar, as shown in Figure 18. Such simi-

larities among clusters limit the effectiveness of response-related

and group sampling strategies compared to the uniform sampling

strategies, since there might not exist model bias caused by the

heterogeneity in participants’ system resources.

Furthermore, we re-split CIFAR-10 dataset and make the distribu-

tions of clients’ data related to their system resources: We randomly

select some labels as “rare” labels, and instances with these “rare”

labels are only owned by clients with weak responsiveness. The

distributions among clients on this dataset (called bias-CIFAR-10)

are shown in Figure 19, and the experimental results are shown in

Figure 20. We can observe that applying response-related and group

sampling strategies can achieve noticeable improvement compared

to uniform sampling strategies, which empirically confirms our

analysis above.

21

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Related Works

	3 Design of FederatedScope
	3.1 Overview
	3.2 Event-driven Architecture
	3.3 Supporting Asynchronous Training
	3.4 Supporting Personalization & Multi-Goal
	3.5 Supporting Cross-backend FL
	3.6 Usage of FederatedScope

	4 Important Plug-In Components
	4.1 Behavior Plug-In: Privacy Protection
	4.2 Participant Plug-In: Attack Simulation
	4.3 Manager Plug-In: Auto-tuning

	5 Experiments
	5.1 DataZoo and ModelZoo
	5.2 Experiment Settings
	5.3 Results and Analysis

	6 Conclusions
	References
	A Convergence Analysis
	B Examples of events
	C DataZoo
	D Overall Structure
	E Completeness Checking
	F Implementation Details
	G datasets with IID distribution versus non-IID distribution
	H example of amount of programming
	I experiments and analysis on asynchronous training strategies

