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a b s t r a c t 

Federated Learning is a machine learning scheme in which a shared prediction model can be collaboratively 
learned by a number of distributed nodes using their locally stored data. It can provide better data privacy be- 
cause training data are not transmitted to a central server. Federated learning is well suited for edge computing 
applications and can leverage the the computation power of edge servers and the data collected on widely dis- 
persed edge devices. To build such an edge federated learning system, we need to tackle a number of technical 
challenges. In this survey, we provide a new perspective on the applications, development tools, communication 
efficiency, security & privacy, migration and scheduling in edge federated learning. 
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. Introduction 

The proliferation of real time technologies such as VR, AR, and self-
riving cars has led researchers and industry executives to come up with
ew architecture for data processing. The traditional model of cloud
omputing is unsuitable for applications that demand low latency, so
s a result a new model of computation termed edge computing has
prung forth. Edge computing is primarily concerned with transmitting
ata among the devices at the edge, closer to where user applications are
ocated, rather than to a centralized server (see Fig. 1 ). Edge node (or
dge client, edge device) is usually the resource-constraint device that
nd user uses and it is geographically close to the nearest edge server,
ho has abundant computing resources and high bandwidth communi-

ating with end nodes. When the edge server requires more computing
ower, it will connect to the cloud server. The most important conse-
uences of this architecture are twofold: latency is dramatically reduced
s data does not need to travel as far, and bandwidth availability im-
roves significantly, as the user is no longer relying on sharing a single
raffic lane in order to transfer their data. Indeed, this new computing
aradigm offers great cost savings for companies who do not have the
esources to build dedicated data centers for their operations. Instead,
ngineers can build a reliable network of smaller and cheaper edge de-
ices. 

In addition, federated learning has been discussed a lot recently. It
s a collaborative machine learning framework allowing devices from
ifferent resources with different private datasets working together to
tudy and train a global model. Federated learning can not only col-
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aborate the computational resources from different devices, but also
reserve the privacy at the same time. 

Given the common features of both edge computing and federated
earning, edge computing is a naturally suitable environment to ap-
ly federated learning framework. Therefore, edge federated learning
s more and more appealing in both academic research and industry in
ecent days. Here, we first have a brief introduction to edge computing
nd federated learning respectively and discuss about their key advan-
ages. 

.1. Edge computing 

There are a set of key reasons why industry executives are transition-
ng from a traditional cloud-based model to edge computing platforms.
he two major factors that were already discussed beforehand are low

atency and high bandwidth [1] . However, the edge also provides for
reater security. For example, sending data to an edge device will give
ny potential attackers less time to launch an attack as compared to
he cloud simply because the latency is lower. Moreover, attacks like
DoS that would normally be debilitating in a cloud-based environ-
ent are rendered almost harmless in an edge computing environment

ecause the affected edge devices can be removed from the network
ithout hampering the overall functionality of the network as a whole.
f course, this also means that edge networks are much more reliable
s they do not have a single point of failure. As discussed briefly before-
and, edge networks are much more easily scalable because the devices
ave much smaller footprints. Indeed, a scale-out strategy of scalabil-
ty rather than a scale-up one offers companies a very attractive way of
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Fig. 1. Devices by distance to user. 
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etting good performance with low cost. Moreover, some of these edge
evices or edge data centers may not even need to be built from scratch
y any one company. Different stakeholders can partner up to share the
esources from the already existing IoT devices in the edge network. 

In order to deliver these benefits to end-users, engineers have re-
ied on a common set of key operating principles when building edge
omputing systems [2] : 

• Mobility: For applications like self-driving cars, the edge devices
have to accommodate a constantly moving end-user without sacri-
ficing latency or bandwidth. Some approaches solve this problem by
positioning edge devices on the roadside. 

• Proximity: In order to deliver low latency guarantees, the edge de-
vices must be positioned as close as possible to the end users. This
could mean performing computation directly at the edge device or
investing in a local edge computing data center that is close to the
end-user. 

• Coverage: For edge computing to become ubiquitous, network cov-
erage must be far-reaching. Thus, the exact distribution of nodes in
an edge computing framework is imperative to achieving an optimal
user experience. Of course, a dense distribution is preferred, but this
must be balanced with cost constraints. 

.2. Federated learning 

Federated learning is a method for training neural networks across
any devices. In this model of computation, a single global neural net-
ork is stored in a central server. The data used to train the neural
etwork is stored locally across multiple nodes and are usually hetero-
eneous. Here we assume we have several nodes 𝑛𝑜𝑑𝑒 1 , 𝑛𝑜𝑑𝑒 2 , ⋯ , 𝑛𝑜𝑑𝑒 𝑛 .
n the node side, 𝑛𝑜𝑑𝑒 𝑖 keeps the private dataset 𝜉𝑖 . If we assume the

oss function on the neural network is 𝑓 ( ⋅) , in one synchronization, 𝑛𝑜𝑑𝑒 𝑖 
omputes the updated weight based on the current weight at time 𝑡 𝑤 

𝑖 
𝑡 
,

tep size at time 𝑡 as 𝛾𝑡 , and its private dataset 𝜉𝑖 : 

 

𝑖 
𝑡 +1 = 𝑤 𝑡 − 𝛾𝑡 ⋅

𝜕𝑓 ( 𝑤 𝑡 , 𝜉𝑖 ) 
𝜕𝑤 

( 𝑖 = 1 , 2 , ⋯ , 𝑛 ) (1)

ote that this local update can run one or several iterations. On the
erver side, it receives the weights that are uploaded by all the nodes.
entral server uses an aggregation function 𝐴 ( ⋅) to aggregate all the up-

oaded weights and update the weights for the next round. The updated
eights at time 𝑡 + 1 are: 

 𝑡 +1 = 𝐴 ( 𝑤 

1 
𝑡 
, 𝑤 

2 
𝑡 
, ⋯ , 𝑤 

𝑛 
𝑡 
) (2)

n practice, we usually simply use an average function to aggregate the
ploaded weights and update the global model. The model is replicated
cross all the end devices as needed so predictions can be made locally.
ecause of the heterogeneity of federated learning, we do not require all
 nodes to participate in one synchronization. Only some of the nodes
ill be randomly selected to perform the computation. 

Note that federated learning is distinct from the traditional dis-
ributed computing scenario. The most profound difference lies in the
ssumptions made on the datasets. In distributed learning, the partitions
f the dataset are assumed to be i.i.d., meaning that they are generated
2 
rom the same memoryless stochastic process. However, no such as-
umption is made in the federated learning setting [3] . Instead, datasets
an be heterogeneous. For example, an ML model designed to recognize
riminals within a neighborhood may rely on camera footage collected
y a diverse group of users. Clearly, one cannot reasonably expect the
ootage collected between two users to be i.i.d. 

The promise of federated learning is appealing to many users. There
re a number of key advantages to take note of: 

• Training time is reduced. Multiple devices are used to calculate gra-
dients in parallel, which offers significant speedups. 

• Inference time is reduced. At the end of the day, each device has their
own local copy of the model, so predictions can be made extremely
quickly and without having to rely on slow queries to the cloud. 

• Privacy is preserved. Uploading sensitive information to the cloud
presents a major privacy risk for applications like healthcare devices.
Privacy breaches in these settings may literally be a matter of life and
death. As such, keeping data local helps preserve the privacy of end
users. 

• Collaborative learning is easier. Instead of having to collect one mas-
sive dataset to train a machine learning model, federated learning
allows for a ”crowdsourcing ” of sorts that can make the data col-
lection and labeling process much easier in terms of time and effort
spent. 

Because of the natural advantages of both edge computing and fed-
rated learning, and the fact that edge computing is a very suitable en-
ironment to deploy federated learning, the promising future of edge
ederated learning prompts us to present a survey designed to explore
he research problems that arise in this new area. The rest of this paper
ill detail these challenges, summarize how the state of the art solves

hem, as well as provide our own insights into the future of this field. In
his article, first, we will go into details regarding how different applica-
ions make use of edge federated learning frameworks. Second, we will
iscuss existing programming models for edge federated learning. Third,
e will discuss communication and computation efficiency. Fourth, we
ill discuss security and privacy. In the end, we will discuss resource
llocation and migration. 

. Applications 

Edge federated learning solves the data island problem by fully ex-
loring the huge potential of the data on terminal devices without in-
ringing on user’s privacy, and it greatly improves the efficiency of
odel learning in edge computing systems. Therefore, it can be widely
sed in many scenarios where privacy protection and resource utiliza-
ion are critical. In this section, we will discuss a few scenarios for edge
ederated learning, and some recent work applied in these scenarios. 

.1. Healthcare system 

The excellent performance of deep learning in complex pattern
ecognition tasks makes it more widely used in the medical industry.
or each medical institution, its data is separately stored and processed
n the edge node, but the model trained with a small dataset that is
ollected from an individual medical institution does not have a satis-
actory accuracy when it is applied to the unseen data that is somehow
ncorrelated with the training data. Therefore, a large amount of real
lectronic health records (EHR) is needed to train a powerful medical
odel. However, the demand for real dataset is hard to satisfy because

f the sensitivity and privacy of medical data. Edge federated learning
an help overcome this problem, allowing medical institutions to collab-
rate on training models without sharing patient data so that they can
eet the requirements of data privacy protection and the Health Insur-

nce Portability and Accountability Act (HIPAA). For example, Liu et al.
rained a chest X-ray image classification model using federated learn-
ng for COVID-19 [4] . Sheller et al. used edge federated learning to train
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n image semantic segmentation model for brain scans and the simula-
ion result shows that the performance of the proposed model is similar
o the model trained with shared data [5] . Their extended work applied
he final model selection mechanism in which each medical institution
elects the best locally validated model for global model aggregation to
chieve better performance for the medical image learning model [6] . 

In addition to medical institutions, the edge federated transfer learn-
ng method is applied to personal health measurement devices. Some
ersonal healthcare devices, such as blood pressure meter and activity
ecognition device, are utilized to observe health conditions and push
ealth alarms in time, which plays an important role in smart health
ystems [7] . For users, it is necessary to have a ready-made model at
he beginning and train a personalized model updated by their physi-
al conditions in real time. Chen et al. proposed an accurate and per-
onalized healthcare model FedHealth [8] . Moreover, FedPer [9] and
FedMe [6] can be used to collaboratively learn a model at the network
dge while capturing personalization. 

.2. Vehicular network 

The data generated by the device on vehicles such as location and ori-
ntation detected by the GPS, images captured by the on-board camera,
nd the pressure data from the oil pressure sensor, are valuable resources
or vehicle manufacturers to provide intelligent navigation services and
arly warnings. The on-board computer collects locally generated sens-
ng data, then uploads it to the Vehicle Edge Computing (VEC) system
o train the local learning model. Edge federated learning in VEC can
eet the needs of users for smart vehicle decision-making. For instance,
 clustering-based federated energy demand learning approach is imple-
ented by Saputra et al. in [10] for electric vehicle networks to make

nergy demand prediction in the considered areas. 
In addition, image classification is a typical task in vehicular net-

orks. The performance and efficiency of edge federated learning are
ighly impacted by the training data quality and the computational
ower of edge nodes, respectively. Ye et al. proposed a selective model
ggregation approach [11] , in which a model is selected if its training
mages are in high quality and the edge node has sufficient computa-
ion capability. In order to further improve the learning accuracy and
ncourage devices with high-quality data to join the model training pro-
ess, Kang et al. design an incentive mechanism [12] using the contract
heory. 

Moreover, autonomous vehicles are equipped with more sensors
han regular vehicles such as LiDAR and ultrasonic sensors to perceive
he surrounding environment without human interaction. Edge feder-
ted learning is a desirable solution in the VEC system to learn a privacy-
reserving machine learning model from non-IID vehicular data [13] . 

.3. Intelligent recommendation 

Intelligent recommendation is a useful function in smartphone or
esktop applications to predict user choices so that users can easily ac-
ess and use it. Compared with standard machine learning approaches,
dge federated learning is capable of effectively training flexible models
or recommendation tasks. Because edge nodes are located in a certain
rea and have similar tasks for efficiency and cost reasons, this kind of
imilarity among edge nodes can be used to train adaptive models by
dge federated learning. For instance, the researchers from Google Key-
oard (Gboard) team train models using edge federated learning on a
lobal scale for virtual keyboard search suggestion [14] and emoji pre-
iction [15] , and the evaluation results show that the models on each
dge node have a good performance because the models are adjusted to
ifferent language and culture styles in a specific area. In addition, Hart-
ann et al. show that the browser option suggestion model trained with

ederated learning can help users quickly find the website they need by
ntering fewer characters [16] . The work can be improved in edge fed-
rated learning systems to provide different users with relatively per-
3 
onalized models by exploring user similarities without violating user
rivacy. 

. Development tools 

There are many concerns that the programmer needs to take into
ccount when designing an edge federated learning system. Issues such
s different APIs, dataflow models, network configurations, and device
roperties have to be considered. In light of the complexity involved
n edge federated learning, it is important that the research community
pend time developing tools that can help programmers build edge fed-
rated learning systems more easily. In this section, we will be discussing
he following areas that could benefit from development tools: 

• Application-level support. This is concerned with providing easy to
use APIs for the developer. 

• Systems design Support. This is concerned with providing helpful
abstractions for systems level technicalities such as network config-
uration. 

.1. Application-level support 

First, let us discuss the available application-level support for edge
ederated learning systems. Ideally, any application-level support would
ome in the form of easy-to-use integrated development environments
r APIs that can help the average developer perform common edge fed-
rated learning tasks easily. The reader can think back to the many clas-
ical software engineering tools such as numpy for numerical processing
r IDLE for Python programming as examples of good application-level
upport tools. 

One work of note is the programming model proposed by Hong et al
17] . The authors provide a set of event handlers that the program-
er must implement and functions that individual applications can call
pon. This way, whenever a significant event occurs, such as when a
essage arrives from another device, the programmer can rest assured

hat the event handlers will do most of the work. For federated learning
n particular, some adjustments may need to be made. For example, fed-
rated learning systems usually require aggregation functions in order
o assemble all the local gradients. This would have to be provided in
he API. Event handlers would also have to be implemented to facilitate
ifferent stages of the learning process, such as when a round of learning
as finished. However, given the easily extensible nature of their frame-
ork, we believe that it would be fairly straightforward to implement

hese changes for federated learning systems. 
Another significant paper by Giang et al. [18] focuses on developing

 good abstraction that allows developers to reason about the complex-
ties of edge federated learning more easily. In particular, they propose
 methodology for federated learning systems using dataflow graphs.
ven though this idea was proposed for edge computing, it is possible
o generalize this kind of framework to edge federated learning systems.
heir dataflow program can handle three key issues: 1) heterogeneity,
) mobility, and 3) scalability. For example, to avoid vertical and hori-
ontal heterogeneity, the program contains specialized nodes developed
y domain experts that can only be wired together with specific nodes.
obility requirements can be fulfilled through code duplication. Scal-

bility requirements are met by eliminating the need for an internal
anagement system to coordinate communication between nodes. 

.2. Systems design support 

Next, let us discuss the available development tools for system level
esign. Ideally, we are looking for tools that can help developers accom-
lish systems-level tasks such as load balancing, resource management,
r migrations easily. Some of these features may be integrated into a
arger IDE designed for edge federated learning. For example, a tool
kin to MapReduce would be very helpful in the edge federated learn-
ng setting. 
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The primary work here is Bonawitz et al.’s work based on TensorFlow
19] . The major contribution of their work is offering a mature systems
evel framework that the developer can use to deploy their federated
earning applications. They deal with a variety of key issues: 1) device
vailability, 2) resource management, and 3) reliability. In a federated
earning setting, devices cannot be expected to always be available for a
iven round. The authors implement a ”pace steering ” mechanism that
llows the server to suggest reconnection times that will ensure a suffi-
ient number of devices are connected to ensure progress in the learning
ask. In order to handle the limited resources issues in end devices, the
uthors created their framework such that a learning job is only run on
he cellphone when it is idle, charging, and connected to WiFi. Besides,
o deal with the limited storage capabilities of cellphones, the authors
rovide programming utilities to help minimize the storage footprint
f the local data these devices must store in order to participate in the
ederated learning task. As for the reliability, the authors maintain a
oordinator to to deal with issues such as data crash, learning fail, etc. 

.3. Future directions 

In the future, we believe that the research community should focus
heir attention on three key areas: 1) containerization, 2) security frame-
orks, and 3) extending current edge computing programming models

o the edge federated learning setting. 
By containerization, we are referring to the management of all the

arious execution environments that devices in the edge federated learn-
ng setting will utilize. Since many of the devices in edge federated learn-
ng may be IoT devices, it is important that operating systems remain as
ightweight as possible. Several key challenges are present in this area.
or example, how will programmers manage all the containers running
n heterogeneous devices? How will these containers communicate with
he outside world without exposing themselves to any security vulner-
bilities? Encouraging progress has already been made in the industry.
or example, WeBank’s KubeFate 1 2 allows developers to run federated
earning tasks across multiple containers, with features like security and
rivacy already built into the framework. Other notable examples in-
lude TensorFlow Federated, 3 PySyft, 4 and PaddleFL. 5 While all these
pplications do address the containerization issue, they are not yet ma-
ure technologies. For example, many of these applications reply on Ku-
ernetes for container orchestration, which some users may take issue
ith because of the high overhead. 

Second, researchers should consider building security APIs that pro-
rammers can utilize in order to secure their own edge federated learn-
ng systems. Current theory on the subject covers ideas such as differ-
ntial privacy, homomorphic encryption, multi-party computation, and
ecure enclaves. Nevertheless, major challenges exist when it comes to
mplementing these security measures. For example, Kairouz et al. note
hat there is not yet a methodology for distributing federated learning
unctions across trusted execution environments [20] . 

Finally, as the reader may have noticed in the previous sections,
any of the previous work referenced do not pertain directly to edge

ederated learning. Instead, they refer to edge computing systems in gen-
ral. As such, it is imperative that researchers focus on extending these
ools to the edge federated learning setting. Edge federated learning is
nique in that machine learning tasks require massive computations as
ell as storage capabilities. For the model to perform well, gradients
ust be coordinated carefully as the sudden failure of a few devices or

he presence of malicious actors may cause the model to act unexpect-
dly. 
1 FATE: Federated AI Technology Enabler, https://github.com/FederatedAI/ 
ATE . 
2 KubeFATE: https://github.com/FederatedAI/KubeFATE . 
3 TensorFlow Federated: https://github.com/tensorflow/federated . 
4 PySyft: https://github.com/OpenMined/PySyft . 
5 PaddleFL: https://github.com/PaddlePaddle/PaddleFL . 
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. Communication and computation efficient edge federated 

earning 

Edge federated learning is a privacy-preserving machine learning
ramework where the data is distributed across many resource con-
trained edge devices. It shares the same training procedure as baseline
ederated learning [21] that is an edge server that distributes an initial
odel to each edge node who independently updates the model (local
odel) via local data, and the global model is updated by aggregating a

ubset of the local models. The server broadcasts this new global model
o all nodes to start a new round of local training. This training proce-
ure repeats until some criterion meets. 

.1. Scale of federation 

Similar to the conventional federated learning [22] , the edge feder-
ted learning can also be categorized into two types by the scale of fed-
ration: cross-silo and cross-device edge federated learning. Cross-silo
dge federated learning trains data from different organizations (e.g.
edical center or geo-distributed datacenter). On the other hand, cross-
evice federated learning trains data on many IoT devices. The major
ifference between them is the number of participating training nodes
nd the amount of training data stored on each node. In this section, we
iscuss the impact of the scale of federation and how it affects commu-
ication and computation cost on edge federated learning. 

.1.1. Cross-device edge federated learning 

In cross-device edge federated learning, the number of active train-
ng nodes is in the order of millions and each node has relatively small
mounts of data as well as computational power [23] . The nodes are
sually portable devices or sensors. A remarkable example here is im-
roving the query suggestion of Google Keyboard by [14] . The major
hallenges that cross-device edge federated learning faces are: 

• There are extremely high communication costs when edge servers
synchronize the training models and broadcast a new global model
to each node for next step training. 

• It is hard to efficiently manage a large number of nodes and deal
with possible issues such as the unexpected network connectivity
between node and server. 

Given the number of total nodes  , selection rate 𝜂, the total com-
unication cost for one round training can be formulated as 

 ⋅ 𝜏 ⋅ ⋅ 𝜂 ⋅ (3)

here 𝜏 indicates the number of global synchronizations that model
an converge and  is the raw size of the training model including all
eights and training metadata. For the sake of simplicity, we denote
 as the number of total trainable parameters 𝑃 𝑛 multiplies its pre-

ision such as  = 𝑃 𝑛 ⋅ bit (4, 8, 16, 32) . For example, as the winner
f ILSVRC-2012 competition, AlexNet [24] comes along with nearly 61
illion 32-bit real value parameters with an actual model size of 233MB.

n the original federated learning, model aggregation happens on every
lobal synchronization and it requires selected nodes passing their lo-
al models 𝑊 

𝑘 
𝑡 

where 𝑘 ∈ [ 𝑁] to the central server. This setting can be
urther relaxed to be only passing the local updates Δ𝑊 

𝑘 
𝑡 
= 𝑊 

𝑘 
𝑡 + 𝑒 − 𝑊 

𝑘 
𝑡 

here 𝑒 is the number of local epochs. The keys to reduce the commu-
ication cost in edge federated learning as shown in Eq. (3) are total
ommunication rounds 𝜏 and model size  . 

To reduce the communication cost in edge federated learning, one
an reduce the size of local update Δ𝑊 

𝑘 
𝑡 

by either vector quantization or
pecification. On the other hand, we can also find the optimal choice of
for minimizing the overall communication cost of the process. The for-
er has been widely studied in the past decade. However, determining

he optimal communication rounds 𝜏 seems tricky. This is due to: 

https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/KubeFATE
https://github.com/tensorflow/federated
https://github.com/OpenMined/PySyft
https://github.com/PaddlePaddle/PaddleFL
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• Increasing the number of training nodes can significantly put the
negative influence on performance of the model therefore it requires
more global synchronization rounds to meet certain criterion. 

• Training on highly decentralized and heterogeneous data makes the
contribution of each local model shard to the global mode to be
rather limited which prolong the training epochs. 

Although increasing the local training epochs may mitigate this is-
ue, it introduces extra computational workload and power consump-
ion on each node. Finding optimal communication iterations remains
n open problem. 

.1.2. Cross-silo edge federated learning 

In cross-silo edge federated learning, on the contrary, the number of
odes is relatively small, but it requires the nodes to have sufficient com-
utational resources for processing a huge amount of data on each edge
erver. For example, big online retailers would recommend items for
sers by training tens of million shopping data stored in geo-distributed
ata centers. In the above settings, the challenge is how edge federated
earning efficiently distributes computation to edge servers under the
onstraint of computation budgets and privacy models. In recent years,
any researchers tend to deploy large and powerful deep networks to re-

ource constrained devices because deeper and wider networks usually
chieve better performance than shallow networks [25] . It also relies on
owerful end devices. 

Given a certain level computation budget, network quantization and
runing can further expand the reach of edge federated learning. Quan-
izing network weights with a small number of bits can significantly
ccelerate network training and inference as well as reduce model size.
n [26] , researchers reduce float version VGG-19 [27] from ∼ 500 𝑀 to
32 𝑀 with ternary precision and no accuracy loss. Many network quan-

ization mainly focuses on optimization at a single model. The quantized
eights are only used during the forward and backward propagations
ut not during the parameter updates. It is very obvious that passing
he non-quantized updates in edge federated learning is undesired. A
ood starting point is from [28] , authors introduce an algorithm allow-
ng model updates to be quantized before being transmitted but they
o not use quantized training models. One open question here is that
an we train quantized models in edge federated learning while using
uantized model updates at the same time such that we can achieve both
ommunication and computation efficient edge federated learning train-
ng. Network pruning can be very beneficial, and it can also efficiently
educe the complexity of neural network models. A common approach
n network pruning is dropping the parameter with small enough mag-
itude. Similar to network quantization, the existing network pruning
lgorithms are also limited to the single non-distributed settings, and
eural networks are usually pruned step by step, that is, we train model
ntil convergence before the next step pruning. In this way, local net-
ork pruning increases computation consumption on local devices and
elays the training. Recently, federated pruning has drawn much re-
earch attention. The models are kept being pruned together with the
tandard FedAvg learning process. Federated pruning allows us to train
etworks in a computation efficient as well as communication efficient
anner because we only need to upload the non-zero parameters for

ynchronization. One potential drawback is that it is hard to find opti-
al pruning ratio. 

It is worth mentioning that all the efficient approaches in both cross-
ilo and cross-device edge federated learning could be corrupted due to
he system level heterogeneity and statistical level heterogeneity. Sys-
em heterogeneity refers to the different hardwares (CPU, GPU, mem-
ry), network configurations, and power supplies of nodes in edge feder-
ted learning. Different computation capabilities may cause the unfair-
ess results among local models and downgrade the fusion model. Dif-
erent network configurations may cause important local model shard
issing and increase training time. The statistical heterogeneity refers

o the highly non-i.i.d training data. Nodes frequently collect and pro-
5 
ess data in a non-i.i.d manner. This against a commonly used assump-
ion that all training data is drawn from an independent and identically
istributed data source. The presence of non-i.i.d data used in edge fed-
rated learning leads to local models divergence. The further network
uantization and pruning makes the divergence problem even worse. In
he following sections, we will introduce communication efficient and
omputation efficient techniques. 

.2. Communication efficient methods 

The optimization methods for federated learning are largely inher-
ting from the conventional distributed machine learning optimization.
he distributed first-order stochastic gradient descent (SGD) optimiza-
ion methods have been largely studied in literature [29–33] . Local-SGD,
s another approach to train the neural network in a distributed manner
ith less communication has been studied in [34] . They considered a
aster-worker topology and provided theoretical analysis for the con-

ergence of local-SGD. The fundamental difference between distributed
GD and local-SGD is the use of training data. More specifically, if every
ocal node uses training data that comes from the same data distribution,
he local-SGD is equivalent to its distributed version. However, if local
odes use arbitrarily heterogeneous training data, local-SGD and dis-
ributed SGD are entirely different. We cannot expect the model updates
or gradients) to be drawn from the same unknown distribution even
hen local epoch 𝑒 = 1 . Although we cannot directly use distributed
ersion techniques to address the communication bottleneck in edge
ederated learning, the vector quantization and sparsification are still
ain-stream optimization strategies for edge federated learning. In this

ection, we summarize some methods of communication efficient train-
ng in conventional distributed learning and discuss how they related to
dge federated learning. 

.2.1. Gradient qantization 

When using SGD or other first order gradient method as model op-
imizer, quantizing the gradients to its low precision value has been
idely adopted. Gradient quantization has been explored in the [35–
9] . In particular, [40] summarized the general gradient quantization
cheme 𝑄 ( 𝑔, s , 𝑙) as 

̂ 𝑡 = s ⋅ sgn ( 𝑔 𝑡 ) ⋅ 𝜅( 𝑔 𝑡 , 𝑙) (4)

here s is a shared scaling factor (possible choices include ‖𝑔 𝑡 ‖2 or
𝑔 𝑡 ‖∞), and sgn ( ⋅) returns the sign of gradient coordinate 𝑔 𝑡 . 𝜅( ⋅, ⋅) is
n independent random variable defined as follows. Let 0 ≤ 𝑘 ≤ 𝑙 be an
nteger such that |𝑔 𝑡 |∕ ‖𝑔 𝑡 ‖ ∈ [ 𝑝 ∕ 𝑙, ( 𝑝 + 1)∕ 𝑙] , then 

( 𝑔 𝑡 , 𝑙) ≜

{ 

𝑝 ∕ 𝑙, w.p 𝑝 − 

|𝑔 𝑡 |
s 

⋅ 𝑙 + 1 
( 𝑝 + 1)∕ 𝑙, otherwise 

(5)

 concrete explanation of the above formula is from [36] . TernGrad
ompresses gradients into ternary values {−1 , 0 , 1} with a stochastic
uantization function to ensure the unbiasedness. Terngrad sets the
uantization level 𝑙 = s , and chooses shared scaling factor among all
orkers such that s = max ( ‖𝑔 𝑡 ‖∞) for all 𝑚 ∈ [ 𝑁] . Other work such
s [35] , the authors adventurously applied 1-bit SGD on speech DNNs to
educe data-exchange bandwidth and they empirically showed its feasi-
ility on distributed environments. An error feedback scheme is intro-
uced during quantization, to compensate for the quantization error.
hou et al. [38] proposed the DoReFa-Net to train convolutional net-
orks with weights, and gradients all quantized into fixed-point num-
ers. 

FedPAQ [41] , to our best knowledge, maybe the first study that
ridges the gap between distributed gradient quantization and federated
earning. The idea of FedPAQ is quite straightforward: using quantized
odel updates during the FedAvg process. Applying gradient quantiza-

ion methods to federated model updation should be very careful. The
odel divergence is enlarged by training on highly distributed non-i.i.d
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ata. Especially, when the training scale increases, quantized model up-
ates introduce lots of quantization variances. One possible solution is
o use error compensation quantization for model updation mentioned
n [42] . The variance reduced SGD [43] and variance reduced quantized
GD [44] are also helpful. 

.2.2. Gradient sparsification 

Gradient sparsification is also a popular and efficient method. The
ntuition of sparse approaches is straightforward, that is, dropping the
ess beneficial coordinates of gradient vectors and then synchronizing on
S to ensure the unbiasedness. Therefore, reduction of communication
ost is adopted. The insight of gradient sparsification can attribute to: 

• DNNs usually over-parameterized [45] with a considerable number
of parameters that have numerical values close to zero, and therefore
resulting in spare sub-gradients. 

• Sparse SGD can be formulated as variants of delaying weight updates
such as asynchronous SGD [46] . 

To avoid the information loss when coordinate dropping occurs,
47] applied gradients accumulation for gradient value less than the pre-
efined updating threshold. Unfortunately, updating those out-of-data
stale) gradients cause convergence, slow down and model performance
egeneration. Early studies such as [48–51] used similar constant-like
r fixed ratio thresholds to perform gradient coordinates selection. It is
mpractical to use the above methods, because the threshold is hard to
hoose for particular DNNs and our experiments show the threshold-
ased methods even fail to converge in some cases. Recently, a series of
ybrid strategies via combining gradient sparsity and vector quantiza-
ion have been proposed. A heuristic algorithm proposed by [52] aimed
o automatically tune the compression rate and then quantize them for
pdates. With limited coding length of stochastic gradients, and con-
trained gradient variance budget, [53] achieved a high compression
atio on 𝑙 2 -regularized logistic regression by using gradient sparsifica-
ion technique. 

The gradient level sparsification training possibly leads the final
odel to be sparse. It will accelerate the model training on nodes later.
ne tightly related work to gradient sparsification is [54] . The method

o called Federated Drop aims to train the randomly selected sub-model.
hese sub-models are subsets of the global model and, as such, the com-
uted local updates have a natural interpretation as updates to the larger
lobal model. Sparsification is an easily applied method. It does not re-
uire any network topology changes or extra computation bandwidth.
owever, the gradient selection is challenging and non-trivial and yet

his is still an open question in edge federated learning. 

.3. Computational efficient methods 

Deep neural networks have made significant improvements in lots
f computer vision tasks such as image recognition and objective detec-
ion. This motivates interests to deploy the state-of-the-art deep models
o real world applications like mobile devices. For those applications,
t is typically assumed that training is performed on the server and test
s executed on mobile devices. However, in the cross-device edge fed-
rated learning scheme, both training and inference phases are located
n mobile devices. These models often need considerable storage and
omputational power, and can easily overburden the limited storage,
attery power, and computer capabilities of the model devices. 

.3.1. Network quantization 

To address the computational and storage issues, methods using
uantized weights or activations in models have been proposed. The
etwork has been accelerated by quantizing each full-precision weight
o a small number of bits. This can be further divided to two sub-
ategories, depending on whether approximating full-precision weights
ith the linear combination of multiple binary weight bases at each

teration [26,55–58] or the model loss information is used [59–61] .
6 
he former uses different weight quantization resolution such as bi-
ary weights [62] , which uses only one bit for each weight while still
chieving state-of-the-art classification results. Also [26,63] added scal-
ng to the ternarized weights, and DoReFa-Net [38] further extended
uantization to any quantization levels. In a weight quantized network,
 bits where 𝑚 ≥ 2 are used to represent each weight. Let  be a set
f 2 𝑘 + 1 quantized values, where 𝑘 = 2 𝑚 −1 + 1 . The linear quantiza-
ion scheme has  = {−1 , − 

𝑘 −1 
𝑘 
, ⋯ , 

𝑘 −1 
𝑘 
, 1} and logarithmic quantiza-

ion scheme has 𝑄 = {−1 , − 

1 
2 , ⋯ , − 

1 
2 𝑘 −1 , 0 , 

1 
2 𝑘 −1 , ⋯ , 1} . When 𝑚 = 2 , both

chemes reduce to  = {−1 , 0 , 1} . Both quantization schemes can be ap-
lied to any hidden layer in the model. Particularly, in order to constrain
 CNN to have binary weights, a series of binary filters 𝐵 1 , 𝐵 2 , ⋯ , 𝐵 𝑛 ∈
−1 , 1} 𝑐 𝑖𝑛 ×𝑤 ×ℎ ×𝑐 𝑜𝑢𝑡 is used to estimate the real-value weight filter 𝑊 ∈
 

𝑐 𝑖𝑛 ×𝑤 ×ℎ ×𝑐 𝑜𝑢𝑡 such that 𝑊 ≈ 𝛼1 𝐵 1 + 𝛼2 𝐵 2 + ⋯ 𝛼𝑛 𝐵 𝑛 which is a linear com-
ination of 𝑛 binary or tenary filters. Here 𝑐 𝑖𝑛 ×𝑤 × ℎ × 𝑐 𝑜𝑢𝑡 is the dimen-
ion of weights. The optimal estimation can be solved by minimizing the
ollowing optimization problem. 

in 𝐽 ( 𝛼, 𝐵 ) = ‖𝑊 − 𝛼𝐵 ‖2 , (6)

n addition, another approach known as loss-aware network quantiza-
ion minimizes the loss directly w.r.t the quantized weights and often
chieves better performance than approximation-based methods. The
xisting weight quantization methods above simply find the closest ap-
roximation of weight and ignore its effects to the model loss. However,
t uses full-precision weights during the training process and extra gra-
ient information, which is expensive [59] . 

In edge federated learning, if we could perform training with a quan-
ized model on each device, it can significantly reduce the computa-
ional burden and accelerate the training and inference. To our best
nowledge, there is no such work that can fully adapt to the edge feder-
ted learning environment. One close approach [28] tried to update the
lobal model by using quantized local modes. It reduces the communica-
ion cost, however the local computational cost increases because it uses
 full-precision model for local training and extra work on computing
eady-update quantized models. Most of the aforementioned network
uantization methods cannot be directly used in edge federated learn-
ng without modification. The challenge is we cannot ignore the model
ivergence in edge federated learning and inappropriate quantization
ntroduces much mode noises to the global model, which makes con-
ergence speed slow. 

.3.2. Network pruning 

Neural network pruning is an alternative way to reduce the com-
lexity of neural network models and accelerate the deep neural net-
ork on resource-limited edge nodes. Continuously dropping the small
agnitudes weights and finding an optimal substructure of the origi-
al network is the key mechanism of pruning methods. It can be well
xplained by lottery ticket hypothesis [64] . Magnitude-based pruning
ethods including [65–69] that train until convergence before the next
runing step is prohibited on edge nodes. The iterative pruning meth-
ds [70,71] is more attractive. The dynamic pruning allows the net-
ork to grow and shrink during the training. These existing pruning

echniques consider the centralized setting with full access to the train-
ng data, which is fundamentally different from edge federated learning
ettings. The pruning method for decentralized data training is under
iscussion. PrunEdge FL [72] proposed a two-stage distributed prun-
ng algorithm for federated learning. At beginning, a shared pruning
odel is sent to each node to train. Then PrunEdge FL performs dynamic
runing together with the standard FedAvg procedure. One drawback
f magnitude-based and adaptive pruning methods is that it is difficult
o control the model size for the update. The structure of the submodel
onstantly changes over the training. 
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Fig. 2. Federated learning with Byzantine attackers. 
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.4. Other efficient methods 

Straggler problem, where the nodes lag because of computational
esource heterogeneity recently has drawn much attention [41,73,74] .
ynchronously or asynchronously updating models over heterogeneous
etwork configurations is quite challenging. A tier-based federated
earning framework that updates local model parameters synchronously
ithin tiers and updates the global model asynchronously across tiers
re proposed by Chai et al. [73] . Another approach is called Het-
roFL [75] . By coordinatively training local models which are smaller
han a global model to produce a single global inference model, Het-
roFL is robust against the non-i.i.d statistical heterogeneity. 

Optimal sampling problem is another interesting problem. The num-
er of nodes in edge federated learning is in the order of millions and
ach node in the system has very limited contribution to the global
odel for each round. By sampling the important nodes, we can tremen-
ously save communication costs and accelerate the training process.
he Ribero and Vikalo [76] uses Ornstein-Uhlenbeck (OU) process, a
ontinuous stochastic process to adaptively decide the node-side model
pdation. Rizk et al. [77] uses a non-uniform sampling scheme, where
he nodes are sampled according to some predefined distribution. 

.5. Future directions 

Communication and computation are the key bottlenecks to con-
ider when developing methods for edge federated networks. Using tra-
itional methods such as gradient quantization and sparsification is less
eneficial as we discuss early. The current efficient method studies are
ased on the standard FedAvg process and its variants. It is necessary to
iscover more efficient algorithms other than FedAvg which are more
uitable for Federated learning schemes. There are some conditions that
ew algorithms should satisfy: 

• It can achieve the same convergence speed as FedAvg and at least
have the same performance as FedAvg. 

• It can deal with both systems heterogeneity and statistical hetero-
geneity challenges in edge federated learning. 

• It can be easily applied to any edge federated learning applications
(image recognition, NLP, etc.). 

Alternatively, the communication efficiency can be reduced through
ast model training (using less communication rounds) or important
ode sampling (using less nodes) based on Eq. (3) . 

Computation efficiency, on the other hand, is another bottleneck for
dge federated learning development. The core idea is to reduce the
orkload of local nodes by using lightweight models to reduce the us-
ge of computation resources and memory. One possible solution is we
ould use neural architecture search (NAS) to find the optimal model for
odes. Besides NAS, we can also use split learning [78] . Many machine
earning tasks have a heavy computation on the fully connected layers.

e can transfer these computation burdens to a powerful edge server.
he training data is processed on the local node therefore privacy is still
reserved. 

. Security and privacy 

Security and privacy problems are two major problems of imple-
enting federated learning in edge computing. Because of the natural
eterogeneous environment of federated learning and edge computing,
t is always hard to predict activities of other nodes in the system. For
xample, in the training process of edge federated learning, due to the
ncertainty of other nodes, some nodes may be malicious and attack the
raining process. In addition, the curious nodes and servers may find it
nteresting to learn our personal data and want to retrieve the private
ata from the update information we upload in each synchronization.
n this scenario, the security and privacy of our node may be harmed. In
ummary, the security and privacy problems are divided into two parts:
7 
ow to attack and how to defend. In this section, we will introduce the
urrent attack and defense algorithms in edge federated learning. 

.1. Security in edge federated learning 

Security issues arise in edge federated learning because of the het-
rogeneity of both edge computing and federated learning. On the one
and, edge nodes and edge servers are usually from different sources
hile at the same time, not all of them are trusted. On the other hand,

n federated learning, we usually assume that all nodes keep their own
rivate data and do not share them with other nodes or servers. Those
eatures improve the application generality of edge computing and keep
ore privacy for users’ private data, but they also increase the risk of

uffering malicious attacks. Much work has been done to address secu-
ity issues in edge federated learning. We will first introduce two major
ays to inject attacks followed by some existing algorithms to defend
ttacks. 

.1.1. Attacks 

In this section, we introduce two major security attacks in edge fed-
rated learning: Byzantine attack and poisoning attack. 

Byzantine attack 

Byzantine problems have been explored since the beginning of
he distributed system. This problem was first introduced by Lamport
t al. [79] in 1982 and talks about the fails of the whole distributed com-
uting systems if some nodes are attacked, compromised or failed. This
roblem was first introduced into the distributed machine learning area
y Blanchard et al. [80] in 2017. We briefly define this problem together
ith Figure 2 , which is the structure of the federated learning system.
s this figure shows, in the synchronous federated learning, Byzantine
roblems exist when some nodes are attacked or compromised and do
ot compute or upload weights correctly. In this scenario, the uploaded
eights 𝑤 

𝑖 
𝑡 
in (2) may not be the real 𝑤 

𝑖 
𝑡 
computed by (1) . Theoretically,

he generalized Byzantine model that is defined in [80,81] is: 

efinition 1 (Generalized Byzantine Model) . 

 

𝑖, ( 𝑟 ) 
𝑡 

= 

{ 

𝑤 

𝑖 
𝑡 

if 𝑖 th node is honest 
𝑎 𝑖 ≠ 𝑤 

𝑖 
𝑡 

otherwise 
(7) 

Here we denote 𝑤 

𝑖, ( 𝑟 ) 
𝑡 

as the actual gradient received by central server
rom 𝑛𝑜𝑑𝑒 𝑖 . In each iteration of the training phase, some nodes may be-
ome Byzantine nodes and upload an attack gradient 𝑎 𝑖 to the server.
s we can see in Fig. 2 , 𝑛𝑜𝑑𝑒 3 here is a Byzantine attacker. It uploads
n alternative 𝑤 

3 , ( 𝑟 ) 
𝑡 

rather than the actual 𝑤 

3 
𝑡 

to the server. The cen-
ral server, at the same time, does not know 𝑛𝑜𝑑𝑒 3 is compromised. It
ggregates all the uploaded gradients and sends the incorrect updated
eights back to all nodes. According to Theorem 1 in [82] , when the
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ggregation function is an average function, one Byzantine attacker can
ake over the aggregation result and lead the whole training process to
n incorrect phase. 

As we said before, federated learning is a special kind of distributed
achine learning, so the Byzantine problems remain the same or get

ven worse in edge federated learning. The main differences are listed
elow: 

• Edge computing environment is complex, where edge nodes and
servers are usually from different sources. This increases the pos-
sibility of suffering Byzantine attacks in edge federated learning. 

• In the federated learning, the data on each node is private and does
not share with each other, so the distribution of subdataset on each
node can be either non-i.i.d. or i.i.d., while the heterogeneity makes
it easier to attack and harder to detect. 

• In each iteration of the federated learning, only some of nodes are
selected to perform the computation, making the honest majority
assumption unreasonable. It is possible that more than half of nodes
are under attacks in each iteration. 

Mainly there are three different ways to inject Byzantine at-
acks [81] . 

• Gaussian attack. Simply generate Gaussian noise as attack gradients
and weights. 

• Omniscient Attack. Let the direction of gradients uploaded by the
Byzantine nodes equal to the direction of the sum of all honest nodes.

• Flip bit attack. Flip some bit of the uploaded gradients and weights.

Poisoning attack 

Poisoning attack is a kind of attack to injection attacks in the feder-
ted learning training process. In general, there are two types of poison-
ng attacks: data poisoning and model poisoning. 

5.1.1.0.1. Data Poisoning . Data poisoning is a naive way to at-
ack the federated learning system. It uses a simple idea: affecting the
raining process by changing the input data. One method to inject data
oisoning attacks is proposed by Tolpegin et al. [83] . Their method is
ased on a simple intuition by flipping the labels [84] of the input data.
he labels of the input data are randomly shuffled such that the in-
ut data mismatch their corresponding labels, which has a significantly
egative impact on the classes that are under attack. Besides, Shafahi
t al. [85] propose a clean-labels attack. They introduce an optimization-
ased method for crafting poisons without requiring the attackers to
ake any modifications on the input data label. By conducting this at-

ack, they can make the model fail at some specific task. Gu et al. choose
o mix the clean data with adversarial data [86] to attack the model
raining [87] . 

5.1.1.0.2. Model Poisoning . Unlike data poisoning, model poison-
ng does not manipulate the input data. It aims at manipulating the
ocal model to inject backdoors or malicious attacks into the global
odel. Bagdasaryan et al. first introduced backdoor attack into feder-

ted learning area [88] . They use a model replacement method to inject
his attack from one or multiple compromised nodes. Therefore, after
ggregation in the central server, the updated global model will be in-
ected and misclassify some predefined inference tasks. Bhagoji et al.
roposed another method to inject the targeted model poisoning and
tealthy model poisoning for standard federated learning [89] . They
hoose the attack gradients and weights by estimating the benign nodes
pdates and optimizing for both the training loss and adversarial objec-
ive. Their experiments show a high successful attack rate against some
yzantine-resilient algorithms such as Krum [80] and coordinate-wise
edian [90] . Fang et al. focus on attacking the model training with

our different Byzantine robust algorithms [91] . In order to attack those
lgorithms, they solve an optimization problem for each objective algo-

ithm. a

8 
.1.2. Defenses 

Although the methods to attack edge federated learning are different
or Byzantine attacks and poisoning attacks, the defense problems are
ctually from the same structure, that is, the central server must distin-
uish the information uploaded by honest nodes from the information
ploaded by attack nodes. In the related literature, all those defense
lgorithms are denoted as Byzantine-resilient algorithms. 

To defend Byzantine attacks in distributed machine learning, there
re basically three different directions. 

• Score-based method. This direction usually defines a metric to score
each uploaded weight and finally we can choose the one with the
highest score as the aggregation results. 

• Median-based method. Geometric median and its modifications are
used in this direction. 

• Distance-based method. This kind of method uses the distance infor-
mation in euclidean space to remove outliers. 

Blanchard et al. first proposed a score-based algorithm called
rum [80] to measure the scores for each uploaded gradient in the cen-

ral server by the L2 norm sum of its closest 𝑛 − 𝑓 − 2 gradients and
hose the gradient with the highest score as the aggregated gradient.
fter this, they also proposed another algorithm to resist asynchronous
yzantine attacks [92] . However, Krum has a natural shortcoming that
hey can only choose one gradient among all uploaded gradients, which
educes the convergence speed a lot. 

As for median-based methods, in fact, most of the following work
sually focused on using median-based aggregation methods rather than
redefined score-based methods. For example, Xie et al. proposed geo-
etric median, marginal median and median-around-median [81] , Yin

t al. proposed coordinate-wised median [90] , Su et al. proposed a
atch normalized median [93] , Alistarh et al. proposed a more com-
licated modification of median-based methods that is called Byzanti-
eSGD [94] . However, because the geometric median is a point that
inimizes the sum of distances to all points, in order to find the geo-
etric median, a recursive method is adopted and therefore the time

omplexity is really large. 
The last direction is distance-based method. Yin et al proposed

oordinate-wise trimmed mean [90] , Xia et al. proposed an alternative
ethod called FABA [82] . Instead of using geometric median to ag-

regate the uploaded gradients, those methods used euclidean distance
o remove outlier gradients. They adaptively remove outliers based on
he center current remaining gradients. They later provided another
yzantine-resilient algorithm for large scale distributed machine learn-

ng [95] . 
As for the federated learning area, several Byzantine robust algo-

ithms are proposed. The biggest difference between federated learn-
ng and classic distributed machine learning is that the subdataset on
ach node is non-i.i.d. distributed. Although all those algorithms in
lassic distributed machine learning methods still work in some scenar-
os, they really depend on how non-i.i.d. the datasets are. Ghosh et al.
rst talked about this problem in 2019 [96] , in which they combine K-
eans and trimmed mean together to achieve Byzantine-resilient. They
se K-means to gather the uploaded weights into several clusters and
se trimmed-means to remove the outliers. However, there is one prob-
em here that maybe all uploaded weights in the same cluster are from
yzantine nodes, and thus may affect the performance. Muoz-Gonzlez
t al. proposed an adaptive model averaging algorithm to resist Byzan-
ine attacks [97] . They divide all nodes into two sets: good clients set
nd bad clients’ set. Then in each iteration, they compare the uploaded
eights with the aggregation results from nodes in good clients’ set and
pdate both sets. Then they use the updated good clients’ sets to per-
orm the aggregation in the current iteration. Prakash et al. proposed
 method based on the direction similarity and length similarity [98] .
ang et al. proposed a decentralized method to achieve reliable feder-
ted learning for mobile networks [99] . 
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.1.3. Future directions 

Right now, all the proposed defense methods assume that either the
ata distribution is i.i.d. on all nodes or the majority of the nodes are
onest. However, these assumptions are not practical in edge federated
earning. First, edge nodes usually collect their data from their own
ources, so the data distribution is not necessarily i.i.d. Second, at syn-
hronization time, the central server randomly selects some of the edge
odes to perform the computation, among which the honest nodes may
ot be the majority even if more than half nodes are honest. In this set-
ing, honest majority is not a reasonable assumption through the whole
raining process. 

Therefore, a more practical algorithm without assuming i.i.d. data
istribution and honest majority is expected in the future to defend the
ecurity attacks to edge federated learning. At present, there are very
ew explorations in this direction. How to perfectly defend Byzantine
ttacks remains an open problem. 

.2. Privacy in edge federated learning 

Although federated learning is designed to protect each node’s pri-
ate training data without relying on training data transmission between
ervers, privacy breach can still be incurred when information (e.g.,
odel weights) is shared between servers. It is possible that some curi-

us nodes or servers can extract private information through the training
rocess. In this subsection, we will introduce various privacy attacks and
rivacy-preserving algorithms. 

.2.1. Attacks 

In edge federated learning, the information exchange between nodes
nd server basically contains weights that are computed by nodes using
ocal private data and the updated weights that are aggregated by the
entral server. Therefore, in order to attack the privacy of some nodes,
he process of the adversary is to retrieve the private dataset information
rom uploaded weights (curious server) or aggregated weights (curious
ode) [100] . Thus, this problem is equivalent to retrieving the data from
eight update. In general, there are two types of privacy attacks in fed-

rated learning area. 

• Membership inference attack [101] . This kind of attack is to deter-
mine whether a data record is contained in a node’s training dataset.
When the dataset is sensitive, this attack may leak a lot of useful in-
formation. 

• Data inference attack. This attack aims to retrieve the training data
or a class of training data from the information that node provides. 

There is some existing work for both attack types, and we list some
elow. 

Nasr et al. proposed a white-box inference attack in federated learn-
ng [102] and provided a comprehensive privacy analysis of deep learn-
ng models. Truex et al. proposed a feasible black-box membership
nference attack in federated learning [103] . Zhu et al. proposed a
ethod called deep leakage to retrieve training data from public shared

radients on both computer vision and natural language processing
asks [104] . Their method is based on minimizing the loss between the
ummy gradients computed by the attack training data and real gra-
ients computed by the true training data. Experiments show a very
arge leakage rate for four different datasets. This shows that a curious
erver can easily retrieve the training data by the gradients that node
ploads. Hitaj et al. proposed an information leakage method [105] us-
ng generative adversarial networks [106] in collaborative deep learn-
ng. Although this needs a separate neural network to retrieve the train-
ng data, it has an excellent performance in information leakage even
ith privacy-preserving algorithms. Wang et al. use a similar GAN-based
ethod called Multi-task GAN in federated learning [107] to precisely

ecover the private data from a specific client which causes user-level
rivacy leakage. 
9 
.2.2. Defenses 

The privacy-preserving techniques in edge federated learning are
oughly in two directions. 

• Algorithm-based solutions. The most widely used technique in
the machine learning area to protect privacy is differential pri-
vacy [108] . The common technique is to add noise while maintain-
ing an acceptable performance. 

• Encryption-based solutions. These kinds of solutions are in low-level
architecture to encrypt the communication information to protect
privacy such as secure multi-party computation [109] . 

Most of the existing algorithms are in these two directions, while
ome of them are the combinations of several techniques to protect
rivacy. There is several work talking about implementing differen-
ial privacy techniques in federated learning area. Wei et al. proposed
n algorithm called NbAFL, which adds artificial noise before aggrega-
ion [110] . Geyer et al. considered this problem in the client-side per-
pective and they use random sub-sampling and Gaussian mechanism to
istort the sum of all updates [111] . Bhowmick et al. designed a new op-
imal locally differentially private algorithm for all privacy levels [112] .
hazi et al. proposed a simple differential privacy-based algorithm for a

huffled model in federated learning to make user’s data indistinguish-
ble with random noise [113] . 

Additionally, in encryption level, Phong et al. used an additively ho-
omorphic encryption in cryptography area in collaborative deep learn-

ng and built a privacy-preserving enhanced system [114] . When com-
unicating with the central server, the information is well encrypted so

hat no information is leaked to the curious-but-honest server and ac-
uracy is kept intact. Elgabli et al. proposed A-FADMM [115] , which is
ased on analog transmissions and the alternating direction method of
ultipliers. This method can hide each local model’s update trajectory

rom any eavesdropper, which protects privacy of each node. 
Some hybrid methods are also proposed in this edge federated learn-

ng. Truex et al. proposed a hybrid method to implement differential
rivacy and secure multiparty computation at the same time [116] .
his method reduces the noise injection into communication with the
entral server to increase the performance and still maintain a high
rivacy level. Hao et al. integrated additively homomorphic encryp-
ion [114] with differential privacy [117] . Their method provides a
tronger protection to prevent privacy leakage in the scenario that mul-
iple nodes or central servers are colluded. They also proposed another
ethod by adding encryption-level and differential privacy protection

n federated learning [118] . This method supports large-scale federated
earning applications. 

.2.3. Future directions 

Much work has been done in addressing the privacy issues in ma-
hine learning or federated learning, in particular, how to solve infor-
ation leakage when transmitting gradients and weights between nodes

nd the central server. Little work has focused on privacy issues in edge
ederated learning. The privacy issue, however, may become more se-
ere in edge computing because edge nodes/servers may leak infor-
ation regarding data, usage, location to malicious users [119,120] .
ow to preserve privacy in edge federated learning by considering the

pecifics of edge computing is a new direction worth exploration. 

. Migration and scheduling 

Migration and scheduling are two major low-level supports in edge
omputing [121,122] . In this section, we will compare their differences
etween edge computing and edge federated learning. 

.1. Migration 

In edge federated learning, the migration problem arises when the
dge node moves between edge servers. Because we know that in edge
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omputing, edge nodes are always connected to the geographically near-
st edge server to get low latency and high bandwidth, it is possible
or the edge node to travel from one edge server to another while in
he process of federated learning training. In this scenario, the new con-
ected edge server does not have a copy of the federated learning model
nd thus a migration between edge servers must be implemented. From
ection 4 , we know that a mid-size model can be around hundreds of
egabyte level, so it takes time to migrate the model between edge

ervers, especially when we adopt split learning [123,124] to offload
ost of the computation on edge servers. Therefore, a collaborative and

fficient migration policy is necessary in edge federated learning. 
There is a lot of research about migration in edge comput-

ng [121,125–127] . However, in edge federated learning area, research
bout migration is still at an early stage. Although it is possible to let the
nder-layer infrastructure handle the migration process between differ-
nt edge server, it is too heavy to migrate the model in system level.
ecause the federated learning training has some extra features such as

arge model size, flexible node selection, we should specifically optimize
he migration process for edge federated learning itself. 

We believe the following strategies may help to further improve the
igration-based edge federated learning performance. 

• A naive way is simply to keep a copy in all the adjacent edge servers.
This method is fairly effective and achieves very low latency. How-
ever, this process has a huge communication and storage cost. 

• We can also split the network into several parts and broadcast part of
the model to other edge servers, this can reduce the communication
cost in the migration process and stay a low storage cost. 

• It is efficient to predict the movement path of the edge nodes using
a separate model and cache the model to the predicted edge servers
for a better migration experience. 

• If the migration cost is too high, we can update the scheduling policy
by abandoning the computation results from this node and reuse it
after finishing the migration process. 

.2. Scheduling 

Scheduling, or resource allocation is an important problem in edge
omputing. Due to the node and server heterogeneity, the data, com-
utation, memory, and network resources vary a lot among different
evices. In federated learning, a synchronous iteration requires all par-
icipating nodes finish their computation and upload computational re-
ults to the central server before the server continues to perform the
ggregation and model update. Therefore, the training speed is limited
y the node with slowest computational resources and network band-
idth. In order to get a better training speed, it is better to schedule the

omputational resource in an efficient way. 

.2.1. Current solutions 

There is much previous work about scheduling and resource alloca-
ion in edge federated learning area. In summary, most of the solutions
ollow the following four directions. 

• Participant selection. In federated learning, the central server ran-
domly selects some nodes to perform the computation. Therefore, it
helps efficiency to select the participated nodes in a smarter way. 

• Resource optimization. In edge computing, because of the hetero-
geneity of nodes, the computational and network resources in each
device are different. We can optimize the resource allocation by let-
ting nodes with more computational power compute more. 

• Asynchronous training. Most of the current edge federated research
focus on synchronous training, but asynchronous training can signif-
icantly improve the efficiency in a heterogeneous environment. 

• Incentive Mechanism. Some of the researchers focus on the incentive
compensation in federated learning because the node must consume
their computational resources for collaborative work. An efficient
10 
incentive mechanism can help invite more participants while maxi-
mizing the usage of the resources. 

We list some solutions based on these four directions below. 
Participant Selection 

The idea of participant selection is based on the mechanism of feder-
ted learning. In federated learning, some nodes are randomly selected
s participants to perform the computation using their private local data
or one iteration, among which some may have enough computational
esources and high network bandwidth, and some may have limited re-
ources. The one with the slowest computational speed and upload speed
ecides the total training time for this iteration. Therefore, it is very use-
ul to choose the participating nodes in a smarter way. Nishio et al. pro-
osed a novel federated learning protocol FedCS to mitigate this prob-
em [128] . The main part of FedCS is a client selection protocol. They
nitialize the whole framework by requesting the resource information
f all nodes. Then in order to select the clients, they solve an optimiza-
ion problem by the computational resource and previous training time
nformation. This method is efficient in client selection but may affect
he performance because of the non-i.i.d. distributed data. Yoshida et al.
ater proposed an enhanced framework called Hybrid-FL [129] . Similar
o their previous work, they also request the resource information of all
odes at first. However, they choose to perform a client and data selec-
ion at the same time instead of just selecting the clients to decrease the
nfluence of the data distribution. Then they upload the selected data
nd update the model. Yang et al. developed a formal framework to
nalyze different scheduling policies’ convergence performance [130] .
hrough their analysis, using proportional fair scheduling policy to se-

ect clients performs better than randomly scheduling and round robin.
Resource Optimization 

Most of the proposed methods for resource allocation transform this
roblem to a resource optimization problem, that is, given constraints
bout the edge node computation resources and network limit, the goal
s to find the most efficient way to implement the edge federated learn-
ng. For example, Dinh et al. proposed FEDL and solved an optimiza-
ion problem to minimize energy and time consumption [131] . Li et al.
roposed q-FedAvg optimization objective for fair resource allocation
n edge federated learning [132] . Zeng et al. proposed energy-efficient
trategies for bandwidth allocation and scheduling [133] . Neely et al.
roposed a scheduling control of heterogeneous network for resource
llocation [134] . Similar algorithms are also proposed in [135–137] .
part from optimization, Zou et al. considered about using game the-
ry for resource allocation [138] . They proposed an evolutionary game
pproach to dynamically schedule the computing resources and reach
n evolutionary equilibrium. Recently there are some work about using
einforcement learning for scheduling the resources. Nguyen et al. pro-
osed a deep reinforcement learning based method [139] . They use a
eural network to decide the scheduling policy and update the network
y the corresponding rewards. Zhan et al. also proposed a deep rein-
orcement learning based method [140] to get a near-optimal solution
or the optimization problem without knowledge about the networks. 

Asynchronous training 

Asynchronous training fits well for resource allocation problems. It
s because in asynchronous training, the central server does not have to
ait for all the participating nodes to finish their computation before
pdating the global model. In this scenario, nodes can take their time
o train on their private local data even if they lack computational re-
ources or suffer the network delay. Chen et al. proposed ASO-fed, an
synchronous online edge federated learning framework [141] . Central
erver will take streaming of model updates from different edge nodes
ecause of the node heterogeneity and update the model accordingly in
n exponential moving average way with non-i.i.d. and imbalanced set-
ing. Lu et al. combined differential privacy and asynchronous federated
earning together to reach both privacy guarantee and better resource
llocation [142] . Chen et al. used a temporally weighted aggregation
ethod in the setting of asynchronous federated learning in order to
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ake use of the previously trained local models [143] . This helps the
onvergence speed and accuracy performance. Chen et al. proposed a
ertical asynchronous federated learning method VAFL by using a per-
urbed local embedding [144] , which improves the data privacy and
ommunication efficiency. 

Incentive Mechanism 

Incentive mechanism addresses how to reward the participating edge
odes according to their computational resources and personal data so
hat they are willing to contribute their computational power for a col-
aborative federated training. A practical incentive mechanism must be
air for both participated nodes and edge servers. Kang et al. introduced
 contract theory based incentive design [12] . They use a contract model
o define the data quality of edge nodes and give more reward to data
wners who have high quality data. However, they only consider the
rice of data, but no price of computational resources. Feng et al. com-
ined rewards for providing data and computation resources in one pric-
ng model [145] . They use a Stackelberg game model to evaluate the
alue of edge nodes. Khan et al. also use a similar game model [146] . 

.2.2. Future directions 

We summarized three future directions for scheduling in edge fed-
rated learning. First, current algorithms for scheduling and resource
llocation always try to minimize the training time. However, in this
etting, the central server may not select nodes with limited computa-
ional resource or unstable network because of the long waiting time.
he data on those nodes will not be used in the model training, which
esults in a biased model training. To mitigate this problem, we may
roup the nodes with similar training time together and integrate their
eights before sending them to the server in batches. This way, all data

an be used for training and the training time can be reduced as well.
econd, in asynchronous training, most of the previous work focuses
n using numerical experiments to show the performance. However,
here is still a lack of theoretical study for asynchronous training. Math-
matical analysis and comparisons between asynchronous training and
ynchronous training are needed in edge federated learning. Third, the
ncentive mechanisms in edge federated learning seem to be a less stud-
ed topic. It is promising to explore how to incentivize the participation
f nodes with high-quality data and abundant computational resources.

. Conclusion 

In this article, we carefully investigate edge federated learning,
hich is a paradigm to implement federated learning on edge comput-

ng environments. The development of edge federated learning is still
t an early stage, and there is not much research in this area. We sum-
arize the research problems and methods respectively in applications,
evelopment tools, communication efficiency, security, privacy, migra-
ion and scheduling as well as providing some insights of the future
irections and open problems in edge federated learning. With the fast
dvancement of both edge computing and federated learning, more and
ore collaborative training methods for edge federated learning are de-

eloped for better user experience and privacy protection. We will need
ore efforts on solving those open problems in edge federated learning.
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