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The past four years have witnessed the rapid development of federated learning (FL). However, new privacy
concerns have also emerged during the aggregation of the distributed intermediate results. The emerging
privacy-preserving FL (PPFL) has been heralded as a solution to generic privacy-preserving machine learn-
ing. However, the challenge of protecting data privacy while maintaining the data utility through machine
learning still remains. In this article, we present a comprehensive and systematic survey on the PPFL based on
our proposed 5W-scenario-based taxonomy. We analyze the privacy leakage risks in the FL from five aspects,
summarize existing methods, and identify future research directions.
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1 INTRODUCTION
1.1 Background

The concept of federated learning (FL) was first introduced in 2016 [121]. Its core idea is to
train machine learning models on separate datasets that are distributed across different devices or
parties, which can preserve the local data privacy to a certain extent. Since then, FL has achieved a
rapid development and become a hot research topic in the field of artificial intelligence [9, 131]. The
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development mainly benefits from the following three facts: (1) the wide successful applications of
machine learning technologies, (2) the explosive growth of big data, and (3) the legal regulations
for data privacy protection worldwide.

The widespread and successful applications of machine learning technologies are a primary
driver of FL development. Over the past decades, machine learning technologies have achieved a
remarkable success in a number of applications across various fields, such as language process-
ing [36], image processing [229], and biometrics [208]. One of the most famous applications is
AlphaGo [161]. In 2016, AlphaGo successfully beat a 9-dan professional player with a score of
4:1; in 2017, it continued to successfully beat the world’s top-ranked Go player at the time with
a score of 3:0; and now, its successor, the self-taught AlphaZero, is considered the best Go player
in the world. In addition, many other applications have been widely commercialized, including
face-recognition systems applied in various electronic products and access control systems. These
successful machine learning applications have paved the way for the development of FL.

The explosive growth of big data has pushed development of FL. Every day, huge amounts of
data are generated from social networks, the Internet of things, smart grids, e-commerce, hospitals,
bank systems, and other areas [77]. This trend has promoted the development of machine learning,
and on the other, it has also posed significant challenges to conventional machine learning. Because
big data are usually stored in separate devices by various organizations, learning a global model
while addressing its associated privacy concerns is becoming increasingly challenging. Therefore,
conventional machine learning approaches are becoming less effective and FL has been heralded
as an emerging solution.

The legal regulations for data privacy protection have boosted rapid development of FL. In re-
cent years, many data breaches have significantly threatened the data privacy of users. For exam-
ple, in 2019, more than 540 million records on Facebook users on Amazon’s cloud service were
exposed,! which caused serious social and legal issues. Therefore, several legal regulations have
been established to protect private user data, such as the General Data Protection Regulation in
European Union [179], the Singapore Personal Data Protection Act in Singapore [28], and the Cali-
fornia Privacy Rights Act? in the United States. Such regulations have significantly promoted the
development of FL, particularly the privacy-preserving FL (PPFL).

1.2 Motivation

To illustrate our motivation, we provide a summary of related surveys in Table 1. Surveys
[93, 170, 182, 217] reviewed conventional machine learning approaches and some privacy issues.
Lyu et al. [117] reviewed some privacy issues regarding FL but did not present privacy-preserving
mechanisms that could be used in the FL for privacy preservation. In addition, Lim et al. [105]
provided a survey of the FL in mobile edge networks in terms of communication costs, resource
allocation, privacy, and security, and Li et al. [97, 99] provided a survey of the FL covering ex-
pensive communication, systems heterogeneity, statistical heterogeneity, and privacy concerns.
These three surveys [97, 99, 105] emphasized the efficiency and effectiveness of FL instead of pri-
vacy preservation. Li et al. [101] briefly reviewed privacy-preserving FL. methods based on the ho-
momorphic encryption, secure multiparty computing, and differential privacy. Kaissis et al. [84]
investigated the use of FL and several privacy-preserving techniques in medical imaging. Yang
et al. [204] provided a survey of FL in terms of data partitioning and architectures. None of these
three surveys [84, 101, 204] analyzed the privacy issues related to FL. Niknam et al. [132] discussed
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Table 1. A Brief Summary of Related Surveys on Privacy-preserving Federated Learning

Privacy-
References Federated Learning Privacy-preserving mechanisms Privacy preseryg’ng
leakage scenarios &
Data partitioning Architecture Protection techniques Protec.tion scenarlos Risk
metrics ment
Al A2 A3 B1 B2 C1 C2 C3 C4 D1 D2 D3 D4 D5
Lyu et al. [117] v v v v v v
Liet al. [101] v v v
Niknam et al. [132] v
Kaissis et al. [84] v v Y
Lim et al. [105] v v v
Li et al. [99] v v v v
Yang et al. [204] v v v v v v v
Tanuwidjaja
etal. [170] o
Li et al. [97] v v/ v v v v v v
Kairouz et al. [82] v v v v Vv
Yang et al. [205] v v v v v v v v
Zhang et al. [217] v v v v v
Wang et al. [182] v v
Li et al. [93] v v
Our work v v v v v v v Y v v v v v v v
A1- Horizontal A2- Vertical A3- Hybrid
B1- Client-Server B2- Peer-to-Peer
C1- Cryptographic Techniques C2- Perturbative Techniques C3- Anonymization Techniques C4- Hybrid Techniques
D1- Internal/External Attackers D2- Passive/Active Attacks ~ D3- Training/Inference Phase

D4- Weight/Gradient/The Final Model D5- Inference Attacks

FL applications in 5G networks and challenges of FL for wireless communications. In addition,
Yang et al. [205] provided an FL overview, covering distributed machine learning and its privacy
concerns, a categorization of the FL architecture, the FL design, and FL applications. It placed more
emphasis on the categorization and security analysis of FL systems. Kairouz et al. [82] provided a
survey of FL in terms of efficiency, effectiveness, privacy, robustness, and fairness concerns. This
survey only analyzed the privacy concerns from the aspects of external malicious actors and an
adversarial server. In summary, the related surveys did not provide a comprehensive review on
privacy-preserving aspects of FL.

Given the rapid development of FL (Section 1.1) and the aforementioned limits of existing re-
lated surveys, it is necessary to conduct a comprehensive survey on PPFL to review the latest
findings, point out existing gaps, and indicate the future directions of PPFL research. Therefore,
in this article, a systematic survey focusing on PPFL is presented to cover privacy leakage risks
in the FL and PPFL methods. Specifically, we propose a 5W-scenario-based taxonomy to provide a
systematic and multi-dimensional image PPFL. To serve as a good reference, we comprehensively
analyze the potential privacy leakage risks in FL and divide them into the proposed 5W scenar-
ios, summarize the current PPFL methods based on our well-organized four privacy-preserving
schemes, and identify future research directions toward PPFL research. In addition, in this article,
an explicit overview of FL and generic privacy-preserving mechanisms are presented to provide
the necessary background knowledge, making it easy to understand the different categories of
PPFL.

1.3 Main Contributions

As shown in Table 1, our article presents a comprehensive survey on PPFL based on our pro-
posed 5W-scenario-based taxonomy. The proposed taxonomy provides a systematic and multi-
dimensional image PPFL. Specifically, we first provide an explicit overview of FL and generic
privacy-preserving mechanisms, including a clear categorization of FL based on data partitioning
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and communication architectures. We then analyze potential privacy leakage risks in FL from five
fundamental aspects according to the proposed 5W scenarios, and summarize the current PPFL
methods based on our well-organized four privacy-preserving schemes. Finally, we investigate
various challenges of applying privacy-preserving mechanisms in the FL frameworks and present
open research problems related to PPFL for future research. The main contributions of this study
are as follows:

e We propose a 5W-scenario-based taxonomy to systematically analyze potential privacy leak-
age risks in FL, thereby providing a comprehensive and multi-dimensional image for PPFL.
The proposed 5W-scenario-based taxonomy involves five fundamental aspects: “who” (in-
ternal and external attackers), “what” (active and passive attacks), “when” (training and in-
ference phases), “where” (weight update, gradient update, and the final model), and “why”
(four types of inference attacks).

e We summarize the state-of-the-art PPFL approaches according to our well-categorized four
privacy-preserving mechanisms, which provides a significant guidance for future research
investigation. The proposed PPFL categories include: encryption-based, perturbation-based,
anonymization-based, and hybrid PPFL.

e We provide an explicit overview on FL and generic privacy-preserving mechanisms, paving
the way for future research on PPFL and its applications. The categorization of FL is based
on the data partitioning and communication architecture. The generic privacy-preserving
mechanisms are introduced from two aspects: privacy-preserving techniques and privacy-
preserving metrics.

e We discuss the challenges of PPFL, clarify existing gaps, identify open research problems,
and indicate future research directions.

The rest of this article is organized as follows. First, we provide an overview of FL in Section 2 and
introduce generic privacy-preserving mechanisms in Section 3. In Section 4, we then present our
proposed 5W-scenario-based taxonomy on PPFL, and analyze potential privacy leakage risks, and
discuss privacy-preserving schemes in FL. Finally, we provide some concluding remarks and offer
open research problems for future research directions in Section 5.

2 AN OVERVIEW OF FEDERATED LEARNING

The key idea of FL is to train machine learning models on datasets that are distributed across
different devices or organizations, while attempting to preserve data privacy [121]. The focuses
of FL research can be roughly divided into three aspects: (1) improving the efficiency and effec-
tiveness of FL [24, 68, 87, 100, 120, 211, 213], (2) improving the security of FL to attacks that aim
to undermine the integrity of FL models and degrade the model performance [9, 13, 185, 198],
and (3) improving the privacy preservation of FL on private user data and avoiding privacy leak-
ages [116, 137, 144, 193, 199]. In this section, we present an overview of FL by first introducing
the concept, and then providing a categorization of FL methods based on the data partitioning and
communication architectures. Finally, we briefly compare FL with some related concepts.

2.1 Brief Introduction to FL

FL is a machine learning technique, that aims at collaboratively training a global machine learning
model on multiple datasets distributed over separate clients/nodes without explicitly exchanging
data samples between the clients [121, 150]. Its basic process is to train local models on local
datasets and exchange parameters (e.g., model weights or gradients) between these local clients to
achieve a global model.
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Definition of Validity [97]. Suppose there are n separate clients, with each client represented by
C;, where i € [1,n] and C; possesses a dataset ;. In a conventional machine learning setting, each
client C; possesses a model M; trained only on its local dataset D;, and the accuracy obtained by
M is denoted by f;. In an FL setting, a global model M is collaboratively trained by all n clients
using their local datasets, and the accuracy obtained by M is denoted as f . The FL model M is
called valid if there exists i € [1,n] such that f > f;.

Definition of §-Accuracy [204]. Assume that M is a conventional model trained on a dataset
D = D; U - U Dy, and the accuracy of which is represented by f. The FL model M then has
S-accuracy loss if | f — f| < 8.

In an FL system, there are generally two main roles: (1) clients that hold their local datasets
and (2) a server that orchestrates the entire training process and updates the global model without
accessing the client datasets. The number of clients can be exceptionally large whereas there is
usually only one server. In a special FL setting, the role of the server will be played by certain
clients during the training phase. The FL training process generally consists of three key steps
[105]:

o Step 1: FL initialization on the server side. First, the server initializes the weights of the global
mode and the hyperparameters (e.g., the number of FL rounds, the total number of clients,
and the number of clients to be selected during each training round). It then activates the
clients, broadcasts the initialized global model Wg, and distributes calculation tasks to certain
selected clients.

e Step 2: Local model training and update on the client side. First, the selected clients receive
the current global information (e.g., weights or gradients) sent by the server and update
their individual local model parameters Wif using their local datasets, where ¢ denotes the
index of the current iteration round. Then, after finishing the local training, they send their
local information (e.g., weights or gradients) to the server for model aggregation. During
the local training phase, the goal of the selected client i in round ¢ is to obtain the optimal
local model parameters W! by minimizing the loss function fj,ss(w!), formulated by w! =
arg minwf_ fioss(W?).

e Step 3: Global model aggregation and update on the server side. The server first aggregates
the received local information sent by the selected clients, and then sends back the updated
information to the clients for the next round of training. The goal is to obtain optimal global
model parameters W, by minimizing the global loss function fjoss(wy), formulated by W, =

. ef
arg mlnwl’_ floss(W;)s where ﬁoss(wg) = % ;'1:1 ﬁoss(wg)'

When the termination condition is met (e.g., the maximum number of rounds is reached or the
accuracy of the global model is greater than the threshold), the server stops the training process,
aggregates the updates, and distributes the global model to all clients. The FedAvg method pro-
posed in Reference [121] is a concrete example of an FL framework, as shown in Algorithm 1. As
described in the above steps, the server first initializes the model weights and distributes the calcu-
lation tasks to m selected clients. Client i then trains the local model by minimizing the local loss
function, and returns the local state to the server. Finally, on the server side, the server orchestrates
the entire training process and minimizes the global loss function.

In summary, for FL, the model parameters are exchanged, whereas the datasets are not shared
among clients during the training phase; and after completing the training, the trained model will
be shared among clients and used for inference. The key characteristics of the FL are outlined as
follows:
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ALGORITHM 1: FedAvg Algorithm [121]
Input:
R: Maximum number of rounds, m: the number of clients selected in each round, Nepocn: the
number of local epochs, and 7: the local learning rate.
Output:
Global model wg
Processing;:
1: [Server-side]
2: Initialize wY,
3: for each round ¢ from 1 to R do
4: 8, contains m clients randomly selected from the n clients
5. for each client i € S; in parallel do
6
7
8

w!,N; « LocalTraining(i, wtc)
end for

t+1 _ 1 m g
VG = g 2im Niv

9: end for

10: [Client-side]

11: LocalTraining(i, w):

12: Divide local dataset D; into batches; B; denotes the set of the batches.
13: for each epoch j from 1 to Nepocn, do

14:  for each batch b € 8B; do

15: w «— w — nVL(w;b)
16:  end for
17: end for

18: return the weights w and N; = |D;|

e FL systems have two main roles: clients as data holders, and the server/aggregator as the
holder of the global model.

e FL trains a global model by sharing the model parameters between the clients and the server.

e FL provides a potential solution for privacy-preserving training owing to its characteristic
of not sharing datasets among clients.

e The accuracy of an FL model trained collaboratively on separate datasets should be close to
that of a conventional model trained on a dataset containing all of these separate datasets.

2.2 Categorization of Current FL Methods

This section summarizes the current FL methods according to a categorization based on data par-
titioning and communication architectures.
Let matrix 9; denote the dataset stored in client i and vector d € D; denote a data sample of D,

which is represented by d = (d;p. dfearures diaver), Wwhere dip € X[, drearure € X}eatu,e, and
diaper € X|,,, denote the sample ID, feature, and label, respectively, and Xj,, Xfimture, and X} , .

denote the ID space, feature space, and label space, respectively. According to the distributions of
the data samples in the ID and feature spaces, there are three data partitioning situations [119]:

S1) Horizontal Data Partitioning. The datasets held by clients possess an identical feature space
but different ID spaces, that is, X}emure = X]{eature but X/ # X7, This situation usually
occurs in the same field. For example, student records from different universities tend to

have the same feature space but different ID space.
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S;) Vertical Data Partitioning. The datasets possess an identical ID space but different feature

spaces, that is, XIiD = XIjD but X;eature * X}eature. This situation usually occurs in different
fields. For example, a citizen may have different data records in bank systems, hospitals, e-
commerce markets, and so on.

S3) Hybrid Data Partitioning. The datasets possess different ID spaces and different feature

spaces, that is, X;D * XIjD and X! + X

feature feature’

Therefore, based on the data partitioning, Yang et al. [204] introduced FL methods according to
the following three classes: (1) horizontal FL, (2) vertical FL, and (3) federated transfer learning.

2.2.1 Horizontal FL. Horizontal FL is suitable for training machine learning models using
datasets having distributions as in situation Sy, that is, the datasets possess an identical feature
space but different ID spaces, which can be formulated as follows:

Horizontal FL := X}mture = X;eature’XIiD * X{D, VO, Dj,i #j.

McMabhan et al. [121] proposed a horizontal FL framework based on mobile phone clients. In this
framework, a client locally updates model weights and sends the local weights to a server for model
aggregation, and collaboratively trains a global model together with other clients. Li et al. [96]
proposed a horizontal FL framework for gradient boosting decision trees to improve the model
efficiency and accuracy. Phong et al. [137] applied the additively homomorphic encryption to a
horizontal FL framework to protect the gradients. Smith et al. [163] proposed a framework for
multi-task learning that allows multiple clients to train different tasks, whose advantage is consid-
ering issues of high communication costs and stragglers during the training phase.

In horizontal FL, there are mainly two communication architectures: client-server and peer-to-
peer architectures. The client-server architecture uses centralized computing, because there is a
central server used for orchestrating the entire training process. The peer-to-peer architecture uses
decentralized computing, because there is no central server and a client will be randomly chosen
as the server in each training round.

Client-Server Architecture [205]. This architecture is also known as centralized FL. In a typi-
cal client-server architecture of a horizontal FL system, n clients collaboratively train a machine
learning model with the help of the server, and its underlying assumption is that the clients are
honest and the server is honest-but-curious. Therefore, the prevention of information leakage in
this FL architecture focuses on the model parameter exchange between clients and the server, and
the training process consists of five main steps:

e Step 1: The server initializes the model parameters and hyper-parameters, and distributes
the calculation tasks to selected clients.

e Step 2: The selected clients train their local models and use privacy-preserving techniques
to process the trained model parameters, and then send these parameters to the server.

o Step 3: The server performs secure aggregation by adopting a weighted average, for example.

o Step 4: The server sends the aggregated parameters back to the clients.

e Step 5: The clients decrypt the received parameters and update their local models.

During this training process, the exchanged model parameter has two types: a model weight or
gradient. For the model weight, the clients send the locally calculated weights to the server, and
the server aggregates the received weights and sends them back to the clients [121, 138, 209]. As
the advantages of this type of method, they do not require frequent synchronization and have
a tolerance to the update loss. A disadvantage is no guarantee of convergence. For the model
gradient, the clients send the locally calculated gradients to the server and the server aggregates the
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received gradients and sends them back to the clients [63, 91, 210]. The advantages of this type of
methods are their accurate gradient information and guaranteed convergence. The disadvantages
are a communication cost and the need for connection needs a reliable communication.

Peer-to-Peer Architecture [205]. This architecture is also known as a decentralized FL. Compared
to the client-server architecture, there is no central server [151, 214]. In this architecture, each
client locally trains a machine learning model using its local dataset and updates its model using
the model information received from other clients; the client then sends the updated model infor-
mation to other clients. Therefore, the prevention of information leakage in this FL architecture
focuses on the secure communication between clients, which can be achieved by adopting security
techniques such as an encryption scheme based on public keys. In addition, because there is no
central server, a protocol should be provided in advance to orchestrate the training process. There
are two protocols: a cyclic transfer and a random transfer.

e Cyclic transfer. In this protocol, the clients are organized into a circular chain
{C1,Cs,...,Cp}. Client C; sends its current model updates to client C,. Client C, receives
model information from C; and updates the received model information using its local
dataset, and then sends the updated model information to its next client C3. When the ter-
mination condition is met, the training process stops.

e Random transfer. In this protocol, a client C randomly selects a client C; with equal proba-
bility and sends its model information to C;, which receives model information from Cy and
updates the received model information using its local dataset, and then randomly selects a
client C; with equal probability and sends the updated model information to C;. This process
is carried out simultaneously among n clients until the termination condition is met.

2.2.2  Vertical FL. Vertical FL is suitable for training machine learning models using datasets
having distributions as in situation S, that is, the datasets possess an identical ID space but differ-
ent feature spaces, which can be formulated by the following:

. =Xy i J
Vertical FL := XIlD - XID’ )l‘eature # Xfeature’

VD;, D s i #].
A vertical FL scheme was proposed to train a privacy-preserving logistic regression model in
Reference [71]. This scheme is used to study the effect of the entity resolution on the learning
performance, and a Taylor approximation is applied to the loss and gradient functions such that
a homomorphic encryption can be adopted for privacy-preserving computations. Yang et al. [203]
proposed a quasi-Newton method-based vertical FL framework for logistic regression, whose ad-
vantage is that it reduces the communication costs. However, these two methods only focus on
binary classification tasks with two clients in the vertical FL setting. To extend the vertical FL,
Feng et al. [51] proposed a multi-participant multi-class vertical FL framework. Yang et al. [206]
proposed a vertical FL framework for a logistic regress model without a third-party coordinator.
Cheng et al. [27] proposed a lossless vertical FL method, which could enable clients to train gra-
dient boosting decision trees in a collaborative manner. Liu et al. [112] proposed a vertical FL
framework based on a block coordinate gradient descent algorithm, in which each client locally
conducts more than one gradient updates before sending the local model information to the other
clients. With this method, the impact of the number of local rounds for local updates is analyzed,
and a global convergence with a proper choice of the number of local rounds is shown. As the
advantage of this method, it reduces the communication overhead. In addition, Wang et al. [184]
proposed measurements based on group instance deletion and group Shapley values to calculate
the contribution of each client for vertical FL.

For vertical FL, there are mainly two communication architectures: an architecture with a third-
party coordinator and an architecture without a third-party coordinator.
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Architecture with Third-party Coordinator [204]. Suppose that clients C; and C, collaboratively
train a machine learning model using their local datasets, and client C; has label data used for
training the global model. Clients C; and C; are honest-but-curious to each other. To guarantee
the data privacy during the training process, an honest third-party coordinator Cs is involved. This
is a reasonable assumption, because Cs can be authorities such as governments. Therefore, such a
vertical FL system consists of five main steps:

e Step 1: ID Alignment. Because there are different IDs in the two datasets of C; and C,, the
vertical FL system first needs to use encryption-based ID alignment techniques such as those
in References [104, 154] to confirm the common IDs without exposing the private data of C;
and C,. These common data instances are then used to train the vertical FL model.

e Step 2: C; generates an encryption key pair and sends the public key to C; and C,.

e Step 3: C; and C, encrypt their intermediate results and exchange this information.

e Step 4: C; and C; each calculate encrypted gradients and add a mask. C; also calculates an
encrypted loss. Then, C; and C, send the encrypted results to Cs.

e Step 5: Cs decrypts the received results and sends the decrypted gradients and loss back to
C; and C;. Then, C; and C, unmask the gradients and update their model parameters.

Architecture without Third-party Coordinator [206]. Suppose that clients C; and C; collabora-
tively train a machine learning model using their local datasets, and C; has label data used for
training the global model. C; and C, are honest-but-curious to each other. To prevent privacy
leakage, such a vertical FL system needs to consist of following seven main steps:

e Step 1: ID alignment. An ID alignment technique such as in Reference [104] is first used to
confirm the common IDs between C; and C,. Then, their common data instances are used
to train a vertical FL model.

e Step 2: C; generates an encryption key pair and sends the public key to C,.

e Step 3: C; and C; initialize their model weights.

e Step 4: C; and C; each calculate their partial linear predictors, and C, sends its predictor
result to C;.

e Step 5: C; calculates the model residual, encrypts the residual, and sends it to Cs.

e Step 6: C; calculates the encrypted gradient and sends the masked gradient to C;.

e Step 7: C; decrypts the masked gradient and sends it back to C,. Then, C; and C, update
their model locally.

2.2.3 Federated Transfer Learning. Federated Transfer Learning (FTL) is suitable for train-
ing machine learning models using datasets having distributions as in situation Ss, that is, the
datasets possess different ID spaces and feature spaces or only have a few co-occurrence instances,
which can be formulated by

FTL := X, # X)

J
D =X

feature’

Xi

feature VDi’Dj’iij'

Yang et al. [202] proposed a secure FTL framework, FedSteg, to train a personalized and dis-
tributed model for a secure image steganalysis. As its advantage, FedSteg is a general framework
suitable for general network structures in privacy-preserving machine learning. Gao et al. [59]
proposed a heterogeneous FTL framework, which provides an end-to-end learning protocol for
heterogeneous feature space training among multiple clients. Its experiments show that this frame-
work outperforms local training schemes and homogeneous FL schemes. Liu et al. [111] proposed
a general privacy-preserving FTL framework to extend the scope of the existing secure FL to a
wider range of practical applications. Compared with some secure deep learning methods that suf-
fer from accuracy loss, the FTL can achieve the same accuracy as non-privacy-preserving methods
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and a higher accuracy than non-federated self-learning methods. Sharma et al. [157] proposed a
secure and efficient FTL framework based on a multi-party computation. This allows clients to
train a transfer learning model while keeping their datasets private against adversaries. In addi-
tion, compared with the homomorphic encryption approaches, it reduces the running time and
communication cost.

Based on the categorization of transfer learning [136], FTL methods can be divided into three
categories [205]: instance-based FTL, feature-based FTL, and parameter-based FTL.

e Instance-based FTL assumes that some labeled instances in the dataset in the source domain
can be reweighted and reused for training in the target domain [11, 136]. For the horizontal
FL, the datasets of different clients may have different distributions, which may result in an
accuracy degradation of machine learning models trained on these datasets. One solution is
to relieve the distribution difference by reweighting some of the selected data instances and
then reuse them to train the model [35]. For the vertical FL, the objectives of different clients
may be different and the ID alignment in the vertical FL may result in a negative impact
on the FTL, which is known as negative transfer [136]. One solution is to use importance
sampling to relieve a negative transfer [143].

Feature-based FTL aims to minimize domain divergence and learn a “good” feature represen-
tation for the target domain, and thus it can effectively encode the transformation knowledge
from the source domain to the target domain [90, 183]. For the horizontal FL, the feature rep-
resentation can be obtained by minimizing the maximum mean discrepancy among different
datasets of clients [135]. For the vertical FL, the feature representation can be obtained by
minimizing the distance between features of aligned instances in different datasets.
Parameter-based FIL aims to exploit shared parameters or prior distributions of hyper-
parameters between the source domain and target domain models to effectively encode the
transformation knowledge [60, 74, 136]. For the horizontal FL, a shared global model is firstly
trained based on datasets of different clients. Each client can then fine-tune its local model
using the pre-trained global model on its local dataset [121]. For the vertical FL, predictive
models trained on the aligned instances can be first used to infer missing features or labels
for unaligned data instances of the clients. Then, a more accurate model can be obtained by
training on the expanded datasets.

2.3 Related Concepts

In this section, we introduce some related concepts and provide a brief comparison with the FL, as
summarized in Table 2.

2.3.1 Distributed Machine Learning. Distributed machine learning is a combination of dis-
tributed computing and machine learning, which aims at accelerating the training process on
large-scale datasets [58]. There are typically two distribution schemes: data parallel and model
parallel [178]. In the data-parallel scheme, the training data are first divided into many partitions,
with the number of partitions being equal to the number of local nodes. The local nodes act as com-
puting resources, train the same model on the individual dataset, and then send the local model
parameters to a parameter aggregator. Compared to FL, the local nodes hold the same machine
learning model. In the model-parallel scheme, a machine model is first divided into a few parti-
tions and distributed to multiple local nodes. Each local node then trains a part of the model on a
copy of an entire dataset. A aggregator is deployed to allocate computing tasks and aggregate all
model parts [76].
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Table 2. A Brief Summary of Related Concepts and Comparison with FL

Related concepts

Primary features

Comparison with FL

Distributed
Machine Learning

e data-parallel scheme

e model-parallel scheme

e multiple local nodes & an aggregator
e acceleration for large-scale datasets
e homogeneous data

o large-scale datasets

o distributed computing

% privacy-preserving

% may no central aggregators

% no exchange of datasets

% heterogeneous/homogeneous data

o three-layer architecture: end-users,

© privacy-preserving
o large-scale datasets

Mobile edge servers & a cloud server o distributed computin
Edge Computing | e low-latency (e.g., augmented reality) % ma nl(l) ser rspu &
o 10T devices (e.g., smartphones) s may crve
% no exchange of datasets
e model splitting design z large—s}clale dat?sdet: ¢
. . e collaborative learning 1o exchange of Catasets
Split Learning % entire model training

e clients & a central server
e communication efficiency

% may no central aggregators
% privacy-preserving

Privacy-Preserving
Machine Learning

e conventional machine learning

o usually centralized computing

e a combination of privacy-preserving
techniques and machine learning

© privacy-preserving

o neural network

% distributed computing

% multiple participants

% multiple private datasets

% large-scale datasets

o: Main common features.  %: Main different features.

2.3.2 Mobile Edge Computing. Mobile edge computing, also known as multi-access edge com-
puting, is a network architecture concept designed to enable a cloud computing service at the
edge clients of the cellular network [2, 5]. Technical standards for the mobile edge computing
were developed by the European Telecommunications Standards and Institute Industry Specifica-
tion Group.® The key idea of the mobile edge computing is to reduce the network congestion
by conducting computation tasks closer to the edge clients, and thus it can enable the rapid
deployment of new services or applications for customers. Therefore, mobile edge computing
emphasizes the development of network communication techniques and can benefit the devel-
opment of FL. Recently, several research studies on FL in mobile edge computing have been pro-
posed [49, 105, 116, 140, 189, 190, 201, 220].

2.3.3 Split Learning. Split learning is a distributed learning concept, which enables collabora-
tive machine learning without the exchange of datasets with a central server [67, 177]. First, each
client trains a model up to a specific layer, which is referred to as a cut layer. Then, the interme-
diate parameters are transmitted to the central server to complete the training of the remaining
layers. Finally, the aggregated gradients are back propagated to the cut layer and sent back to the
clients to complete the local training. By contrast, FL typically involves the communication of a
whole model’s parameters or gradients. An empirical comparison of the communication efficien-
cies between the split learning and FL can be found in Reference [162]. This study shows that
when the model is large or there are numerous clients, the communication efficiency of the split
learning is better than that of FL. This is because the clients of split learning do not transmit all
model parameters to the central server. However, because the clients and central server in FL run
the same global model, FL is easier to implement than split learning.

Shttps://portal.etsi.org/TB-SiteMap/MEC/MEC-White-Papers.
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2.3.4  Privacy-preserving Machine Learning. Privacy-preserving Machine Learning (PPML)
aims to employ privacy-preserving techniques in machine learning to preserve data privacy. PPFL
can be treated as a special case of PPML. The main difference is that PPFL emphasizes a collabora-
tive training with datasets separately stored in different devices. Typically, PPML methods can be
divided into three classes: homomorphic encryption- (HE) based PPML, secure multi-party
computation— (SMC) based PPML, and differential privacy- (DP) based PPML [18]. HE-based
PPML uses encrypted datasets for model training or querying [15]. For example, Gilad-Bachrach et
al. [64] proposed a HE-based CNN called CryptoNets for securely exchanging data between clients
and a cloud server. As a disadvantage, its accuracy is affected by the number of non-linear layers. To
improve the performance, Chabanne et al. [18] proposed combining CryptoNets with a polynomial
approximation for an activation function. SMC-based PPML utilizes the SMC technique [65, 207] to
ensure data privacy. For example, Mohassel et al. [124] proposed a three-party computation-based
framework for PPML. As an advantage, it can be used to train general machine learning models
such as logistic regression, linear regression, and neural networks. DP-based PPML utilizes the DP
technique to achieve data privacy preservation [66]. DP-based PPML methods can be divided into
two categories: privacy-preserving models designed by adding noise to the trained model [22, 85],
and privacy-preserving models designed by adding noise to the objective function [21, 219].

3 OVERVIEW OF GENERIC PRIVACY-PRESERVING MECHANISMS

In computer security, privacy is defined to “assure that individuals control or influence what infor-
mation related to them may be collected and stored and by whom and to whom that information
may be disclosed” [166]. Privacy is protected under legal regulations such as the General Data
Protection Regulations in the European Union [179]. Privacy-preserving mechanisms are designed
to realize data utility while ensuring that the original information will not be disclosed to other
individuals or groups. In this section, we provide a brief overview of generic privacy-preserving
mechanisms covering three types of privacy preservation techniques: cryptographic techniques,
perturbative techniques, and anonymization techniques.

3.1 Cryptographic Techniques

The cryptographic techniques widely used in privacy-preserving machine learning primarily con-
sist of homomorphic encryption, secret sharing, and secure multi-party computation.

Homomorphic encryption [148] is a form of encryption. Formally, an encryption algorithm En
is called homomorphic over an operator * if fulfilling the criterion En(m;) x En(m,) = En(m; x
my), Vmy, my € M, where M denotes a set of plaintext [98]. According to the supported operators,
homomorphic encryption methods can be divided into two categories: partially homomorphic en-
cryption [134] and fully homomorphic encryption [176]. Partially homomorphic encryption only
supports either additive or multiplicative operations, which are referred to as additively homo-
morphic encryption [88] and multiplicative homomorphic encryption [46], respectively. Fully ho-
momorphic encryption supports both additive and multiplicative operations [62]. Compared with
partially homomorphic encryption, fully homomorphic encryption provides stronger encryption
but suffers from computation costs.

Secret sharing [156] is a cryptographic scheme where a secret key consisting of n shares can
be reconstructed only if a sufficient number of shares are combined. Formally, a dealer distributes
a secret s to n participants, each of whom is allocated one share. Then, the (¢, n)-threshold secret
sharing is defined by fulfilling the following criteria [98]: (1) For an arbitrary subset of m par-
ticipants with m > t, the secret s can be reconstructed from m shares, and (2) for an arbitrary
subset of m participants with m < t, the secret s cannot be reconstructed from m shares. The meth-
ods proposed in References [12, 156] are two widely used (¢, n)-threshold secret sharing methods.
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However, these methods are vulnerable to the dishonest dealer or malicious participants. There-
fore, verifiable secret sharing is proposed to prevent these two types of attacks [72, 79].

SMC [207] is a cryptographic scheme that enables distributed participants to collaboratively cal-
culate an objective function without revealing their data. Formally, n participants {P1, Pz, ..., P,}
aim to compute a global function f(D1, Dy, ..., D,) based on each individual’s dataset D;. A pro-
tocol is said to be an SMC protocol if meeting the following two requirements [98]: (1) correctness,
in which the function f(Dy, D,, ..., D,) calculated by the protocol must be correct, and (2) pri-
vacy, in which the protocol does not reveal any private information of D, to any other participants.
As its advantages, (1) there is no requirement of trusted third-parties, (2) the tradeoff between data
utility and data privacy is eliminated, and (3) a high accuracy is achieved. The disadvantages are
computational overhead and high communication costs.

3.2 Perturbation Techniques

The key idea of a perturbation technique is to add noise to the original data, allowing the statis-
tical information calculated from the perturbed data to be statistically indistinguishable from the
original data. There are three types of widely used perturbation techniques: differential privacy,
additive perturbation, and multiplicative perturbation.

A differential privacy technique is based on probability statistical models to quantify the degree
of disclosure of private information of instances in a dataset [41]. Typically, differential privacy
techniques can be divided into two categories: global differential and local differential privacy
techniques. Global differential privacy technique aims to achieve a goal in which if the effect of
substituting an arbitrary sample in a dataset is sufficiently small, the query results cannot be used
to explore more information about any samples in the dataset [43]. As an advantage, this technique
is more accurate than local differential privacy techniques, because it does not need to add a large
amount of noise to the dataset. A local differential privacy technique is introduced to remove
the trusted central authority demanded in global differential privacy [34, 102]. Compared with a
global differential privacy technique, a local differential privacy technique does not need a trusted
third-party [146]. As a disadvantage, the total amount of noise is much larger than that in a global
differential privacy technique.

Additive perturbation aims to preserve the privacy of the original data by adding random noise
from a certain distribution (e.g., a uniform distribution or Gaussian distribution), which is formu-
lated by Y = X + &, where Y denotes the perturbed data, X € RY*" denotes the original data,
and § € R denotes the random noise [4]. This technique is simple and can preserve the statis-
tical properties [86]. However, it may degrade the data utility and may be vulnerable to a noise
reduction.

Multiplicative perturbation aims to multiply the original data using noise from a certain distri-
bution [25]. Instead of adding some random noise to the original data, multiplicative perturbation
aims to transform the original data points to a certain space [108]. Compared with the additive per-
turbation, multiplicative perturbation is more effective, because reconstructing the original data
from the perturbed data of the multiplicative perturbation is more difficult [50].

In summary, perturbation techniques are simple, efficient, and usually do not require knowledge
of the data distribution. However, perturbed data may be vulnerable to probabilistic attacks, and
it is difficult to mitigate such risk without reducing the data utility.

3.3 Anonymization Techniques

Anonymization techniques are mainly used to achieve group-based anonymization by removing
the identifiable information while maintaining the utility of the published data. There are three
types of widely used anonymization techniques: k-anonymity, [-diversity, and ¢-closeness. These
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techniques are primarily developed for the structured data [152] in the form of a table consisting
of multiple records, with three main types of attributes: unique identifiers (UIDs), sensitive
attributes (SAs), and non-sensitive attributes.

k-anonymity aims to protect the data privacy while maintaining the utility of the published
data [152]. A published dataset is said to satisfy the k-anonymity if each sample in the dataset
cannot be re-identified from the published data of at least k — 1 samples. As an advantage of k-
anonymity, it is effective in protecting the privacy of UID-based records [186]. However, it may be
vulnerable to inference attacks on the SAs of the records.

In addition, [-diversity, an extension of k-anonymity, was proposed to enhance the protection of
the SAs of the records [118]. Compared with k-anonymity, the I-diversity technique adds diversity
within a group to the SAs in the anonymization mechanism [171]. However, [-diversity may be
vulnerable to attribute linkage attacks, because the SAs may be inferred from the distribution of
values.

Thus, t-closeness was proposed to enhance [-diversity by maintaining the distribution of the
SAs [95]. As an advantage of t-closeness, it tends to be more effective than [-diversity and k-
anonymity for numeric attributes [188]. However, enforcing t-closeness between distributions
tends to degrade the utility of the data.

3.4 Privacy-preserving Metrics

There are two types of metrics widely used to assess the performance of privacy-preserving meth-
ods: (1) privacy metrics for measuring the loss of privacy of a dataset and (2) utility metrics for
measuring the data utility of the protected data for data analysis purposes [171].

Privacy metrics aim to measure the privacy loss of privacy-preserving techniques [180]. Wager
et al. [181] thoroughly reviewed more than 80 privacy metrics and discussed these metrics from
4 common aspects: adversary models, data sources, inputs for the computation of the metrics,
and output measures. For example, the adversary models analyze the capabilities and goal from
the perspective of an adversary, and the data sources introduce privacy leakage issues from the
perspective of the data sources. Typically, the privacy metric for a certain case is determined by
many aspects, such as the inputs, data source, and adversary models. In most cases, a single metric
may not be able to fully assess the complete privacy.

Utility metrics are designed to quantify the utility of the data protected by privacy-preserving
techniques for data analysis purposes, i.e., general analysis purposes and specific analysis pur-
poses [55]. For general analysis purposes, information loss metrics are defined to measure the
similarity between the original data and the protected data [23]. They are usually measured by
the extent to which the protected data retain the statistical information of the original data. For
the specific analysis purposes (e.g., machine learning and statistical analysis tasks), the data utility
is measured by comparing the evaluation accuracy of the task using the protected data and the
original data.

4 PRIVACY-PRESERVING FEDERATED LEARNING: A TAXONOMY AND REVIEW

PPFL is an ingenious combination of FL and privacy-preserving mechanisms. Its key challenge is
to balance the tradeoff between data privacy and data utility when applying privacy-preserving
mechanisms to FL frameworks. Based on the introduction of FL and the generic privacy-preserving
mechanisms in Section 2 and Section 3, in this section, we present a comprehensive and systematic
overview of PPFL. First, we present an overview of the proposed 5W-scenario-based taxonomy.
Then, we analyze potential privacy leakage risks in FL from five aspects according to the 5W-
scenario-based taxonomy. Finally, we investigate and summarize PPFL methods according to four
privacy-preserving schemes.
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4.1 Proposed 5W-Scenario-Based Taxonomy

As shown in Figure 1, the proposed 5W-scenario-based taxonomy emphasizes two aspects of PPFL:
(1) potential privacy leakages and (2) possible privacy-preserving schemes. Concerning the poten-
tial privacy leakages, we will discuss the potential privacy risks in FL from five fundamental as-
pects: “who” (internal and external attackers), “what” (active and passive attacks), “when” (training
and inference phases), “where” (weight update, gradient update, and the final model), and “why”
(four types of inference attacks). For the possible privacy-preserving schemes, we divide the ex-
isting PPFL methods into four categories: encryption-based, perturbation-based, anonymization-
based, and hybrid PPFL.

4.2 Potential Privacy Leakage Risks in FL

FL offers a framework to jointly train a global model using datasets stored in separate clients.
However, recent studies have shown that FL. may not always guarantee sufficient privacy preser-
vation [61]. This is mainly because the model parameters (e.g., weights or gradients) may leak sen-
sitive information to malicious adversaries and cause deep privacy leakage [10, 228]. As reported
in [137], a small portion of the original gradients could reveal privacy about local training datasets.
Therefore, in this section, we provide a comprehensive analysis of potential privacy leakage risks
in FL from five fundamental aspects.

4.2.1  Scenario 1: Who might be a malicious adversary? Insiders and outsiders. In FL, there are
two types of actors who can obtain access to the model information: internal actors (participating
clients and the central server) and external actors (model consumers and eavesdroppers).

One type of potential malicious adversaries may come from the internal actors: participant
clients or the central server. In a typical FL framework, the participant clients collaboratively train
a global model using their local datasets with or without the orchestration of a central server,
which is required in the client-server architecture of the horizontal FL or in the vertical FL archi-
tecture with the third-party coordinator [204]. For example, in the client-server architecture, the
central server is designed to aggregate the model updates and orchestrate the entire training pro-
cess by receiving and sending training updates from and back to the participants [205]. Therefore,
either the clients or the server has the opportunity to access the intermediate training updates (e.g.,
weights and gradients) and the final model. Hence, certain participants and an honest-but-curious
server might be the potential internal malicious adversaries whose objective is to gain access to
private data.

Another type of potential malicious adversary might come from external actors: model con-
sumers or eavesdroppers. Model consumers usually have two ways to probe the private data. First,
they can obtain access to the whole model weights, and second they can obtain access query re-
sults provided by a platform API [175]. Therefore, they can probe the private data through the
final model or its query results. Compared with the model consumers who can officially and
easily access the final model, eavesdroppers can steal the intermediate training updates or the
final model by intercepting the communication between the participants and server [187]. How-
ever, this eavesdropping process usually needs more effort. In addition, the eavesdroppers may
purloin the intermediate weights or gradients transmitted between participants and the aggrega-
tor [29]. Hence, certain model consumers and the eavesdroppers might be the potential external
adversaries.

Risk Assessment. If a client is malicious, then it may cause privacy leakage under three situa-
tions. First, the malicious client can obtain the intermediate training updates from the aggregator to
explore private information of other client datasets [10]. Second, the malicious client might send
deliberately designed training updates to the aggregator for probing the special private data of
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other client datasets [123]. Third, a privacy leakage might be caused by the information inference
attack launched by the malicious client, for example, by exploiting the final model [129]. Although
these risks can be relieved by designing specific training protocols, for example, selecting a portion
of clients in each round, FL still faces a substantial risk of privacy leakage from malicious clients.

If the server is malicious, then it will cause high-level risks of privacy leakage [61]. First, because
the malicious server maintains the intermediate updates and the final model, the server can utilize
those information to reconstruction attacks [223]. Second, the malicious server has the ability
to explore the private data of specific clients by differentiating their model updates. Third, the
malicious server has the ability to select and regulate the participating clients in each training
round to explore the privacy of the training datasets [200]. Given that the role of the server is to
aggregate model updates, a simple privacy-preserving solution is to limit and quantify the server’s
ability to reconstruct the local training datasets of the clients.

Because consumers of a model can easily access the final model or its query results, if they are
malicious adversaries or controlled by attackers, the malicious consumers can utilize that infor-
mation to probe sensitive information through information inference attacks (Section 4.2.5). For
example, the malicious consumers can utilize that information to generate representative sam-
ples [75, 192], determine whether a sample has been used for model training [123, 130], obtain
characteristics of the training data [123], or generate the training samples and labels [223, 228].
Therefore, malicious consumers may cause high-level risks of privacy leakage.

The eavesdroppers attempt to probe sensitive information by stealing the intermediate training
updates or the final model transmitted between participants and the server [45, 224]. As a risk,
they can utilize this information to explore private information of the training datasets, such as
reconstructing the training samples [153]. This will cause a seriously sensitive information leakage
and incur a high risk of privacy leakage. For example, research studies [223, 228] have shown
that the training samples can be reconstructed by the publicly shared gradients. Compared to
malicious consumers, eavesdropping may be defended by cryptographic encryption mechanisms
(e.g., homomorphic encryption, secret sharing, or secure multi-party computation).

4.2.2  Scenario 2: What types of privacy attacks? Passive and active attacks. According to RFC
4949 [159], passive attacks are defined as those aimed at using information or learning from a
system but not modifying the system, whereas active attacks are defined as those aimed at al-
tering system resources or affecting system operations. With FL, passive attackers only observe
computations (e.g., the weights, gradients, and final model) during the training and inference
phases [123, 228], whereas active attackers can influence the FL system by manipulating the model
parameters to achieve adversarial goals [129, 165].

Passive attacks in FL can be divided into two categories: passive black-box and passive white-box
attacks. In a passive black-box attack, for example, in the setting of a service platform, it is assumed
that the adversary can only access query results but not the model parameters or intermediate
training updates. Nasr et al. [129] studied this type of attack by aiming at the membership inference.
In a passive white-box attack, it is assumed that the adversary can access the intermediate training
updates, model parameters, and query results [129].

Active attacks in FL aim to actively influence the training process and extract sensitive infor-
mation about the training datasets [129]. There are diverse ways to carry out this type of attack.
For example, Melis et al. [123] designed an active attack in which the adversary uploads a spe-
cial gradient to the global model to learn separable representations. Song et al. [165] presented an
active attack from the perspective of a malicious server by isolating certain clients. In addition,
Xu et al. [200] proposed an active attack by controlling certain clients to adjust the training data
strategically such that the global model rises or falls with a special pattern.
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In FL systems, an attacker can conduct both active and passive attacks [123, 129]. An active
attacker may be a client that maliciously modifies its local uploads, or it may be a central server
that maliciously modifies the aggregation parameters. In a passive case, the attacker only observes
the updates and conducts inference, without changing anything during the training phase. In an
active case, the attacker can affect the model training and conduct more powerful attacks against
other participants. More specifically, the attacker can share malicious updates, thereby deceiving
the FL model into revealing more sensitive information about the local data of other clients that
the attacker is interested in.

Risk Assessment. A passive black-box attack usually has a limited risk, because attackers can
only utilize the query results to probe sensitive information [129], whereas a passive white-box
attack can usually reveal more sensitive information about training datasets. Nasr et al. [129] in-
vestigated a passive white-box attack as well as a passive black-box attack against the membership
inferences and showed that the former will be much stronger than the latter in the membership
information inference. Passive attacks usually consist of different types of inference attacks, where
the adversary only observes the training process and obtains access to model parameters without
modifying the learning process. For example, Hitaj et al. [75] studied a passive white-box attack
based on a generative adversarial network (GAN) to effectively extract sensitive information
(clients’ face images) of training datasets.

Compared with passive attacks, active attacks are much more powerful, because an adversary
can modify the model updates on the client or server side. For example, to extract more private
information about the training datasets, gradient updates maliciously modified by a client can
mislead the global model into learning specific features without a significant impact on the model
performance [123]. Nasr et al. [129] designed an active attack that actively misleads the stochastic
gradient descent into leaking more sensitive information about the datasets of other participants.
Under this active attack setting, the attacker aims to update the data features towards lifting off the
gradients of the global model or local model. Specifically, the stochastic gradient descent algorithm
iteratively minimizes the loss function on the training data by decreasing the gradient of the loss.
The magnitude of the gradient change depends on the contribution of the training data samples
in the loss function. If data samples lead to a large loss of the loss function, then the stochastic
gradient descent algorithm will update the model to reduce the loss during the training phase. If
data samples do not contribute to a loss of the loss function, then the gradient change on these
samples is gradual throughout the training phase. When the attacker lifts off the gradients of the
target instances, the gradient norm of the target members will become indistinguishable to that of
the non-target member instances. The active gradient ascend attacker will make the target model
behave differently between target member instances and non-target member instances. This can
render an easier membership inference attack.

4.2.3  Scenario 3: When might a data privacy leakage occur? Training phase and inference phase.
With FL, there are two primary phases: the training phase and the inference phase. The train-
ing phase mainly involves computing the local gradient on the client-side, aggregating the global
model on the server-side, transmitting intermediate updates between the clients and the aggrega-
tor, and releasing the final model to the clients [69, 96]. The inference phase mainly involves a way
to provide the query service to consumers [129]. Both phases are vulnerable to a privacy leakage.

Risk Assessment. During the training phase, one risk of privacy leakage is mainly related to
model updates. This is because all update information during the training phase is potentially
exposed to malicious adversaries [89, 91]. This information includes local gradients, local model
weights, aggregated gradients or model weights, and the final model [121, 138]. For example, dur-
ing each training round, the aggregated gradients or the model weights are available to multiple
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selected participants [218]. If one of the participants is malicious, then the adversary can gather
the aggregated model updates and conduct privacy attacks to infer the data privacy of the other
participants. In addition, during the training phase, the adversary may send malicious local up-
dates to mislead the global model into learning specific features [123]. As another risk, the model
updates during the training phase are potentially exposed to eavesdroppers. For example, when
the selected clients send the local updates (e.g., local gradients or model weights) to the server for
the model aggregation or when the server sends the aggregated updates back to the clients, the
update information communicated between the participants and the aggregator may be leaked
to eavesdroppers [223, 228]. To limit the privacy leakage from the updates or the final model, a
user-level differential privacy can be applied during the FL training process [6, 44, 83].

During the reference phase, the risk of a privacy leakage is mainly related to the final model,
which is released to the participants or is provided as a service platform. There are two main
risks of privacy leakage: (1) attacks based on model parameters and (2) attacks based on model
queries. In the first case where the adversaries can access the model parameters and thereby obtain
the query outputs as well as all intermediate computations, the adversaries can use the model
parameters to conduct inference attacks to extract sensitive information about the training datasets
of the participants [53, 129]. For example, Fredrikson et al. [53] presented an inversion method
to extract private information during the reference phase. The experiment results showed that
this attack can reveal face information of the users. Melis et al. [123] investigated the privacy
leakage of the membership during the inference phase and showed that positions of the words in
a batch can be revealed from a deep learning model. In the second case where it is assumed that
the adversaries can only obtain the model query outputs (for example, the query outputs returned
by a machine learning-as-a-service API [175]), a privacy leakage is mainly caused by inference
attacks. For example, Shokri et al. [160] studied the privacy leakage during the inference phase by
investigating the inference membership attack against the model query results, where an inference
model was trained to distinguish between the training and non-training data samples.

4.2.4  Scenario 4: Where might a data privacy leakage occur? Weight update, gradient update, and
the final model. With FL, three types of important data need to be transmitted between the partic-
ipants and the aggregator: the local weight/gradient, an aggregated weight/gradient, and the final
model, all of which contain the necessary information that can be utilized to reveal sensitive in-
formation about the training datasets [53, 212]. In gradient/weight-update-based FL frameworks,
clients send the gradients/weights to the server; the server aggregates the received data and sends
them back to the clients for model updating [107, 115]. In deep network models, the gradients
are usually calculated by back-propagating the loss of the training datasets through the entire
network. Specifically, the gradient of a layer is calculated using the current layer’s data features
and the error from the upper layer. Similarly, the local model weight is calculated based on the
participant’s local dataset. Therefore, they (weight update, gradient update and the final model)
contain sensitive information of local data [133, 142, 167]. The final model in the FL is collabora-
tively trained by private datasets of multiple participants and encodes essential information about
these datasets [53].

Risk Assessment. In gradient-update-based FL frameworks [91, 210], as the model gradients
are derived from the participant’s private training dataset, the gradients may cause serious pri-
vacy leakage [129, 192]. An adversary (e.g., the participants or eavesdroppers) can conduct pri-
vacy attacks by observing, modifying, or eavesdropping gradient updates during the training
process to infer private information of the training datasets, such as class representatives [192],
membership [160], and training samples and labels [228]. For example, privacy attacks based on
the gradient update presented in References [223, 228] have been successfully used to extract
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training samples and labels. Specifically, in Reference [228], the private training samples and labels
are leaked by minimizing the loss between the attack and true gradients.

In weight-update-based FL frameworks [121, 138], the aggregated weight calculated by the
server is available to multiple participants during each training round. Therefore, a weight up-
date will leak the privacy of the training data of the participants to adversarial participants or
eavesdroppers [200]. Malicious adversaries can save the parameters of the current FL model and
conduct a property inference by exploiting the difference between the current FL model and the
previous FL model. Xu et al. [200] showed that the model weight can be trained to reveal sensi-
tive information regarding training datasets by controlling some participants during the training
phase.

As the final model encodes essential information on all the datasets of the participants. There-
fore, attacks based on the final model will cause a serious privacy leakage. Typically, there are two
types of privacy leakages related to the final released model: (1) a model-parameter-based attack
in which adversaries are assumed to be able to access the model parameters, and (2) a query-based
attack in which adversaries are assumed to be able to obtain the query results of the model. Both
types of model-based attacks were studied in Reference [129]. The experiment results showed that
the model-parameter-based attacks leak much more sensitive information than the query-based
attacks. In addition, Ateniese et al. [8] showed that an adversary can use the final model parameter
to infer the ethnicity or gender of a user. Fredrikson et al. [53] presented an inversion method to
extract sensitive information from trained models. The experiment results showed that this attack
can reveal the privacy of the users by effectively reconstructing images of their faces based on the
labels. Shokri et al. [160] investigated model-parameter-based inference membership attacks. In
this study, predictions obtained by the final model on training data samples and non-training data
samples were used to train an inference model.

4.2.5 Scenario 5: Why might a malicious attacker launch an attack? Inference attacks, including
inference of class representatives, memberships , properties of training data, and training samples and
labels. The purpose of a privacy attack is usually to infer sensitive information regarding training
datasets, such as membership and class representatives. The inference attacks can be divided into
four categories [47]:

e The inference of class representatives aims to generate representative samples, which are
not real data instances of training datasets but can be used to study sensitive information
about the training datasets [53, 75, 192].

e The inference of memberships aims to determine whether a data sample has been used for
model training [42, 114, 123, 129, 130, 139, 160].

e The inference of properties of the training data aims to infer the property information re-
garding the training datasets [8, 54, 123].

e The inference of inferring training samples and labels aims to reconstruct the original train-
ing data samples and the corresponding labels [153, 223, 228].

Risk Assessment. The inference of class representatives attempts to extract class representatives,
which are synthesized generic samples rather than the real data in the training datasets [192].
Fredrikson et al. [53] showed that many machine learning classifiers are vulnerable to privacy
leakage. For example, facial recognition models can be used to extract sensitive features as inputs
and generate face images from the model. If an adversary is one of the clients participating in the FL
training phase, then class representatives can be obtained using GANs. When all data samples are
similar, the extracted class representatives obtained by GANs will be similar to the training data.
For example, the representatives of the handwritten digit “9” generated by the GAN model tend to
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be similar to any image of the digit and the training samples. In a special facial recognition case
in which all images depict the same person, the reconstructed class representatives also tend to
be similar to face images of this person. Hitaj et al. [75] designed a class representatives inference
attack based on a GAN against the FL framework. The experiment results showed that this attack
can effectively generate representative samples of training datasets. Wang et al. [192] proposed to
extract data representatives by a GAN-based framework with a multi-task discriminator, which is
used to simultaneously discriminate client identity and category of data samples.

The inference of a membership aims to determine whether a data sample was included in the train-
ing dataset [103, 114]. For instance, it can be used to infer whether the records of a specific patient
have been used to train a classifier related to a certain disease. Shokri et al. [160] investigated the
inference membership attack against the privacy leakage of machine learning. An inference model
was trained to infer whether a data sample is in the training dataset. Truex et al. [175] extended
this membership attack presented in Reference [160] to a more general setting and showed that
membership inference attacks are data-driven and largely transferable. Melis et al. [123] investi-
gated the membership privacy leakage from two aspects: embedding layers and gradients. It was
shown that the non-zero gradients of the embedding layer of a deep learning model can reveal the
positions of the words in a training batch. This enables an adversary to conduct a membership in-
ference attack. Hayes et al. [73] presented an evaluation of membership inference attacks against
generative models to detect an overfitting and recognize training inputs. The evaluation results
showed that many models based on a deep convolutional GAN or a boundary equilibrium GAN
are susceptible to privacy leakage.

The inference of the properties of training data aims to infer the property information on the train-
ing datasets [128, 158, 192]. In particular, these properties might be irrelevant to the main training
task. For example, when the main task is to train a model for race or gender recognition, the
property inference attack may intend to infer whether people in the training images wear glasses
or infer race. Naseri et al. [128] evaluated a property inference attack proposed in Reference [158]
on a face dataset to infer the race of a target client. Melis et al. [123] investigated passive and ac-
tive property inference attacks to infer uncorrelated properties of the training data. In the passive
property inference attack setting, the adversary is assumed to have auxiliary data labeled with
the target property, and to be able to eavesdrop on the model updates, but unable to maliciously
modify the training process. The adversary first uses the global model parameters to iteratively
calculate positive gradient updates from the data with the target property and calculate negative
gradient updates from the data without the target property. The labeled gradient updates are then
used to train a binary classifier for the property inference attack. In the active property inference
attack setting in Reference [123], the adversary follows the FL protocol but uploads specific lo-
cal gradients to lead the global model to learn separable property without maliciously modifying
the training process. The goal is to guide the global model to learn separable representations of
the data with and without the target property. However, these property inference attacks have
an assumption in that there are auxiliary training datasets labeled with the target property. For
general cases, it is easy to obtain the auxiliary datasets. For example, the auxiliary data for a gen-
der inference can be any datasets containing images with males and females. For specific cases,
however, the auxiliary data may not be easily available, for example, the datasets used to infer the
authorship for training handwritten texts.

The inference of training samples and labels aims to generate the original training data samples
and the corresponding labels. Recent studies [194, 228] have shown that the training samples and
labels can be obtained from the publicly shared model gradients. Zhu et al. [228] designed an opti-
mization algorithm and successfully obtained the training inputs and labels within a few training
rounds. In this setting, a dummy dataset consisting of dummy samples and labels is first randomly
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generated. Then, dummy gradients are obtained through normal forward and backward computa-
tions based on the dummy dataset. The algorithm iteratively optimizes the dummy samples and
labels by minimizing the loss between the dummy gradients and real gradients. Finally, the attacker
can obtain the training samples and labels. This indicates that this type of attack can be used to
recover original images with pixelwise accuracy and tokenwise matching of original texts and is
much stronger than previous shallow leakages [75, 123]. As an advantage, this type of attack does
not require prior knowledge regarding the training datasets. As a disadvantage, defense strategies
(e.g., perturbation-based schemes) can be effectively applied to model gradients to prevent a gra-
dient leakage. Zhao et al. [223] improved the attack proposed in Reference [228] and proposed a
stronger attack by exploiting the relationship between the ground-truth labels and the signs of
the gradients. As an advantage, this method is suitable for any differentiable model trained with
cross-entropy loss on one-hot labels. In addition, Sannai [153] introduced an attack framework
based on deep neural network and showed that this approach can reconstruct training samples
from loss functions.

4.3 PPFL Methods

In this section, we discuss different privacy-preserving schemes adopted in FL. According to
the privacy-preserving techniques used in FL, the PPFL methods can be dividend into four cate-
gories: (1) encryption-based, (2) perturbation-based, (3) anonymization-based, and (4) hybrid PPFL
methods.

4.3.1  Encryption-based PPFL. Encryption-based PPFL methods are mainly using cryptographic
techniques for privacy preservation, which can be divided into three categories: (1) homomorphic
encryption-based, (2) secret sharing—based, and (3) secure multiparty computation-based PPFL
methods.

Homomorphic encryption-based PPFL methods. Homomorphic encryption allows a calculation
directly to be conducted on a ciphertext to generate an encrypted result such that the decrypted
result is the same as the result calculated on the corresponding plaintext. This scheme is an effective
way to protect data privacy when exchanging intermediate parameters during the FL training
process, and has been widely used in many FL methods [7, 26, 39, 69, 71, 137, 215, 221, 224]. For
example, Phong et al. [137] proposed using homomorphic encryption to protect gradient updates
during the FL training process. With this method, each participant calculates its local gradient
using its local dataset, and then encrypts the local gradient, and sends the encrypted gradient to the
server for aggregation. Chen et al. [26] developed an FL framework for wearable healthcare using
homomorphic encryption. With this framework, additively homomorphic encryption is used to
encrypt the local model of each participant, which is sent to the server for model aggregation. Each
participant then decrypts the encrypted model sent by the server and applies a local update. Hao
et al. [69] proposed an FL framework based on the fully homomorphic encryption [14]. However,
the homomorphic encryption utilized in these studies brings about a large communication and
computational overhead. Zhang et al. [215] presented a batch encryption-based FL framework to
reduce the computational costs. Specifically, a batch of gradients is encoded into a long integer
data type instead of a double data type. Zhang et al. [218] proposed a PPFL approach based on
homomorphic encryption by encrypting local gradients. As an advantage, this approach utilized
a distributed selective stochastic gradient descent procedure to reduce the computation costs.

Secret sharing—based PPFL methods. Secret sharing [156] is a cryptographic technique guarantee-
ing that a secret consisting of n shares can be reconstructed only when a sufficient number of shares
are combined. Secret sharing has been used in many FL frameworks to achieve privacy preserva-
tion [38, 59, 113, 126, 157, 169, 198, 224]. For example, Bonawitz et al. [13] proposed a practical and
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secure framework for the FL based on the secret sharing. As an advantage, this framework allows
the server to securely aggregate the model updates of the participants. Gao et al. [59] proposed
a heterogeneous FTL framework based on the secret sharing. With this method, secret sharing
was used for secure model updating. However, these methods are vulnerable to either a dishonest
server or malicious participants. Xu et al. [198] proposed a PPFL framework supporting verifica-
tion during the FL training process. With this method, the secret sharing [156] and key agreement
protocol [37, 92] are used to protect the privacy of the local gradients of the participants during
the model updating.

SMC-based PPFL methods. A secure multiparty computation is a cryptographic scheme that en-
ables distributed participants to collaboratively calculate an objective function without revealing
their own data. It has been widely used in many PPFL methods [13, 125, 127, 144, 157, 164, 199, 227].
Bonawitz et al. [13] introduced a federated deep learning approach that adopts an SMC-based se-
cure aggregation protocol to protect individual model updates. With this approach, the central
server cannot explicitly access any local updates but can still observe the exact aggregated results
during each round. As an advantage, it can retain the original accuracy and achieve a high pri-
vacy guarantee. However, the secure aggregation protocol used in this approach incurs significant
communication costs. A challenge of SMC-based FL methods is to improve the computational ef-
ficiency, because significant computational resources are required to complete a training round in
FL frameworks [147].

4.3.2  Perturbation-based PPFL methods. This type of method can be divided into four cat-
egories: (1) global differential privacy-based, (2) local differential privacy-based, (3) additive
perturbation-based, and (4) multiplicative perturbation-based PPFL methods.

Global differential privacy-based PPFL methods. The global differential privacy scheme has been
widely used in many FL methods [3, 31, 40, 63, 69, 70, 78, 94, 128, 149, 172, 193]. Geyer et al. [63]
presented an FL framework based on global differential privacy by incorporating the Gaussian
mechanism to protect client datasets. Specifically, during each training round, the server selects a
random number of participants to train the global model, and the participants update their local
models and send weights back to the server. The server then aggregates the global model by adding
random Gaussian noise. In this way, malicious participants cannot infer the information of other
participants from the shared global model. However, this framework is vulnerable to a malicious
server, because the server can obtain “clean” model updates from the clients. Compared with a
method [63] of adding noise to the aggregation update, Hao et al. [70] proposed adding noise to
the local gradients. McMahan et al. [122] proposed a user-level privacy-preserving language model
based on the differential privacy. In particular, the differential privacy technique is applied to the
federated averaging algorithm to protect user privacy through large step updates from user-level
data. As an advantage, this method can achieve a comparative predictive accuracy with privacy
guarantees. However, this method inevitably incurs a significant computational overhead because
of the tradeoff between data privacy and utility. In summary, as an advantage of the global differ-
ential privacy-based FL methods, they provide good accuracy while preserving data privacy. That
is, because this scheme is applied to an entire dataset allowing it to a good statistic distribution by
adding a limited amount of noise.

Local differential privacy-based PPFL methods. A local differential privacy scheme has been
widely used in many FL methods [10, 16, 109, 116, 128, 155, 168, 174, 191, 195, 225, 226]. Abadi
et al. [1] proposed using a local differential privacy scheme to train deep networks. The privacy
preservation in this method is achieved by two operations: (1) limiting the sensitivity of each data
sample by clipping the norm of its gradient, and (2) adding noise to the gradient of a batch. How-
ever, they did not apply this method to the FL systems. Zheng et al. [226] compared the FL and the
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local differential privacy in terms of the efficiency and privacy loss. However, they did not investi-
gate the performance of applying local differential privacy to the FL. Bhowmick et al. [10] proposed
an FL method based on a local differential privacy to defend against reconstruction attacks. In a
client-side computation, the local differential privacy is used to protect the privacy of each sample;
in addition, in the server-side computation, the local differential privacy was used to guarantee the
privacy preservation of the global model update. Lu et al. [116] proposed a differentially private
asynchronous FL for the mobile edge computing and used the local differential privacy for local
model updates. Cao et al. [16] developed an FL framework based on the local differential privacy
to achieve the privacy-preserving in the Internet-of-Things [141]. Truex et al. [174] proposed an
FL framework with local differential privacy to large-scale network training. Wang et al. [191]
introduced a local differential privacy FL framework for industrial-grade text mining and showed
that it can guarantee data privacy and model accuracy. In summary, compared with global differen-
tial privacy-based FL methods, the local differential privacy-based FL methods provide a stronger
privacy guarantee.

Additive perturbation-based PPFL methods. Additive perturbation-based FL methods aim to pre-
serve privacy by adding random noise to weight updates or gradient updates [19, 52, 63, 69, 70,
78, 110, 172, 193, 198]. In some methods [52, 78, 193], random noise was added to weight updates
to achieve privacy-preserving in the training process, whereas in other methods [69, 70, 172, 198],
random noise was added to the gradient updates. Compared with the above methods, Chamikara
et al. [19] introduced a data perturbation method for a dataset perturbation and showed that the
perturbation does not degrade the accuracy of the FL while preserving the privacy of the datasets.
Hu et al. [78] proposed a personalized FL. method by adding noise to the intermediate updates. Liu
et al. [110] proposed an adaptive PPFL method by injecting adaptive noise to data attributes. In
summary, as an advantage, this scheme is simple, can preserve the statistical properties, and does
not require knowledge of the original data distribution. As a disadvantage, the data perturbation
may degrade the data utility and may be vulnerable to a noise reduction [86].

Multiplicative perturbation-based PPFL methods. Instead of adding random noise to data, a multi-
plicative perturbation transforms the original data into another space [19, 20, 52, 57, 81, 145, 216].
Gade et al. [57] proposed a PPFL method by obfuscating the stochastic gradient by using mul-
tiplicative perturbations to protect the gradients from the curious server. In methods in Refer-
ences [20, 216], multiplicative weight update-based FL frameworks are sued to apply a local
weight update to prevent the leakage of the gradient information to curious servers. Multiplicative
perturbation-based FL methods [19, 81] were proposed for the Internet-of-Things to preserve the
data privacy. Jiang et al. [81] proposed a PPFL method for IoT objects by applying an indepen-
dent Gaussian random projection to obfuscate the data of each IoT object. Chamikara et al. [19]
applied a multiplicative perturbation mechanism to fog devices. However, this method is vulner-
able to an honest-but-curious server, because the perturbation mechanism is controlled by global
perturbation parameters generated by the central server. In summary, compared with additive
perturbation-based FL methods, multiplicative perturbation-based FL methods tend to be more
effective, because the reconstruction of the original data values is more difficult.

4.3.3  Anonymization-based PPFL. Although perturbation-based PPFL methods can provide
a strong guarantee for privacy preservation, they also incur a degradation of the data util-
ity [31, 63]. Therefore, anonymization-based FL methods have been proposed for privacy preser-
vation [32, 56, 165, 197, 222]. For example, Song et al. [165] investigated anonymization schemes
against a user-level privacy attack and proposed a GAN-based FL framework with a multi-task
discriminator. Choudhury et al. [32] proposed a syntactic method for PPFL. This method was pro-
posed to improve the data utility and the model performance while providing a defensible level of
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data privacy that adheres to the legal regulations (such as the EU General Data Protection Regula-
tion and the US Health Insurance Portability and Accountability Act). Specifically, this method con-
sists of two core components. The first core component is to apply the k-anonymity scheme [33]
on the original private data on the client side and utilize the anonymized data to collaboratively
train a global model. Because the anonymization operation is performed on data records composed
of relational and transactional parts, it can protect data privacy from attacks of malicious adver-
saries who may have knowledge regarding these two data parts. The second core component is
a global anonymization mapping process used for the prediction of the FL global model. The re-
sults showed that this method achieves better privacy preservation and model performance than
differential privacy-based FL methods.

4.3.4  Hybrid Privacy-preserving Federated Learning. Because cryptographic technique-based FL
methods tend to suffer from computation and communication overhead, and perturbation-based
FL methods tend to degrade the data utility, in recent years, hybrid PPFL methods have been pro-
posed to balance the tradeoff between data privacy and data utility [30, 59, 69, 70, 127, 173, 198,
199, 221, 224]. For example, the hybrid PPFL methods in References [59, 198, 224] are based on
homomorphic encryption and secret sharing. The PPFL methods in References [69, 70] are devel-
oped by integrating homomorphic encryption with differential privacy. The method proposed in
References [30] combines homomorphic encryption and secure multiparty computation. The FL
methods presented in References [127, 173, 199] are based on secure multiparty computation and
differential privacy. In Reference [173], SMC is used to guarantee that the proposed FL framework
will not reveal updates exchanged with a differential privacy protection, and thus private infor-
mation will not be leaked during the training process. As an advantage, this method can reduce
the amount of the injected noise while guaranteeing privacy and maintaining a pre-defined rate
of trust. In Reference [198], secure sharing and additive perturbation are deployed in a FL method
to protect the local gradients in the training process.

4.4 Summary of the Relationship between the Taxonomy and Latest Techniques

The proposed 5W-scenario-based taxonomy in Figure 1 emphasizes two aspects of the PPFL: (1)
potential privacy leakage risks under the five scenarios and (2) privacy-preserving schemes used
in the existing PPFL. In relation to the first aspect, in Section 4.2, we reviewed the existing liter-
ature related to privacy leakage in FL and discussed the potential privacy leakage risks from five
different perspectives: “who” (internal and external attackers), “what” (active and passive attacks),
“when” (training phase and inference phase), “where” (weight update, gradient update, and the
final model), and “why” (four types of inference attacks). From the five perspectives, we discussed
who might carry out what types of attacks by manipulating what parameters (where) and for what
purposes (why). We believe that this provides useful clues for researchers to design efficient PPFL
methods. In relation to the second aspect, in Section 4.3, we reviewed the existing PPFL methods.
According to the privacy-preserving schemes adopted in such FL methods, we divided them into
four categories: encryption-based, perturbation-based, anonymization-based, and hybrid schemes.
In each category, we reviewed the specific privacy-preserving techniques utilized in such PPFL
methods and discussed the advantages and disadvantages related to them. Finally, we summarize
the relationship between the taxonomy and some existing approaches in Table 3.

5 SUMMARY AND OPEN RESEARCH DIRECTIONS

In this article, we presented a comprehensive and systematic survey on the latest developments
of the PPFL based on our proposed 5W-scenario-based taxonomy. First, we provided an ex-
plicit overview of FL and generic privacy-preserving mechanisms. For FL, we provided a clear
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Table 3. A Summary of the Relationship between the Proposed Taxonomy and the Existing Methods

Privacy Encryption-based FL Perturbation-based FL Anonymization-  Hybrid-
attack based FL based FL
CA1 CA2 CA3 CB1 CB2 CB3 CB4
wHo RAD [61,196,228] (26,137, 218] [157, 169, 198] [144, 164,199] [63,70,193] [16,174,191] [78,110,228] [52,81,216]  [32,56,222]  [30,127,173]
RA2 [114,175,187] [215, 221, 224] [29, 111, 113] [13, 199] [3,10,40] [109, 155, 168] [45, 172, 193] [20, 52, 57] [56, 165,197]  [173, 199, 224]
whap RBU [75.160,192] [215, 218, 221] [29,113,157] [144,199,227] [63,70,193] [16,109,225] [69,78,110] [20,52,57]  [32,165,197]  [198, 199, 224]
RB2 [129, 165,196] [26, 111, 221] [157,169,224] [164,227]  [40,78,193] [116, 168, 174] [69,172,193] [20,81,216] [56,165,197]  [69, 127, 221]
whEN RC1 196,192,200 [215, 218, 221] [59,198,224] [13,127,199]  [3,70,78] [116,155,225] [69,110,193] [20,57,216] [56,197,222]  [30,173, 198]
RC2 [53,123,196] [7,39,111] [111,113,126] [144,164]  [80,123,128]  [128,195] [45, 194] [20, 52] [32, 222] [127,173, 224]
RD1 [121,138,139]  [26,71] [29,169]  [13,127,199] [3,63,193] [16, 168, 191] [52,78,193] [20,52,216]  [197,199] [127,199]
WHERE RD2 [61,129,194] [39,137,215]  [157, 198] [125,164]  [10,70,172] [109, 155, 174] [110, 172, 228]  [57, 81] [56, 165,222]  [30, 198, 224]
RD3 [8,53,160]  [111,137] [111,169,224] [125,144]  [3,80,123]  [123,128] [19, 69] [52, 81] [32, 56] [30, 69, 173]
RE1 [53,75,192]  [111,221] [59, 224] [164,227]  [63,123,172]  [116,195] [110,194] [57,81,216] [32,165,222] [127,173, 198]
wiy RE2 [103,129,160] [137,215] [126,157, 169] [125, 144,199]  [70,128] [123,128,168] [63,70,78]  [20,52] [56, 197] [30, 127, 173]
RE3 [53,123,192]  [7,111] [59, 224] [127,227] [123,128,172] [225,226] [110,193,228] [52,145]  [32,165,222] [127,173, 198]
RE4 [194,223,228]  [39,221] [20,198]  [13,144,164] [3,40,128] [10, 155, 174] [194, 198, 228] [19,57,81] [165, 197] [30, 69, 221]
CA1- Homomorphic encryption-based FL. CA2- Secret sharing-based FL CA3- Secure multiparty computation-based FL
CB1- Global differential privacy-based FL. CB2- Local differential privacy based FL. CB3- Additive perturbation based FL
CB4- Multiplicative perturbation-based FL. RA1- Internal attacker RA2- External attacker
RB1- Passive attack RB2- Active attack RC1- Training phase
RC2- Inference phase RD1- Weight update RD2- Gradient update
RD3- Final model RE1- Inferring class representative RE2- Inferring membership
RE3- Inferring properties RE4- Inferring input & label

categorization based on the data partitioning and communication architectures. For the generic
privacy-preserving mechanisms, we introduced three types of privacy-preserving techniques, two
privacy-preserving metrics, and a brief comparison with the related concepts. We then analyzed
potential privacy leakage risks in FL from five aspects based on the proposed 5W scenarios in-
cluding who (internal and external attackers), what (active and passive attacks), when (training
and inference phases), where (weight update, gradient update, and the final model), and why (four
types of inference attacks). In addition, we investigated and summarized the current PPFL methods
based on our well-organized four privacy-preserving schemes, including encryption-based PPFL,
perturbation-based PPFL, anonymization-based PPFL, and hybrid PPFL.

Despite the rapid development of the PPFL in recent years, this research field is still a challenge
and room remains for improving the existing frameworks and developing novel methods to en-
hance both data privacy and data utility. Some potential open research problems and directions
are listed below:

o A way to effectively apply the privacy-preserving mechanisms described in Section 3 to FL
frameworks for privacy preservation should be determined. The concept of FL provides a
basic framework for privacy-preserving model learning, which allows participants to collab-
oratively train a global model using their respective datasets. However, there is no privacy
guarantee in the basic framework [61, 123, 137]. To protect data privacy, privacy-preserving
mechanisms have been widely developed in a variety of FL frameworks (Section 4.3). How-
ever, the privacy-preserving mechanisms adopted in such FL frameworks tend to degrade
the accuracy or efficiency. Therefore, it is necessary to balance the tradeoff between data
utility and data privacy when introducing privacy-preserving mechanisms to the FL. The
metrics presented in Reference [181] may provide a good guidance for data utility and data
privacy.

e In the FL, the intermediate weights or gradients communicated between participants and
the aggregator may reveal sensitive information about the participants’ training datasets,
as shown in References [96, 137, 198, 212]. In general, there are two ways to protect such
data privacy. One is to protect the communication channel from eavesdropping by utilizing
encryption techniques (Section 3.1), such as homomorphic encryption, secret sharing, and
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secure multi-party computation. However, encryption-based FL tends to suffer from compu-
tation and communication overhead. Therefore, it is necessary to develop an efficient way
to balance the tradeoff between them. The other is to protect weight or gradient updates by
utilizing perturbation techniques (Section 3.2). As an advantage, such techniques can protect
the intermediate updates and achieve privacy preservation. However, because perturbation
techniques usually need to add noise to the weights or gradients, the adoption of a perturba-
tion will simultaneously degrade the model accuracy and cause computational overhead. It
is therefore necessary to find a way to provide a good balance between these two conflicting
performances.

e Studies [75, 160, 228] on inference attacks have shown that sensitive information can be
extracted from the final model or an inference API if the final model or the query results
are not protected properly. It is necessary to develop efficient solutions to defend the final
model against such attacks. Here, we come up with two possible directions: (1) utilizing
the encryption or perturbation techniques introduced in Section 3.1 and 3.2 to protect the
final model against external attackers and (2) using the splitting techniques described in
Section 2.3.3 to personalize the model for each participant by splitting the global model, for
instance, allowing the participants to privately hold some special layers for their individual
goals [48].

e Data memorization should be efficiently handled in the PPFL to prevent a privacy leakage.
This is mainly because neural network models might unintentionally memorize sensitive in-
formation of the training data [17]. In general, there are two ways to deal with this concern:
(1) anonymizing the training datasets or (2) anonymizing the training process. There have
been a few studies that have recently focused on this research topic [32, 56, 106, 165, 197, 222].
Concerning the anonymization of the training datasets, it is clear that all privacy leakage
risks originate from the sensitive information of the training datasets. Therefore, we believe
that a method for anonymizing the training datasets while retaining their utility is one fun-
damental direction for privacy preservation in PPFL. The anonymization techniques intro-
duced in Section 3.3 provide possible guides for researchers. For anonymization during the
training process, researchers [32, 222] have proposed some solutions. The key idea is how
to effectively anonymize the sensitive information of the participants during the training
process and simultaneously guarantee model accuracy.

e Privacy-preserving mechanisms may differ in terms of the effectiveness and computation
cost when applied in FL for privacy defense. It is necessary to study how to optimize the
deployment of defense mechanisms or measurements. The study in Reference [181] presents
diverse metrics for measuring the data utility and data privacy, and is a useful guide to
conduct a comprehensive investigation on this research topic. In addition, most research
studies have focused on PPFL frameworks with a central server. It is necessary to investigate
whether existing privacy attacks against these frameworks are still effective against the FL
frameworks without a central server.

e We believe it will be promising to develop PPFL frameworks based on hybrid privacy-
preserving techniques, for example, combining different encryption techniques or com-
bining encryption techniques with perturbation techniques. Because different privacy-
preserving techniques possess dominant advantages in distinct aspects, it is reasonable to
combine their advantages to develop effective PPFL frameworks [59, 70, 224]. For example,
anonymization techniques are usually simple and computationally efficient but tend to de-
grade the accuracy, whereas encryption techniques tend to be accurate but computationally
expensive. Thus, the correct way to develop PPFL might be to combine several types of tech-
niques or combine different techniques within the same category.
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