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ABSTRACT
Federated Learning (FL) has emerged as a promising technique for edge devices to collaboratively learn a shared
prediction model, while keeping their training data on the device, thereby decoupling the ability to do machine
learning from the need to store the data in the cloud. However, FL is difficult to implement realistically, both
in terms of scale and systems heterogeneity. Although there are a number of research frameworks available to
simulate FL algorithms, they do not support the study of scalable FL workloads on heterogeneous edge devices.

In this paper, we present Flower – a comprehensive FL framework that distinguishes itself from existing platforms
by offering new facilities to execute large-scale FL experiments, and consider richly heterogeneous FL device
scenarios. Our experiments show Flower can perform FL experiments up to 15M in client size using only a pair of
high-end GPUs. Researchers can then seamlessly migrate experiments to real devices to examine other parts of
the design space. We believe Flower provides the community a critical new tool for FL study and development.

1 INTRODUCTION

There has been tremendous progress in enabling the exe-
cution of deep learning models on mobile and embedded
devices to infer user contexts and behaviors (Fromm et al.,
2018; Chowdhery et al., 2019; Malekzadeh et al., 2019;
Lee et al., 2019; Yao et al., 2019; LiKamWa et al., 2016;
Georgiev et al., 2017). This has been powered by the in-
creasing computational abilities of mobile devices as well
as novel algorithms which apply software optimizations to
enable pre-trained cloud-scale models to run on resource-
constrained devices. However, when it comes to the training
of these mobile-focused models, a working assumption has
been that the models will be trained centrally in the cloud,
using training data aggregated from several users.

Federated Learning (FL) (McMahan et al., 2017) is an
emerging area of research in the machine learning com-
munity which aims to enable distributed edge devices (or
users) to collaboratively train a shared prediction model
while keeping their personal data private. At a high level,
this is achieved by repeating three basic steps: i) local pa-
rameters update to a shared prediction model on each edge
device, ii) sending the local parameter updates to a central
server for aggregation, and iii) receiving the aggregated
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Figure 1. Survey of the number of FL clients used in FL research
papers in the last two years. Scatter plot of number of concurrent
clients participated in each communication round (y-axis) and total
number of clients in the client pool (x-axis). The x-axis is con-
verted to log scale to reflect the data points more clearly. FedScale
can achieve 100 concurrent clients participated in each round out
of 10000 total clients (orange point), while Flower framework can
achieve 1000 concurrent clients out of a total 1 million clients
(green point). The plot shows that Flower can achieve both higher
concurrent participated client and larger client pool compared with
other experiments existing the the recent research papers. Ap-
pendix A.1 gives details of the papers considered.

model back for the next round of local updates.

From a systems perspective, a major bottleneck to FL
research is the paucity of frameworks that support scal-
able execution of FL methods on mobile and edge de-
vices. While several frameworks including Tensorflow
Federated (Google, 2020; Abadi et al., 2016a) (TFF) and
LEAF (Caldas et al., 2018) enable experimentation on FL
algorithms, they do not provide support for running FL on
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edge devices. System-related factors such as heterogeneity
in the software stack, compute capabilities, and network
bandwidth, affect model synchronization and local training.
In combination with the choice of the client selection and
parameter aggregation algorithms, they can impact the ac-
curacy and training time of models trained in a federated
setting. The systems’ complexity of FL and the lack of
scalable open-source frameworks can lead to a disparity be-
tween FL research and production. While closed production-
grade systems report client numbers in the thousands or even
millions (Hard et al., 2019), few research papers use popu-
lations of more than 100 clients, as can be seen in Figure 1.
Even those papers which use more than 100 clients rely on
simulations (e.g., using nested loops) rather than actually
implementing FL clients on real devices.

In this paper, we present Flower1, a novel FL framework,
that supports experimentation with both algorithmic and
systems-related challenges in FL. Flower offers a stable, lan-
guage and ML framework-agnostic implementation of the
core components of a FL system, and provides higher-level
abstractions to enable researchers to experiment and imple-
ment new ideas on top of a reliable stack. Moreover, Flower
allows for rapid transition of existing ML training pipelines
into a FL setup to evaluate their convergence properties
and training time in a federated setting. Most importantly,
Flower provides support for extending FL implementations
to mobile and wireless clients, with heterogeneous compute,
memory, and network resources.

As system-level challenges of limited compute, memory,
and network bandwidth in mobile devices are not a major
bottleneck for powerful cloud servers, Flower provides built-
in tools to simulate many of these challenging conditions in
a cloud environment and allows for a realistic evaluation of
FL algorithms. Finally, Flower is designed with scalability
in mind and enables large-cohort research that leverages
both a large number of connected clients and a large num-
ber of clients training concurrently. We believe that the
capability to perform FL at scale will unlock new research
opportunities as results obtained in small-scale experiments
are not guaranteed to generalize well to large-scale problems.
In summary, we make the following contributions:

• We present Flower, a novel FL framework that supports
large-cohort training and evaluation, both on real edge
devices and on single-node or multi-node compute clus-
ters. This unlocks scalable algorithmic research of real-
world system conditions such as limited computational
resources which are common for typical FL workloads.
• We describe the design principles and implementation

details of Flower. In addition to being language- and
ML framework-agnostic by design, Flower is also fully

1https://flower.dev

extendable and can incorporate emerging algorithms,
training strategies and communication protocols.
• Using Flower , we present experiments that explore both

algorithmic and system-level aspects of FL on five ma-
chine learning workloads with up to 15 million clients.
Our results quantify the impact of various system bot-
tlenecks such as client heterogeneity and fluctuating
network speeds on FL performance.
• Flower is open-sourced under Apache 2.0 License

and adopted by major research organizations in both
academia and industry. The community is actively par-
ticipating in the development and contributes novel base-
lines, functionality, and algorithms.

2 BACKGROUND AND RELATED WORK

FL builds on a vast body of prior work and has since been
expanded in different directions. McMahan et al. (2017)
introduced the basic federated averaging (FedAvg) algo-
rithm and evaluated it in terms of communication efficiency.
There is active work on privacy and robustness improve-
ments for FL: A targeted model poisoning attack using
Fashion-MNIST (Xiao et al., 2017) (along with possible mit-
igation strategies) was demonstrated by Bhagoji et al. (2018).
Abadi et al. (2016b) propose an attempt to translate the idea
of differential privacy to deep learning. Secure aggrega-
tion (Bonawitz et al., 2017) is a way to hide model updates
from “honest but curious” attackers. Robustness and fault-
tolerance improvements at the optimizer level are commonly
studied and demonstrated, e.g., by Zeno (Xie et al., 2019).
Finally, there is an increasing emphasis on the performance
of federated optimization in heterogeneous data and system
settings (Smith et al., 2017; Li et al., 2018; 2019).

The optimization of distributed training with and without
federated concepts has been covered from many angles
(Dean et al., 2012; Jia et al., 2018; Chahal et al., 2018;
Sergeev & Balso, 2018; Dryden et al., 2016). Bonawitz et
al. (2019) detail the system design of a large-scale Google-
internal FL system. TFF (Google, 2020), PySyft (Ryffel
et al., 2018), and LEAF (Caldas et al., 2018) propose open
source frameworks which are primarily used for simulations
that run a small number of homogeneous clients. Flower
unifies both perspectives by being open source and suitable
for exploratory research, with scalability to expand into
settings involving a large number of heterogeneous clients.
Most of the mentioned approaches have in common that they
implement their own systems to obtain the described results.
The main intention of Flower is to provide a framework
which would (a) allow to perform similar research using a
common framework and (b) enable to run those experiments
on a large number of heterogeneous devices.

https://flower.dev
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3 FLOWER OVERVIEW

Flower is a novel end-to-end federated learning framework
that enables a more seamless transition from experimental
research in simulation to system research on a large cohort
of real edge devices. Flower offers individual strength in
both areas (viz. simulation and real world devices); and of-
fers the ability for experimental implementations to migrate
between the two extremes as needed during exploration and
development. In this section, we describe use cases that
motivate our perspective, design goals, resulting framework
architecture, and comparison to other frameworks.

3.1 Use Cases

The identified gap between FL research practice and indus-
try reports from proprietary large-scale systems (Figure 1)
is, at least in part, related a number of use cases that are not
well-supported by the current FL ecosystem. The following
sections show how Flower enables those use cases.

Scale experiments to large cohorts. Experiments need to
scale to both a large client pool size and a large number of
clients training concurrently to better understand how well
methods generalize. A researcher needs to be able launch
large-scale FL evaluations of their algorithms and design
using reasonable levels of compute (e.g., single-machine/a
multi-GPU rack), and have results at this scale have accept-
able speed (wall-clock execution time).

Experiment on heterogeneous devices. Heterogeneous
client environments are the norm for FL. Researchers need
ways to both simulate heterogeneity and to execute FL on
real edge devices to quantify the effects of system hetero-
geneity. Measurements about the performance of client
performance should be able to be easily collected, and de-
ploying heterogeneous experiments is painless.

Transition from simulation to real devices. New methods
are often conceived in simulated environments. To under-
stand their applicability to real-world scenarios, frameworks
need to support seamless transition between simulation and
on-device execution. Shifting from simulation to real de-
vices, mixing simulated and real devices, and selecting cer-
tain elements to have varying levels of realism (e.g., com-
pute or network) should be easy.

Multi-framework workloads. Diverse client environ-
ments naturally motivate the usage of different ML frame-
works, so FL frameworks should be able to integrate updates
coming from clients using varying ML frameworks in the
same workload. Examples range from situations where
clients use two different training frameworks (pytorch and
tensorflow) to more complex situations where clients have
their own device- and OS-specific training algorithm.

Table 1. Excerpt of built-in FL algorithms available in Flower. New
algorithms can be implemented using the Strategy interface.
Strategy Description

FedAvg Vanilla Federated Averaging (McMahan et al., 2017)

Fault
Tolerant
FedAvg

A variant of FedAvg that can tolerate faulty client
conditions such as client disconnections or laggards.

FedProx
Implementation of the algorithm proposed by
Li et al. (2020) to extend FL to heterogenous
network conditions.

QFedAvg Implementation of the algorithm proposed by
Li et al. (2019) to encourage fairness in FL.

FedOptim
A family of server-side optimizations that
include FedAdagrad, FedYogi, and FedAdam
as described in Reddi et al. (2021).

3.2 Design Goals

The given uses cases identify a gap in the existing FL ecosys-
tem that results in research that does not necessarily reflect
real-world FL scenarios. To adress the ecosystem gap, we
defined a set of independent design goals for Flower:

Scalable: Given that real-world FL would encounter a large
number of clients, Flower should scale to a large number of
concurrent clients to foster research on a realistic scale.

Client-agnostic: Given the heterogeneous environment on
mobile clients, Flower should be interoperable with different
programming languages, operating systems, and hardware.

Communication-agnostic: Given the heterogeneous con-
nectivity settings, Flower should allow different serialization
and communication approaches.

Privacy-agnostic: Different FL settings (cross-devic, cross-
silo) have different privacy requirements (secure aggrega-
tion, differential privacy). Flower should support common
approaches whilst not be prescriptive about their usage.

Flexible: Given the rate of change in FL and the velocity
of the general ML ecosystem, Flower should be flexible to
enable both experimental research and adoption of recently
proposed approaches with low engineering overhead.

A framework architecture with those properties will increase
both realism and scale in FL research and provide a smooth
transition from research in simulation to large-cohort re-
search on real edge devices. The next section describes how
the Flower framework architecture supports those goals.

3.3 Core Framework Architecture

FL can be described as an interplay between global and
local computations. Global computations are executed on
the server side and responsible for orchestrating the learning
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Figure 2. Flower core framework architecture with both Edge
Client Engine and Virtual Client Engine. Edge clients live on
real edge devices and communicate with the server over RPC.
Virtual clients on the other hand consume close to zero resources
when inactive and only load model and data into memory when
the client is being selected for training or evaluation.

process over a set of available clients. Local computations
are executed on individual clients and have access to actual
data used for training or evaluation of model parameters.

The architecture of the Flower core framework reflects that
perspective and enables researchers to experiment with
building blocks, both on the global and on the local level.
Global logic for client selection, configuration, parameter
update aggregation, and federated or centralized model eval-
uation can be expressed through the Strategy abstraction.
An implementation of the Strategy abstraction represents
a single FL algorithm and Flower provides tested refer-
ence implementations of popular FL algorithms such as
FedAvg (McMahan et al., 2017) or FedYogi (Reddi et al.,
2021) (summarized in table 1). Local logic on the other
hand is mainly concerned with model training and evalu-
ation on local data partitions. Flower acknowledges the
breadth and diversity of existing ML pipelines and offers
ML framework-agnostic ways to federate these, either on
the Flower Protocol level or using the high-level Client
abstraction. Figure 2 illustrates those components.

The Flower core framework implements the necessary in-
frastructure to run these workloads at scale. On the server
side, there are three major components involved: the Client-
Manager, the FL loop, and a (user customizable) Strategy.
Server components sample clients from the ClientManager,
which manages a set of ClientProxy objects, each repre-
senting a single client connected to the server. They are
responsible for sending and receiving Flower Protocol mes-

sages to and from the actual client. The FL loop is at the
heart of the FL process: it orchestrates the entire learning
process. It does not, however, make decisions about how
to proceed, as those decisions are delegated to the currently
configured Strategy implementation.

In summary, the FL loop asks the Strategy to configure the
next round of FL, sends those configurations to the affected
clients, receives the resulting client updates (or failures)
from the clients, and delegates result aggregation to the
Strategy. It takes the same approach for both federated
training and federated evaluation, with the added capability
of server-side evaluation (again, via the Strategy). The client
side is simpler in the sense that it only waits for messages
from the server. It then reacts to the messages received by
calling user-provided training and evaluation functions.

A distinctive property of this architecture is that the server
is unaware of the nature of connected clients, which al-
lows to train models across heterogeneous client platforms
and implementations, including workloads comprised of
clients connected through different communication stacks.
The framework manages underlying complexities such as
connection handling, client life cycle, timeouts, and error
handling in an for the researcher.

3.4 Virtual Client Engine

Built into Flower is the Virtual Client Engine (VCE): a tool
that enables the virtualization of Flower Clients to maximise
utilization of the available hardware. Given a pool of clients,
their respective compute and memory budgets (e.g. number
of CPUs, VRAM requirements) and, the FL-specific hyper-
parameters (e.g. number of clients per round), the VCE
launches Flower Clients in a resource-aware manner. The
VCE will schedule, instantiate and run the Flower Clients
in a transparent way to the user and the Flower Server. This
property greatly simplifies parallelization of jobs, ensuring
the available hardware is not underutilised and, enables port-
ing the same FL experiment to a wide varying of setups
without reconfiguration: a desktop machine, a single GPU
rack or multi-node GPU cluster. The VCE therefore be-
comes a key module inside the Flower framework enabling
running large scale FL workloads with minimal overhead in
a scalable manner.

3.5 Edge Client Engine

Flower is designed to be open source, extendable and,
framework and device agnostic. Some devices suitable for
lightweight FL workloads such as Raspberry Pi or NVIDIA
Jetson require minimal or no special configuration. These
Python-enabled embedded devices can readily be used as
Flower Clients. On the other hand, commodity devices such
as smartphones require a more strict, limited and sometimes
proprietary software stack to run ML workloads. To circum-
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Table 2. Comparison of different FL frameworks.

TFF Syft FedScale LEAF Flower

Single-node simulation
√ √ √ √ √

Multi-node execution *
√

(
√

)***
√

Scalability * **
√

Heterogeneous clients (
√

)*** **
√

ML framework-agnostic **** ****
√

Communication-agnostic
√

Language-agnostic
√

Baselines
√ √

*

Labels: * Planned / ** Only simulated
*** Only Python-based / **** Only PyTorch and/or TF/Keras

vent this limitation, Flower provides a low-level integration
by directly handling Flower Protocol messages on the client.

3.6 Secure Aggregation

In FL the server does not have direct access to a client’s
data. To further protect clients’ local data, Flower provides
implementation of both SecAgg (Bonawitz et al., 2017) and
SecAgg+ (Bell et al., 2020) protocols for a semi-honest
threat model. The Flower secure aggregation implementa-
tion satisfies five goals: usability, flexibility, compatibility,
reliability and efficiency. The execution of secure aggre-
gation protocols is independent of any special hardware
and ML framework, robust against client dropouts, and
has lower theoretical overhead for both communication and
computation than other traditional multi-party computation
secure aggregation protocol, which will be shown in 5.5.

3.7 FL Framework Comparison

We compare Flower to other FL toolkits, namely TFF
(Google, 2020), Syft (Ryffel et al., 2018), FedScale (Lai
et al., 2021) and LEAF (Caldas et al., 2018). Table 2 pro-
vides an overview, with a more detailed description of those
properties following thereafter.

Single-node simulation enables simulation of FL systems
on a single machine to investigate workload performance
without the need for a multi-machine system. Supported by
all frameworks.

Multi-node execution requires network communication
between server and clients on different machines. Multi-
machine execution is currently supported by Syft and Flower.
FedScale supports multi-machine simulation (but not real
deployment), TFF plans multi-machine deployments.

Scalability is important to derive experimental results that
generalize to large cohorts. Single-machine simulation is
limited because workloads including a large number of
clients often exhibit vastly different properties. TFF and
LEAF are, at the time of writing, constrained to single-
machine simulations. FedScale can simulate clients on mul-

tiple machines, but only scales to 100 concurrent clients.
Syft is able to communicate over the network, but only by
connecting to data holding clients that act as servers them-
selves, which limits scalability. In Flower, data-holding
clients connect to the server which allows workloads to
scale to millions of clients, including scenarios that require
full control over when connections are being opened and
closed. Flower also includes a virtual client engine for
large-scale multi-node simulations.

Heterogeneous clients refers to the ability to run workloads
comprised of clients running on different platforms using
different languages, all in the same workload. FL targeting
edge devices will clearly have to assume pools of clients
of many different types (e.g., phone, tablet, embedded).
Flower supports such heterogeneous client pools through
its language-agnostic and communication-agnostic client-
side integration points. It is the only framework in our
comparison that does so, with TFF and Syft expecting a
framework-provided client runtime, whereas FedScale and
LEAF focus on Python-based simulations.

ML framework-agnostic toolkits allow researchers and
users to leverage their previous investments in existing ML
frameworks by providing universal integration points. This
is a unique property of Flower: the ML framework land-
scape is evolving quickly (e.g., JAX (Bradbury et al., 2018),
PyTorch Lightning (W. Falcon, 2019)) and therefore the
user should choose which framework to use for their local
training pipelines. TFF is tightly coupled with TensorFlow
and experimentally supports JAX, LEAF also has a depen-
dency on TensorFlow, and Syft provides hooks for PyTorch
and Keras, but does not integrate with arbitrary tools.

Language-agnostic describes the capability to implement
clients in a variety of languages, a property especially im-
portant for research on mobile and emerging embedded
platforms. These platforms often do not support Python,
but rely on specific languages (Java on Android, Swift on
iOS) for idiomatic development, or native C++ for resource
constrained embedded devices. Flower achieves a fully
language-agnostic interface by offering protocol-level inte-
gration. Other frameworks are based on Python, with some
of them indicating a plan to support Android and iOS (but
not embedded platforms) in the future.

Baselines allow the comparison of existing methods with
new FL algorithms. Having existing implementations
at ones disposal can greatly accelerate research progress.
LEAF and FedScale come with a number of benchmarks
built-in with different datasets. TFF provides libraries for
constructing baselines with some datasets. Flower currently
implements a number of FL methods in the context of pop-
ular ML benchmarks, e.g., a federated training of CIFAR-
10 (Krizhevsky et al., 2005) image classification, and has
initial port of LEAF datasets such as FEMNIST and Shake-
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speare (Caldas et al., 2018).

4 IMPLEMENTATION

Flower has an extensive implementation of FL averaging
algorithms, a robust communication stack, and various ex-
amples of deploying Flower on real and simulated clients.
Due to space constraints, we only focus on some of the
implementation details in this section and refer the reader
to the Flower GitHub repository for more details.

Communication stack. FL requires stable and efficient
communication between clients and server. The Flower
communication protocol is currently implemented on top of
bi-directional gRPC (Foundation) streams. gRPC defines
the types of messages exchanged and uses compilers to then
generate efficient implementations for different languages
such as Python, Java, or C++. A major reason for choosing
gRPC was its efficient binary serialization format, which is
especially important on low-bandwidth mobile connections.
Bi-directional streaming allows for the exchange of multiple
message without the overhead incurred by re-establishing a
connection for every request/response pair.

Serialization. Independent of communication stack, Flower
clients receive instructions (messages) as raw byte arrays
(either via the network or throught other means, for exam-
ple, inter-process communication), deserialize the instruc-
tion, and execute the instruction (e.g., training on local
data). The results are then serialized and communicated
back to the server. Note that a client communicates with the
server through language-independent messages and can thus
be implemented in a variety of programming languages, a
key property to enable real on-device execution. The user-
accessible byte array abstraction makes Flower uniquely
serialization-agnostic and enables users to experiment with
custom serialization methods, for example, gradient com-
pression or encryption.

Alternative communication stacks. Even though the cur-
rent implementation uses gRPC, there is no inherent reliance
on it. The internal Flower server architecture uses modu-
lar abstractions such that components that are not tied to
gRPC are unaware of it. This enables the server to support
user-provided RPC frameworks and orchestrate workloads
across heterogeneous clients, with some connected through
gRPC, and others through other RPC frameworks.

ClientProxy. The abstraction that enables communication-
agnostic execution is called ClientProxy. Each ClientProxy
object registered with the ClientManager represents a single
client that is available to the server for training or evalua-
tion. Clients which are offline do not have an associated
ClientProxy object. All server-side logic (client configu-
ration, receiving results from clients) is built against the
ClientProxy abstraction.

One key design decision that makes Flower so flexible is
that ClientProxy is an abstract interface, not an implementa-
tion. There are different implementations of the ClientProxy
interface, for example, GrpcClientProxy. Each implementa-
tion encapsulates details on how to communicate with the
actual client, for example, to send messages to an actual
edge device using gRPC.

Virtual Client Engine (VCE). Resource consumption
(CPU, GPU, RAM, VRAM, etc.) is the major bottleneck
for large-scale experiments. Even a modestly sized model
easily exhausts most systems if kept in memory a million
times. The VCE enables large-scale single-machine or multi-
machine experiments by executing workloads in a resource-
aware fashion that either increases parallelism for better
wall-clock time or to enable large-scale experiments on lim-
ited hardware resources. It creates a ClientProxy for each
client, but defers instantiation of the actual client object (in-
cluding local model and data) until the resources to execute
the client-side task (training, evaluation) become available.
This avoids having to keep multiple client-side models and
datasets in memory at any given point in time.

VCE builds on the Ray (Moritz et al., 2018) framework to
schedule the execution of client-side tasks. In case of lim-
ited resources, Ray can sequence the execution of client-side
computations, thus enabling a much larger scale of experi-
ments on common hardware. The capability to perform FL
at scale will unlock new research opportunities as results
obtained in small-scale experiments often do not generalize
well to large-cohort settings.

5 FRAMEWORK EVALUATION

In this section we evaluate Flower’s capabilities in sup-
porting both research and implementations of real-world
FL workloads. Our evaluation focuses on three main as-
pects:

• Scalability: We show that Flower can (a) efficiently
make use of available resources in single-machine simu-
lations and (b) run experiments with millions of clients
whilst sampling thousands in each training.
• Heterogeneity: We show that Flower can be deployed

in real, heterogeneous devices commonly found in cross-
device scenario and how it can be used to measure sys-
tem statistics.
• Realism: We show through a case study how Flower can

throw light on the performance of FL under heteroge-
neous clients with different computational and network
capabilities.
• Privacy: Finally, we show how our implementation of

Secure Aggregation matches the expected theoretical
overhead as expected.
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5.1 Large-Scale Experiment

Federated Learning receives most of its power from its abil-
ity to leverage data from millions of users. However, se-
lecting large numbers of clients in each training round does
not necessarily translate into faster convergence times. In
fact, as observed in (McMahan et al., 2017), there is usually
an empirical threshold for which if we increase the number
of participating clients per round beyond that point, con-
vergence will be slower. By allowing experiments to run
at mega-scales, with thousands of active clients per round,
Flower gives us the opportunity to empirically find such
threshold for any task at hand.

To show this ability, in this series of experiments we use
Flower to fine-tune a network on data from 15M users using
different numbers of clients per round. More specifically,
we fine-tune a Transformer network to correctly predict
Amazon book ratings based on text reviews from users.

Experimental Setup. We choose to use Amazon’s Book
Reviews Dataset (Ni et al., 2019) which contains over 51M
reviews from 15M different users. Each review from a
given user contains a textual review of a book along with its
given rank (1-5). We fine-tune the classifier of a pre-trained
DistilBERT model (Sanh et al., 2019) to correctly predict
ranks based on textual reviews. For each experiment we fix
the number of clients being sampled in each round (from
10 to 1000) and aggregate models using FedAvg. We test
the aggregated model after each round on a fixed set of 1M
clients. Convergence curves are reported in Figure 3 all our
experiments were run using two NVIDIA V100 GPUs on a
22-cores of an Intel Xeon Gold 6152 (2.10GHz) CPU.

Results. Figure 3 shows the expected initial speed-up in
convergence when selecting 10 to 500 clients per round in
each experiment. However, if we decide to sample 1k clients
in each round, we notice an increase in convergence time.
Intuitively, this behaviour is caused by clients’ data having
very different distributions; making it difficult for simple
Aggregation Strategies such as FedAvg to find a suitable
set of weights.

5.2 Single Machine Experiments

One of our strongest claims in this paper is that Flower
can be effectively used in Research. For this to be true,
Flower needs to be fast at providing reliable results when
experimenting new ideas, e.g. a new aggregation strategy.

In this experiment, we provide a head-to-head comparison
in term of training times between Flower and the four main
FL frameworks, namely FedScale, TFF, FedJax and the
original LEAF, when training with different FL setups.

Experimental Setup. We consider all three FL setups pro-
posed by (Caldas et al., 2018) when training a CNN model
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Figure 3. Flower scales to even 15M user experiments. Each curve
shows successful convergence of the DistilBERT model under
varying amounts of clients per round, with the exception of the
two smallest client sizes: 50 and 10.

to correctly classify characters from the FEMNIST dataset.
More specifically, we consider the scenarios where the num-
ber of clients (c) and local epochs per round change (l) vary.
The total number of rounds and total number of clients are
kept constant at 2000 and 179, respectively. To allow for
a fair comparison, We run all our experiments using eight
cores of an Intel Xeon E5-2680 CPU (2.40GHz) equipped
with two NVIDIA RTX2080 GPUs and 20GB of RAM.

Results. Figure 4 shows the impact of choosing different
FL frameworks for the various tasks. On our first task,
when training using three clients per round (c = 3) for one
local epoch (l = 1), FedJax finishes training first (05:18),
LEAF finishes second (44:39) followed by TFF (58:29) and
Flower (59:19). In this simple case, the overhead of having
a multi-task system, like the Virtual Client Engine (VCE),
causes Flower to sightly under-perform in comparison to
loop-based simulators, like LEAF.

However, the benefits of having a VCE become more evident
if we train on more realistic scenarios. When increasing the
number of clients per round to 35 while keeping the single
local epoch, we notice that Flower (230:18) is still among
the fastest frameworks. Since the number of local epochs is
still one, most of the overhead comes from loading data and
models into memory rather than performing real training,
hence the similarity those LEAF and Flower.

The VCE allows us to specify the amount of GPU memory
we want to associate with each client, this allows for more
efficient data and model loading of different clients on the
same GPU, making the overall training considerably faster.
In fact, when we substantially increase the amount of work
performed by each client to 100 local epochs, while fixing
the number of active client to 3, we see a significant saving
in training time. In this task Flower outperforms all other. It
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Figure 4. Training times (log scale in second) comparison of dif-
ferent FEMNIST tasks between different FL frameworks.

completes the task in just about 80 minutes, while the second
best performing framework (FedJax) takes over twice as
long (over 173 minutes).

It is also important to acknowledge the two extreme training
times we see in this experiment. FedJax seems to be very
efficient when training on few (1) local epochs; however, in
scenarios where communication-efficiency is key and larger
number of local epochs are required, FedJax performance
slightly degrades. FedScale, on the other hands, consistently
showed high training times across all training scenarios.
We believe this apparent inefficiency to be associated with
network overheads that are usually unnecessary in a single-
computer simulation.

5.3 Flower enables FL evaluation on real devices

Flower can assist researchers in quantifying the system costs
associated with running FL on real devices and to identify
bottlenecks in real-world federated training. In this section,
we present the results of deploying Flower on six types of
heterogeneous real-world mobile and embedded devices, in-
cluding Java-based Android smartphones and Python-based
Nvidia Jetson series devices and Raspberry Pi.

Experiment Setup. We run the Flower server configured
with the FedAvg strategy and host it on a cloud virtual
machine. Python-based Flower clients are implemented for
Nvidia Jetson series devices (Jetson Nano, TX2, NX, AGX)
and Raspberry Pi, and trained using TensorFlow as the ML
framework on each client. On the other hand, Android smart-
phones currently do not have extensive on-device training
support with TensorFlow or PyTorch. To counter this issue,
we leverage TensorFlow Lite to implement Flower clients

on Android smartphones in Java. While TFLite is primarily
designed for on-device inference, we leverage its capabili-
ties to do on-device model personalization to implement a
FL client application (Lite, 2020). The source code for both
implementations is available in the Flower repository.

Results. Figure 5 shows the system metrics associated
with training a DeepConvLSTM (Singh et al., 2021) model
for a human activity recognition task on Python-enabled
Jetson and Raspberry Pi devices. We used the RealWorld
dataset (Sztyler & Stuckenschmidt, 2016) consisting of time-
series data from accelerometer and gyroscope sensors on
mobile devices, and partitioned it across 10 mobile clients.
The first takeaway from our experiments in that we could de-
ploy Flower clients on these heterogeneous devices, without
requiring any modifications in the client-side Flower code.
The only consideration was to ensure that a compatible ML
framework (e.g., TensorFlow) is installed on each client.
Secondly, we show in Figure 5 how FL researchers can
deploy and quantify the training time and energy consump-
tion of FL on various heterogeneous devices and processors.
Here, the FL training time is aggregated over 40 rounds,
and includes the time taken to perform local 10 local epochs
of SGD on the client, communicating model parameters
between the server and the client, and updating the global
model on the server. By comparing the relative energy
consumption and training times across various devices, FL
researchers can devise more informed client selection poli-
cies that can tradeoff between FL convergence time and
overall energy consumption. For instance, choosing Jetson
Nano-CPU based FL clients over Raspberry Pi clients may
increase FL convergence time by 10 minutes, however it
reduces the overall energy consumption by almost 60%.

Next, we illustrate how Flower can enable fine-grained pro-
filing of FL on real devices. We deploy Flower on 10 An-
droid clients to train a model with 2 convolutional layers
and 3 fully-connected layers (Flower, 2021) on the CIFAR-
10 dataset. TensorFlow Lite is used as the training ML
framework on the devices. We measure the time taken for
various FL operations, such as local SGD training, commu-
nication between the server and client, local evaluation on
the client, and the overhead due to the Flower framework.
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Figure 5. Flower enables quantifying the system performance of
FL on mobile and embedded devices. Here we report the training
times and energy consumption associated with running FL on
CPUs and GPUs of various embedded devices.
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Figure 6. Flower enables fine-grained profiling of FL performance
on real devices. The framework overhead is <100ms per round.

Table 3. Effect of computational heterogeneity on FL training
times. Using Flower, we can compute a hardware-specific cut-
off τ (in minutes) for each processor, and find a balance between
FL accuracy and training time. τ = 0 indicates no cutoff time.

GPU CPU
(τ = 0)

CPU
(τ = 2.23)

CPU
(τ = 1.99)

Accuracy 0.67 0.67 0.66 0.63
Training

time (mins) 80.32 102
(1.27×)

89.15
(1.11×)

80.34
(1.0×)

The overhead includes converting model gradients to GRPC-
compatible buffers and vice-versa, to enable communication
between Java FL clients and a Python FL server. In Figure 6,
we report the mean latency of various FL operations over
40 rounds on two types of Android devices: Google Pixel 4
and Samsung Galaxy S9. We observe that on both devices,
local training remains the most time-consuming operation,
and that the total system overhead of the Flower framework
is less than 100ms per round.

5.4 Realism in Federated Learning

Flower facilitates the deployment of FL on real-world de-
vices. While this property is beneficial for production-grade
systems, can it also assist researchers in developing better
federated optimization algorithms? In this section, we study
two realistic scenarios of FL deployment.

Computational Heterogeneity across Clients. In real-
world, FL clients will have vastly different computational
capabilities. While newer smartphones are now equipped
with mobile GPUs, other phones or wearable devices may
have a much less powerful processor. How does this com-
putational heterogeneity impact FL?

For this experiment, we use a Nvidia Jetson TX2 as the
client device, which has a Pascal GPU and six CPU cores.
We train a ResNet18 model on the CIFAR-10 dataset in a
federated setting with 10 total Jetson TX2 clients and 40
rounds of training. In Table 3, we observe that if Jetson TX2

CPU clients are used for federated training (local epochs
E=10), the FL process would take 1.27× more time to con-
verge as compared to training on Jetson TX2 GPU clients.

Once we obtain this quantification of computational het-
erogeneity using Flower, we can design better federated
optimization algorithms. As an example, we implemented
a modified version of FedAvg where each client device is
assigned a cutoff time (τ ) after which it must send its model
parameters to the server, irrespective of whether it has fin-
ished its local epochs or not. This strategy has parallels with
the FedProx algorithm (Li et al., 2018) which also accepts
partial results from clients. However, the key advantage
of Flower’s on-device training capabilities is that we can
accurately measure and assign a realistic processor-specific
cutoff time for each client. For example, we measure that
on average it takes 1.99 minutes to complete a FL round
on the TX2 GPU. We then set the same time as a cutoff for
CPU clients (τ = 1.99 mins) as shown in Table 3. This
ensures that we can obtain faster convergence even in the
presence of CPU clients, at the expense of a 4% accuracy
drop. With τ = 2.23, a better balance between accuracy
and convergence time could be obtained for CPU clients.

Heterogeneity in Network Speeds. An important consid-
eration for any FL system is to choose a set of participating
clients in each training round. In the real-world, clients are
distributed across the world and vary in their download and
upload speeds. Hence, it is critical for any FL system to
study how client selection can impact the overall FL train-
ing time. We now present an experiment with 40 clients
collaborating to train a 4-layer deep CNN model for the
FashionMNIST dataset. More details about the dataset and
network architecture are presented in the Appendix.

Using Flower, we instantiate 40 clients on a cloud platform
and fix the download and upload speeds for each client using
the WONDERSHAPER library. Each client is representative
of a country and its download and upload speed is set based
on a recent market survey of 4G and 5G speeds in different
countries (OpenSignal, 2020).
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Figure 7. Effect of network heterogeneity in clients on FL training
time. Using this quantification, we designed a new client sampling
strategy called FedFS (detailed in the Appendix).
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Figure 8. Performance of Secure Aggregation. Running time of
server with increasing vector size

The x-axis of Figure 7 shows countries arranged in descend-
ing order of their network speeds: country indices 1-20
represent the top 20 countries based on their network speeds
(mean download speed = 40.1Mbps), and indices 21-40 are
the bottom 20 countries (mean download speed = 6.76Mbps).
We observe that if all clients have the network speeds corre-
sponding to Country 1 (Canada), the FL training finishes in
8.9 mins. As we include slower clients in FL, the training
time gradually increases, with a major jump around index =
17. On the other extreme, for client speeds corresponding to
Country 40 (Iraq), the FL training takes 108 minutes.

There are two key takeaways from this experiment: a) Using
Flower, we can profile the training time of any FL algorithm
under scenarios of network heterogeneity, b) we can lever-
age these insights to design sophisticated client sampling
techniques. For example, during subsequent rounds of feder-
ated learning, we could monitor the number of samples each
client was able to process during a given time window and
increase the selection probability of slow clients to balance
the contributions of fast and slow clients to the global model.
The FedFS strategy detailed in the appendix works on this
general idea, and reduces the convergence time of FL by up
to 30% over the FedAvg random sampling approach.

5.5 Secure Aggregation Overheads

Privacy is one of the cornerstones in FL, which inevitably
generates computational overhead during training. In
hardware-constrained systems, such as cross-device FL, it
is desirable not only to be able to measure such overheads,
but also to make sure that security protocols are well imple-
mented and follow the expected protocol described in the
original papers. Flower’s implementation of Secure Aggre-
gation, named Salvia, is based on the SecAgg (Bonawitz
et al., 2017) and SecAgg+ (Bell et al., 2020) protocols as
described in Section 3.6. To verify that Salvia’s behavior
matches the expected theoretical complexity, we evaluate
its impact on server-side computation and communication
overhead with the model vector size and clients dropouts.

Experiment Setup. The FL simulations run on a Linux

system with an Intel Xeon E-2136 CPU (3.30GHz), with
256 GB of RAM. In our simulations, all entries of our local
vectors are of size 24 bits. We ignore communication la-
tency. Moreover, all dropouts simulated happen after stage
2, i.e. Share Keys Stage. This is because this imposes the
most significant overhead as the server not only needs to
regenerate dropped-out clients’ secrets, but also compute
their pairwise masks generated between their neighbours.

For our simulations, the n and t parameters of the t-out-
of-n secret-sharing scheme are set to 51 and 26, respec-
tively. These parameters are chosen to reference SecAgg+’s
proven correctness and security guarantees, where we can
tolerate up to 5% dropouts and 5% corrupted clients with
correctness holding with probability 1− 2−20 and security
holding with probability 1− 2−40.

Results. Fixing the number of sampled clients to 100, we
plotted CPU running times through aggregating a vector
of size 100k entries to aggregating one of size 500k en-
tries in Figure 8. We also measured how the performance
would change after client dropouts by repeating the same
experiments with a 5% client dropout.

Both the running times and total data transfer of the server
increase linearly with the model vector size as the operations
involving model vectors are linear to the vectors’ sizes,
e.g. generating masks, sending vectors. We also note the
server’s running time increases when there are 5% clients
dropping out, as the server has to perform extra computation
to calculate all k pairwise masks for each client dropped.
Lastly, we observe that the total data transferred of the server
remains unchanged with client dropouts as each client only
communicates with the server plus exactly k neighbors,
regardless of the total number of clients and dropouts. We
conclude that all our experimental data matches the expected
complexities of SecAgg and SecAgg+.

6 CONCLUSION

We have presented Flower – a novel framework that is specif-
ically designed to advance FL research by enabling hetero-
geneous FL workloads at scale. Although Flower is broadly
useful across a range of FL settings, we believe that it will be
a true game-changer for reducing the disparity between FL
research and real-world FL systems. Through the provided
abstractions and components, researchers can federated ex-
isting ML workloads (regardless of the ML framework used)
and transition these workloads from large-scale simulation
to execution on heterogeneous edge devices. We further
evaluate the capabilities of Flower in experiments that target
both scale and systems heterogeneity by scaling FL up to
15M clients, providing head-to-head comparison between
different FL frameworks for single-computer experiments,
measuring FL energy consumption on a cluster of Nvidia
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Jetson TX2 devices, optimizing convergence time under
limited bandwidth, and illustrating a deployment of Flower
on a range of Android mobile devices in the AWS Device
Farm. Flower is open-sourced under Apache 2.0 License
and we look forward to more community contributions to it.
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A APPENDIX

A.1 Survey on papers

From a systems perspective, a major bottleneck to FL re-
search is the paucity of frameworks that support scalable
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Figure 9. Histograms of the number of total FL clients used in FL
research papers in the last two years. A vast majority of papers
only use up to 100 clients.

execution of FL methods on mobile and edge devices. Fig.
9 shows the histograms of total number of clients in the FL
pools in research papers. The research papers is gathered
from Google Scholar that is related to federated learning
from last 2 years which consists of total 150 papers in the
survey. We excluded papers that are using the framework
not available to reproduced the results. As we can see from
the histogram, the majority of experiments only use up to
100 total clients, which usually on datasets such as CIFAR10
and ImageNet. There are only 3 papers using the dataset
with a total clients pool up to 1 millions, and they are using
the Reddit and Sentiment140 dataset from leaf (Caldas et al.,
2018).

A.2 FedFS Algorithm

We introduce Federating: Fast and Slow (FedFS) to over-
comes the challenges arising from heterogeneous devices
and non-IID data. FedFS acknowledges the difference in
compute capabilities inherent in networks of mobile devices
by combining partial work, importance sampling, and dy-
namic timeouts to enable clients to contribute equally to the
global model.

Partial work. Given a (local) data set of size mk on client
k, a batch size of B, and the number of local training
epochs E, FedAvg performs Emk

B (local) gradient updates
θk ← θk − ηO`(b; θk) before returning θk to the server.
The asynchronous setting treats the success of local update
computation as binary. If a client succeeds in computing
Emk

B mini-batch updates before reaching a timeout ∆, their
weight update is considered by the server, otherwise it is dis-
carded. The server then averages all successful θk∈{0,..,K}
updates, weighted by mk, the number of training examples
on client k.
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This is wasteful because a clients’ computation might be
discarded upon reaching ∆ even if it was close to computing
the full Emk

B gradient updates. We therefore apply the
concept of partial work (Li et al., 2018) in which a client
submits their locally updated θk upon reaching ∆ along with
ck, the number of examples actually involved in computing
θk, even if ck < Emk

B B. The server averages by ck, not
mk, because ck can vary over different rounds and devices
depending on a number of factors (device speed, concurrent
processes, ∆, mk, etc.).

Intuitively, this leads to more graceful performance degra-
dation with smaller values for ∆. Even if ∆ is set to an
adversarial value just below the completion time of the
fastest client, which would cause FedAvg to not consider
any update and hence prevent convergence, FedFS would
still progress by combining K partial updates. More im-
portantly it allows devices which regularly discard their
updates because of lacking compute capabilities to have
their updates represented in the global model, which would
otherwise overfit the data distribution on the subset of faster
devices in the population.

Importance sampling. Partial work enables FedFS to lever-
age the observed values for crk (with r ∈ {1, ..., t}, the
amount of work done by client k during all previous rounds
up to the current round t) and Ermk (with r ∈ {1, ..., t},
the amount of work client k was maximally allowed to do
during those rounds) for client selection during round t+ 1.
c andm can be measured in different ways depending on the
use case. In vision, ctk could capture the number of image
examples processed, whereas in speech ctk could measure
the accumulated duration of all audio samples used for train-
ing on client k during round t. ctk < Etmk suggests that
client k was not able to compute Et mk

B gradient updates
within ∆t, so its weight update θtk has less of an impact on
the global model θ compared to an update from client j with
ctj = Etmj . FedFS uses importance sampling for client
selection to mitigate the effects introduced by this differ-
ence in client capabilities. We define the work contribution
wk of client k as the ratio between the actual work done
during previous rounds ck =

∑t
r=1 c

r
k and the maximum

work possible ĉk =
∑t

r=1E
rmk. Clients which have never

been selected before (and hence have no contribution his-
tory) have wk = 0. We then sample clients on the selection
probability 1−wk + ε (normalized over all k ∈ {1, ...,K}),
with ε being the minimum client selection probability. ε
is an important hyper-parameter that prevents clients with
ctk = Etmk to be excluded from future rounds. Basing the
client selection probability on a clients’ previous contribu-
tions (wk) allows clients which had low contributions in
previous rounds to be selected more frequently, and hence
contribute additional updates to the global model. Syn-
chronous FedAvg is a special case of FedFS: if all clients are
able to compute ctk = Etmk every round, then there will be

Algorithm 1: FedFS
begin Server T,C,K, ε, rf , rs,∆max, E,B,

initialise θ0
for round t← 0, ..., T − 1 do

j ← max(bC ·Kc, 1)
St ← (sample j distinct indices from {1, ...,K}

with 1− wk + ε)
if fast round (rf , rs) then

∆t = ∆f

else
∆t = ∆s

end
for k ∈ St do in parallel

θkt+1, ck,mk ← ClientTraining(k, ∆t, θt,
E, B, ∆t)

end
cr ←

∑
k∈St

ck

θt+1 ←
∑

k∈St

ck
cr
θkt+1

end
end
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Figure 10. Training time reported in days and accuracies (Top-1
and Top-5) for an ImageNet federated training with Flower.

no difference in wk and FedFS samples amongst all clients
with a uniform client selection probability of 1

k .

Alternating timeout. Gradual failure for clients which are
not able to compute Et mk

B gradient updates within ∆t and
client selection based on previous contributions allow FedFS
to use more aggressive values for ∆. One strategy is to use
an alternating schedule for ∆ in which we perform rf “fast”
rounds with small ∆f ) and rs “slow” rounds with larger
∆s. This allows FedFS to be configured for either improved
convergence in terms of wall-clock time or better overall
performance (e.g., in terms for classification accuracy).

FedFS algorithm. The full FedFS algorithm is given in
Algorithm 1.

A.3 Scaling FedAvg to ImageNet-scale datasets

We now demonstrate that Flower can not only scale to a
large number of clients, but it can also support training of
FL models on web-scale workloads such as ImageNet. To
the best of our knowledge, this is the first-ever attempt at
training ImageNet in a FL setting.

Experiment Setup. We use the ILSVRC-2012 ImageNet
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partitioning (Russakovsky et al., 2015) that contains 1.2M
pictures for training and a subset composed of 50K images
for testing. We train a ResNet-18 model on this dataset
in a federated setting with 50 clients equipped with four
physical CPU cores. To this end, we partition the ImageNet
training set into 50 IID partitions and distribute them on
each client. During training, we also consider a simple
image augmentation scheme based on random horizontal
flipping and cropping.

Results. Figure 10 shows the results on the test set of
ImageNet obtained by training a ResNet-18 model. It is
worth to mention that based on 50 clients and 3 local epochs,
the training lasted for about 15 days demonstrating Flower’s
potential to run long-term and realistic experiments.

We measured top-1 and top-5 accuracies of 59.1% and
80.4% respectively obtained with FL compared to 63% and
84% for centralised training. First, it is clear from Figure
10 that FL accuracies could have increased a bit further at
the cost of a longer training time, certainly reducing the gap
with centralised training. Then, the ResNet-18 architecture
relies heavily on batch-normalisation, and it is unclear how
the internal statistics of this technique behave in the context
of FL, potentially harming the final results. As expected,
the scalability of Flower helps with raising and investing
new issues related to federated learning.

For such long-term experiments, one major risk is that client
devices may go offline during training, thereby nullifying
the training progress. Flower’s built-in support for keeping
the model states on the server and resuming the federated
training from the last saved state in the case of failures came
handy for this experiment.

A.4 Datasets and Network Architectures

We use the following datasets and network architectures for
our experiments.

CIFAR-10 consists of 60,000 images from 10 different ob-
ject classes. The images are 32 x 32 pixels in size and in
RGB format. We use the training and test splits provided by
the dataset authors — 50,000 images are used as training
data and remaining 10,000 images are reserved for testing.

Fashion-MNIST consists of images of fashion items
(60,000 training, 10,000 test) with 10 classes such as
trousers or pullovers. The images are 28 x 28 pixels in
size and in grayscale format. We use a 2-layer CNN fol-
lowed by 2 fully-connected layers for training a model on
this dataset.

ImageNet. We use the ILSVRC-2012 ImageNet (Rus-
sakovsky et al., 2015) containing 1.2M images for training
and 50K images for testing. A ResNet-18 model is used for
federated training this dataset.


