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A Survey on Federated Learning Systems:
Vision, Hype and Reality for Data
Privacy and Protection

Qinbin Li*, Zeyi Wen™, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li*, Xu Liu, and Bingsheng He

Abstract—As data privacy increasingly becomes a critical societal concern, federated learning has been a hot research topic in
enabling the collaborative training of machine learning models among different organizations under the privacy restrictions. As
researchers try to support more machine learning models with different privacy-preserving approaches, there is a requirement in
developing systems and infrastructures to ease the development of various federated learning algorithms. Similar to deep learning
systems such as PyTorch and TensorFlow that boost the development of deep learning, federated learning systems (FLSs) are
equivalently important, and face challenges from various aspects such as effectiveness, efficiency, and privacy. In this survey, we
conduct a comprehensive review on federated learning systems. To understand the key design system components and guide future
research, we introduce the definition of federated learning systems and analyze the system components. Moreover, we provide a
thorough categorization for federated learning systems according to six different aspects, including data distribution, machine learning
model, privacy mechanism, communication architecture, scale of federation and motivation of federation. The categorization can help
the design of federated learning systems as shown in our case studies. By systematically summarizing the existing federated learning
systems, we present the design factors, case studies, and future research opportunities.
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1 INTRODUCTION

ANY machine learning algorithms are data hungry, and
Min reality, data are dispersed over different organiza-
tions under the protection of privacy restrictions. Due to
these factors, federated learning (FL) [77], [119], [191] has
become a hot research topic in machine learning. For exam-
ple, data of different hospitals are isolated and become
“data islands”. Since each data island has limitations in size
and approximating real distributions, a single hospital may
not be able to train a high-quality model that has a good
predictive accuracy for a specific task. Ideally, hospitals can
benefit more if they can collaboratively train a machine
learning model on the union of their data. However, the
data cannot simply be shared among the hospitals due to
various policies and regulations. Such phenomena on “data
islands” are commonly seen in many areas such as finance,
government, and supply chains. Policies such as General
Data Protection Regulation (GDPR) [9] stipulate rules on
data sharing among different organizations. Thus, it is
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challenging to develop a federated learning system which
has a good predictive accuracy while obeying policies and
regulations to protect privacy.

Many efforts have recently been devoted to implementing
federated learning algorithms to support effective machine
learning models. Specifically, researchers try to support more
machine learning models with different privacy-preserving
approaches, including deep neural networks (NNs) [22], [110],
[119], [145], [196], gradient boosted decision trees (GBDTs) [36],
[95], [200], logistics regression [34], [128] and support vector
machines (SVMs) [156]. For instance, Nikolaenko et al. [128]
and Chen et al. [34] propose approaches to conduct FL based
on linear regression. Since GBDTs have become very success-
ful in recent years [32], [184], the corresponding Federated
Learning Systems (FLSs) have also been proposed by Zhao
et al. [200], Cheng et al. [36], Li et al. [95]. Moreover, there are
many FLSs supporting the training of NNs. Google proposes a
scalable production system which enables tens of millions of
devices to train a deep neural network [22].

As there are common methods and building blocks (e.g.,
privacy mechanisms such as differential privacy) for building
FL algorithms, it makes sense to develop systems and infra-
structures to ease the development of various FL algorithms.
Systems and infrastructures allow algorithm developers to
reuse the common building blocks, and avoid building algo-
rithms every time from scratch. Similar to deep learning sys-
tems such as PyTorch [135], [136] and TensorFlow [6] that
boost the development of deep learning algorithms, FLSs are
equivalently important for the success of FL. However, build-
ing a successful FLS is challenging, which needs to consider
multiple aspects such as effectiveness, efficiency, privacy, and
autonomy.
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In this paper, we take a survey on the existing FLSs from
a system view. First, we show the definition of FLSs, and
compare it with conventional federated systems. Second,
we analyze the system components of FLSs, including the
parties, the manager, and the computation-communication
framework. Third, we categorize FLSs based on six different
aspects: data distribution, machine learning model, privacy
mechanism, communication architecture, scale of federa-
tion, and motivation of federation. These aspects can direct
the design of an FLS as common building blocks and system
abstractions. Fourth, based on these aspects, we systemati-
cally summarize the existing studies, which can be used to
direct the design of FLSs. Last, to make FL more practical
and powerful, we present future research directions to
work on. We believe that systems and infrastructures are
essential for the success of FL. More work has to be carried
out to address the system research issues in effectiveness,
efficiency, privacy, and autonomy.

1.1 Related Surveys

There have been several surveys on FL. A seminal survey
written by Yang et al . [191] introduces the basics and con-
cepts in FL, and further proposes a comprehensive secure
FL framework. The paper mainly target at a relatively small
number of parties which are typically enterprise data own-
ers. Li et al . [101] summarize challenges and future direc-
tions of FL in massive networks of mobile and edge devices.
Recently, Kairouz et al . [77] have a comprehensive descrip-
tion about the characteristics and challenges on FL from dif-
ferent research topics. However, they mainly focus on
cross-device FL, where the participants are a very large
number of mobile or IoT devices. More recently, another
survey [10] summarizes the platforms, protocols and appli-
cations of federated learning. Some surveys only focus on
an aspect of federated learning. For example, Lim et al
. [105] conduct a survey of FL specific to mobile edge com-
puting, while [116] focuses on the threats to federated
learning.

1.2 Our Contribution

To the best of our knowledge, there lacks a survey on
reviewing existing systems and infrastructure of FLSs and
on boosting the attention of creating systems for FL (Similar
to prosperous system research in deep learning). In compar-
ison with the previous surveys, the main contributions of
this paper are as follows. (1) Our survey is the first one to
provide a comprehensive analysis on FL from a system’s
point of view, including system components, taxonomy,
summary, design, and vision. (2) We provide a comprehen-
sive taxonomy against FLSs on six different aspects, includ-
ing data distribution, machine learning model, privacy
mechanism, communication architecture, scale of federa-
tion, and motivation of federation, which can be used as
common building blocks and system abstractions of FLSs.
(3) We summarize existing typical and state-of-the-art stud-
ies according to their domains, which is convenient for
researchers and developers to refer to. (4) We present the
design factors for a successful FLS and comprehensively
review solutions for each scenario. (5) We propose
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interesting research directions and challenges for future
generations of FLSs.

The rest of the paper is organized as follows. In Section 2,
we introduce the concept and the system components of
FLSs. In Section 3, we propose six aspects to classify FLSs.
In Section 4, we summary existing studies and systems on
FL. We then present the design factors and solutions for an
FLS in Section 5. Last, we propose possible future directions
on FL in Section 6 and conclude our paper in Section 7.

2 AN OVERVIEW OF FEDERATED
LEARNING SYSTEMS

2.1 Background

As data breach becomes a major concern, more and more
governments establish regulations to protect users’ data,
such as GDPR in European Union [170], PDPA in Singa-
pore [37], and CCPA [1] in the US. The cost of breaching
these policies is pretty high for companies. In a breach of
600,000 drivers” personal information in 2016, Uber had to
pay $148 million to settle the investigation [3]. SingHealth
was fined $750,000 by the Singapore government for a
breach of PDPA [5]. Google was fined $57 million for a
breach of GDPR [4], which is the largest penalty as of March
18, 2020 under the European Union privacy law.

Under the above circumstances, federated learning, a col-
laborative learning without exchanging users’ original data,
has drawn increasingly attention nowadays. While machine
learning, especially deep learning, has attracted many atten-
tions again recently, the combination of federation and
machine learning is emerging as a new and hot research
topic.

2.2 Definition

FL enables multiple parties jointly train a machine learning
model without exchanging the local data. It covers the tech-
niques from multiple research areas such as distributed sys-
tem, machine learning, and privacy. Inspired by the
definition of FL given by other studies [77], [191], here we
give a definition of FLSs.

In a federated learning system, multiple parties collabo-
ratively train machine learning models without exchanging
their raw data. The output of the system is a machine learn-
ing model for each party (which can be same or different).
A practical federated learning system has the following con-
straint: given an evaluation metric such as test accuracy, the
performance of the model learned by federated learning
should be better than the model learned by local training
with the same model architecture.

2.3 System Components

There are three major components in an FLS: parties (e.g.,
clients), the manager (e.g., server), and the communication-
computation framework to train the machine learning
model.

2.3.1 Parties

In FLSs, the parties are the data owners and the beneficiaries
of FL. They can be organizations or mobile devices, named
cross-silo or cross-device settings [77], respectively. We
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consider the following properties of the parties that affect
the design of FLSs.

First, what is the hardware capacity of the parties? The
hardware capacity includes the computation power and
storage. If the parties are mobile phones, the capacity is
weak and the parties cannot perform much computation
and train a large model. For example, Wang et al. [177] con-
sider a resource constrained setting in FL. They design an
objective to include the resource budget and proposed an
algorithm to determine the rounds of local updates.

Second, what is the scale and stability of the parties? For
organizations, the scale is relative small compared with the
mobile devices. Also, the stability of the cross-silo setting is
better than the cross-device setting. Thus, in the cross-silo
setting, we can expect that every party can continuously
conduct computation and communication tasks in the entire
federated process, which is a common setting in many stud-
ies [36], [95], [156]. If the parties are mobile devices, the sys-
tem has to handle possible issues such as connection
lost [22]. Moreover, since the number of devices can be very
large (e.g., millions), it is unpractical to assume all the devi-
ces to participate every round in FL. The widely used set-
ting is to choose a fraction of devices to perform
computation in each round [22], [119].

Last, what are the data distributions among the parties?
Usually, no matter cross-device or cross-silo setting, the
non-1ID (identically and independently distributed) data
distribution is considered a practical and challenging set-
ting in federated learning [77], which is evaluated in the
experiments of recent work [95], [103], [174], [196]. Such
non-1ID data distribution may be more obvious among the
organizations. For example, a bank and an insurance com-
pany can conduct FL to improve their predictions (e.g.,
whether a person can repay the loan and whether the per-
son will buy the insurance products), while even the fea-
tures can vary a lot in these organizations. Techniques in
transfer learning [134], meta-learning [52], and multi-task
learning [144] may be useful to combine the knowledge of
various kinds of parties.

2.3.2 Manager

In the cross-device setting, the manager is usually a power-
ful central server. It conducts the training of the global
machine learning model and manages the communication
between the parties and the server. The stability and reli-
ability of the server are quite important. Once the server
fails to provide the accurate computation results, the FLS
may produce a bad model. To address these potential
issues, blockchain [164] may be a possible technique to offer
a decentralized solution in order to increase the system reli-
ability. For example, Kim et al. [85] leverage the blockchain
in lieu of the central server in their system, where the block-
chain enables exchanging the devices’ updates and provid-
ing rewards to them.

In the cross-silo setting, since the organizations are
expected to have powerful machines, the manager can also
be one of the organizations who dominates the FL process.
This is particularly used in the vertical FL [191], which we
will introduce in Section 3.1 in detail. In a vertical FL setting
by Liu et al. [110], the features of data are vertically
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Fig. 1. Federated learning frameworks.

partitioned across the parties and only one party has the
labels. The party that owns the labels is naturally consid-
ered as the FL manager.

One challenge can be that it is hard to find a trusted
server or party as the manager, especially in the cross-silo
setting. Then, a fully-decentralized setting can be a good
choice, where the parties communicate with each other
directly and almost equally contribute to the global
machine learning model training. These parties jointly set
a FL task and deploy the FLS. Li et al. [95] propose a feder-
ated gradient boosting decision trees framework, where
each party trains decision trees sequentially and the final
model is the combination of all trees. It is challenging to
design a fully-decentralized FLS with reasonable commu-
nication overhead.

2.3.3 Communication-Computation Framework

In FLSs, the computation happens on the parties and the
manager, while the communication happens between the
parties and the manager. Usually, the aim of the computa-
tion is for the model training and the aim of the communica-
tion is for exchanging the model parameters.

A basic and widely used framework is Federated Aver-
aging (FedAvg) [119] proposed in 2016, as shown in Fig. 1a.
In each iteration, the server first sends the current global
model to the selected parties. Then, the selected parties
update the global model with their local data. Next, the
updated models are sent back to the server. Last, the server
averages all the received local models to get a new global
model. Fed Avg repeats the above process until reaching the
specified number of iterations. The global model of the
server is the final output.

While FedAvg is a centralized FL framework, SimFL,
proposed by Li et al. [101], represents a decentralized FL
framework. In SimFL, no trusted server is needed. In each
iteration, the parties first update the gradients of their local
data. Then, the gradients are sent to a selected party. Next,
the selected party use its local data and the gradients to
update the model. Last, the model is sent to all the other
parties. To ensure fairness and utilize the data from differ-
ent parties, every party is selected for updating the model
for about the same number of rounds. SimFL repeats a spec-
ified number of iterations and outputs the final model.

3 TAXoNOMY

Considering the common system abstractions and building
blocks for different FLSs, we classify FLSs by six aspects:
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Fig. 2. Taxonomy of federated learning systems.

data partitioning, machine learning model, privacy mecha-
nism, communication architecture, scale of federation, and
motivation of federation. These aspects include common
factors (e.g., data partitioning, communication architecture)
in previous FLSs [89], [153] and unique consideration (e.g.,
machine learning model and privacy mechanism) for FLSs.
Furthermore, these aspects can be used to guide the design
of FLSs. Fig. 2 shows the summary of the taxonomy of FLSs.

In Table 1 of [77], they consider different characteristics
to distinguish distributed learning, cross-device federated
learning, and cross-silo federated learning, including set-
ting, data distribution, communication, etc. Our taxonomy
is used to distinguish different federated learning systems
from a deployment view, and aspects like machine learn-
ing models and motivation of federation are not consid-
ered in [77].

3.1 Data Partitioning

Based on how data are distributed over the sample and fea-
ture spaces, FLSs can be typically categorized in horizontal,
vertical, and hybrid FLSs [191].

In horizontal FL, the datasets of different parties have the
same feature space but little intersection on the sample
space. This is a natural data partitioning especially for the
cross-device setting, where different users try to improve
their model performance on the same task using FL. Also,
the majority of FL studies adopt horizontal partitioning.
Since the local data are in the same feature space, the parties
can train the local models using their local data with the
same model architecture. The global model can simply be
updated by averaging all the local models. A basic and pop-
ular framework of horizontal federated learning is FedAvg,
as shown in Fig. 1. Wake-word recognition [90], such as
"Hey Siri’ and ‘OK Google’, is a typical application of hori-
zontal partition because each user speaks the same sentence
with a different voice.

In vertical FL, the datasets of different parties have the
same or similar sample space but differ in the feature space.
For the vertical FLS, it usually adopts entity alignment tech-
niques [39], [190] to collect the overlapped samples of the
parties. Then the overlapped data are used to train the
machine learning model using encryption methods. Chen

et al. [36] propose a lossless vertical FLS to enable parties to
collaboratively train gradient boosting decision trees. They
use privacy-preserving entity alignment to find common
users among two parties, whose gradients are used to
jointly train the decision trees. Cooperation among different
companies usually can be treated as a situation of vertical
partition.

In many other applications, while existing FLSs mostly
focus on one kind of partition, the partition of data among
the parties may be a hybrid of horizontal partition and verti-
cal partition. Let us take cancer diagnosis system as an
example. A group of hospitals wants to build an FLS for
cancer diagnosis but each hospital has different patients as
well as different kinds of medical examination results.
Transfer learning [134] is a possible solution for such scenar-
ios. Liu et al. [110] propose a secure federated transfer learn-
ing system which can learn a representation among the
features of parties using common instances.

3.2 Machine Learning Models

Since FL is used to solve machine learning problems, the
parties usually want to train a state-of-the-art machine
learning model on a specified task. There have been many
efforts in developing new models or reinventing current
models to the federated setting. Here, we consider the
widely-used models nowadays. The most popular machine
learning model now is neural network (NN), which
achieves state-of-the-art results in many tasks such as image
classification and word prediction [88], [163]. There are
many federated learning studies based on stochastic gradi-
ent descent [22], [119], [174], which can be used to train
NNs.

Another widely used model is decision tree, which is
highly efficient to train and easy to interpret compared with
NNs. A tree-based FLS is designed for the federated train-
ing of single or multiple decision trees (e.g., gradient boost-
ing decision trees (GBDTs) and random forests). GBDTs are
especially popular recently and it has a very good perfor-
mance in many classification and regression tasks. Li et al.
[95] and Cheng et al. [36] propose FLSs for GBDTs on hori-
zontally and vertically partitioned data, respectively.

Authorized licensed use limited to: VinUni. Downloaded on June 26,2023 at 06:42:56 UTC from IEEE Xplore. Restrictions apply.



LI ETAL.: SURVEY ON FEDERATED LEARNING SYSTEMS: VISION, HYPE AND REALITY FOR DATA PRIVACY AND PROTECTION 3351
TABLE 1
Comparison Among Existing Published Studies
FL main data model privacy communication remark
Studies area partitioning | implementation | mechanism architecture
FedAvg [119] NN
FedSVRG [86] LM
FedProx [100] LM, NN
SCAFFOLD [82] LM, NN
FedNova [175] NN
Per-FedAvg [49] horizontal NN
pFedMe [43] LM, NN SGD-based
TIAPGD, AL2SGD+ [63] LM centralized
IFCA [57] LM, NN ~
Agnostic FL [122] LM, NN
FedRobust [142] NN
FedDF [106] NN
FedBCD [111] - ]gff; c;iv; N vettical [ | |
PNEM [196] Algorithms horizontal NN
FedMA [174] NN-specialized
SplitNN [174] vertical
Tree-based FL [200] |~~~ = DP .
. - decentralized
SimFL[9] | | | hosizontal 4 — — — — _ _ _ hashing
FedXGB [113] DT DT-specialized
FedForest [112]
SecureBoost [36] vertical
Ridge Regression FL [128] horizontal CM
PPRR [34] LM-specialized
Linear Regression FL [149] vertical LM P
Logistic Regression FL [66]
Federated MTL [156] o multi-task learning
Federated Meta-Learning (31 | [~~~ ~~|——— 71~~~ ° - —centralized ta-learni
Personalized FedAvg [74] NN meta-learmng
LFRL_[IO7T |~~~ “~"“~“"‘T1"~""~"~"""™"74~"~“"""~"""°7~"“""™""™"74"~"“"">"™7>"7™""*° reinforcement learning
FBO [41] LM ~ Bayesian optimization
Structure Updates (877 | [~~~ [~~~ ~~~"[ "~~~
Multi-Objective FL [208] efficienc
On-Device ML [72] P
Sparse Ternary Compression [151] NN P
DPASGD [118] [~~~ "~~~ "~ "1 """ "7 1 777 decentralized
Client-Level DPFL[56] | |~ ~"~~~"797-~"~"~=~=°=°
FL-LSTM [120] DP .
Cocal DP FL [18] LM, NN D s
Secure Aggregation FL [21] Practicalit NN CM guarantees
Hybrid FL [168] Enhaﬂceme}rlw | horizontal- LM, DT, NN ¢m,pp |
Backdoor FL [14, 162, 173]
Adversarial Lens [17] NN
Distributed Backdoor [187] robustness and attacks
Image Reconstruction [54] A ;
RSA[921 [~~~ "~~~ |1~~~ 77 LM
Model Poison [50] LM, NN
q-FedAvg [102] |~~~ |~~~ 7 LM, NN T~~~ [ 7c<;nt;al;ze;1 - fairness
BlockFL [85] LM incentives
Reputation FL [79] ;
FedCS [130]
DRL-MEC [179] NN d .
Resource-Constrained MEC [177] LM, NN edge computing
FedGKT [67] NN
FedCF [12] Applications |~~~ W™ collaborative filter
FedMF [27] matrix factorization
FedRecSys [165] | |~~~ 7 LM, NN cM T recommender system
FL Keyboard [65] NN natural language processing
Fraud detection [204] NN credit card transaction
horizontal ~ centralized
FedML [68] &vertical LM, NN &decentralized
FedEval [28] NN centralized general purpose benchmarks
OAREF [70] NN CM,DP centralized
Edge AlBench [64] ~ ~
PerfEval [129] Benchmarks |~~~ [ [~~~ 7
FedRelD [209] horizontal NN centralized tareeted benchmarks
semi-supervised benchmark [199] ~ g
non-IID benchmark [109] ~
LEAF[23] |~~~ ~ "~ "1~~~ """ 7°7 7~ ~ -~ centralized datasets
Street Dataset [115] ~ )

LM denotes Linear Models. DM denotes Decision Trees. NN denotes Neural Networks. CM denotes Cryptographic Methods. DP denotes Differential Privacy.
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Besides NNs and trees, linear models (e.g., linear regres-
sion, logistic regression, SVM) are classic and easy-to-use
models. There are some well developed systems for linear
regression and logistic regression [66], [128]. These linear
models are easy to learn compared with other complex
models (e.g., NNs).

While a single machine learning model may be weak,
ensemble methods [137] such as stacking and voting can be
applied in the federated setting. Each party trains a local
model and sends it to the server, which aggregates all the
models as an ensemble. The ensemble can directly be used
for prediction by max voting or be used to train a meta-
model by stacking. A benefit of federated ensemble learning
is that each party can train heterogeneous models as there is
no averaging of model parameters. As shown in previous
studies [98], [196], federated ensemble learning can also
achieve a good accuracy in a single communication round.

Currently, many FL frameworks [86], [100], [119], [177]
are proposed based on stochastic gradient descent, which is
a typical optimization algorithm for many models including
neural networks and logistic regression. However, to
increase the effectiveness of FL, we may have to exploit the
model architecture [174]. Since the research of FL is still at
an early stage, there is still a gap for FLSs to better support
the state-of-the-art models.

3.3 Privacy Mechanisms

Although the local data are not exposed in FL, the
exchanged model parameters may still leak sensitive infor-
mation about the data. There have been many attacks
against machine learning models [53], [121], [125], [154],
such as model inversion attack [53] and membership infer-
ence attack [154], which can potentially infer the raw data
by accessing to the model. Moreover, there are many pri-
vacy mechanisms such as differential privacy [45] and
k-anonymity [47], which provide different privacy guaran-
tees. The characteristics of existing privacy mechanisms are
summarized in the survey [171]. Here we introduce two
major approaches that are adopted in the current FLSs for
data protection: cryptographic methods and differential
privacy.

Cryptographic methods such as homomorphic encryp-
tion [13], [26], [66], [108], [143], and secure multi-party com-
putation (SMC) [20], [21], [30], [152] are widely used in
privacy-preserving machine learning algorithms. Basically,
the parties have to encrypt their messages before sending,
operate on the encrypted messages, and decrypt the
encrypted output to get the final result. Applying the above
methods, the user privacy of FLSs can usually be well pro-
tected [81], [83], [131], [194]. For example, SMC [59] guaran-
tees that all the parties cannot learn anything except the
output, which can be used to securely aggregate the trans-
ferred gradients. However, SMC does not provide privacy
guarantees for the final model, which is still vulnerable to
the inference attacks and model inversion attacks [53], [154].
Also, due to the additional encryption and decryption oper-
ations, such systems suffer from the extremely high compu-
tation overhead.

Differential privacy [45], [46] guarantees that one single
record does not influence much on the output of a function.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 4, APRIL 2023

Many studies adopt differential privacy [7], [29], [96], [104],
[167], [203] for data privacy protection to ensure the parties
cannot know whether an individual record participates in
the learning or not. By injecting random noises to the data
or model parameters [7], [96], [158], [186], differential pri-
vacy provides statistical privacy guarantees for individual
records and protection against the inference attack on the
model. Due to the noises in the learning process, such sys-
tems tend to produce less accurate models.

Note that the above methods are independent of each
other, and an FLS can adopt multiple methods to enhance
the privacy guarantees [60], [78], [189]. There are also other
approaches to protect the user privacy. An interesting hard-
ware-based approach is to use trusted execution environ-
ment (TEE) such as Intel SGX processors [132], [146], which
can guarantee that the code and data loaded inside are pro-
tected. Such environment can be used inside the central
server to increase its credibility.

Related to privacy level, the threat models also vary in
FLSs [116]. The attacks can come from any stage of the pro-
cess of FL, including inputs, the learning process, and the
learnt model.

e Inputs. The malicious parties can conduct data poi-
soning attacks [11], [33], [91] on FL. For example, the
parties can modify the labels of training samples
with a specific class, so that the final model performs
badly on this class.

e Learning process. During the learning process, the
parties can perform model poisoning attacks [14],
[187] to upload designed model parameters. Like
data poisoning attacks, the global model can have a
very low accuracy due to the poisoned local updat-
ing. Besides model poisoning attacks, the Byzantine
fault [19], [25], [161] is also a common issue in dis-
tributed learning, where the parties may behave
arbitrarily badly and upload random updates.

o  The learnt model. If the learnt model is published, the
inference attacks [53], [121], [125], [154] can be con-
ducted on it. The server can infer sensitive informa-
tion about the training data from the exchanged
model parameters. For example, membership infer-
ence attacks [125], [154] can infer whether a specific
data record is used in the training. Note that the
inference attacks may also be conducted in the learn-
ing process by the FL manager, who has access to
the local updates of the parties.

3.4 Communication Architecture

There are two major ways of communication in FLSs: cen-
tralized design and decentralized design. In the centralized
design, the data flow is often asymmetric, which means the
manager aggregates the information (e.g., local models)
from parties and sends back training results [22]. The
parameter updates on the global model are always done in
this manager. The communication between the manager
and the local parties can be synchronous [119] or asynchro-
nous [159], [188]. In a decentralized design, the communica-
tions are performed among the parties [95], [200] and every
party is able to update the global parameters directly.
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Google Keyboard [65] is a case of centralized architec-
ture. The server collects local model updates from users’
devices and trains a global model, which is sent back to the
users for inference, as shown in Fig. 1a. The scalability and
stability are two important factors in the system design of
the centralized FL.

While the centralized design is widely used in existing
studies, the decentralized design is preferred at some
aspects since concentrating information on one server may
bring potential risks or unfairness. However, the design of
the decentralized communication architecture is challeng-
ing, which should take fairness and communication over-
head into consideration. There are currently three
different decentralized designs: P2P [95], [200], graph
[118] or blockchain [176], [202]. In a P2P design, the parties
are equally privileged and treated during federated learn-
ing. An example is SimFL [95], where each party trains a
tree sequentially and sends the tree to all the other parties.
The communication architecture can also be modeled as a
graph with the additional constrains such as latency and
computation time. Marfoq et al. [118] propose an algorithm
to find a throughput-optimal topology design. Recently,
blockchain [205] is a popular decentralized platform for
consideration. It can be used to store the information of
parties in federated learning and ensure the transparency
of federated learning [176].

3.5 Scale of Federation

The FLSs can be categorized into two typical types by the
scale of federation: cross-silo FLSs and cross-device FLSs
[77]. The differences between them lie on the number of par-
ties and the amount of data stored in each party.

In cross-silo FLS, the parties are organizations or data
centers. There are usually a relatively small number of par-
ties and each of them has a relatively large amount of data
as well as computational power. For example, Amazon
wants to recommend items for users by training the shop-
ping data collected from hundreds of data centers around
the world. Each data center possesses a huge amount of
data as well as sufficient computational resources. Another
example is that federated learning can be used among medi-
cal institutions. Different hospitals can use federated learn-
ing to train a CNN for chest radiography classification
while keeping their chest X-ray images locally [78]. With
federated learning, the accuracy of the model can be signifi-
cantly improved. One challenge that such FLS faces is how
to efficiently distribute computation to data centers under
the constraint of privacy models [206].

In cross-device FLS, on the contrary, the number of par-
ties is relatively large and each party has a relatively small
amount of data as well as computational power. The parties
are usually mobile devices. Google Keyboard [192] is an
example of cross-device FLSs. The query suggestions of
Google Keyboard can be improved with the help of FL. Due
to the energy consumption concern, the devices cannot be
asked to conduct complex training tasks. Under this occa-
sion, the system should be powerful enough to manage a
large number of parties and deal with possible issues such
as the unstable connection between the device and the
server.
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3.6 Motivation of Federation

In real-world applications of FL, individual parties need the
motivation to get involved in the FLS. The motivation can
be regulations or incentives. FL inside a company or an
organization is usually motivated by regulations (e.g., FL
across different departments of a company). For example,
the department which has the transaction records of users
can help another department to predict user credit by feder-
ated learning. In many cases, parties cannot be forced to
provide their data by regulations. However, parties that
choose to participate in federated learning can benefit from
it, e.g., higher model accuracy. For example, hospitals can
conduct federated learning to train a machine learning
model for chest radiography classification [78] or COVID-19
detection [139]. Then, the hospitals can get a good model
which has a higher accuracy than human experts and the
model trained locally without federation. Another example
is Google Keyboard [192]. While users have the choice to
prevent Google Keyboard from utilizing their data, those
who agree to upload input data may enjoy a higher accu-
racy of word prediction. Users may be willing to participate
in federated learning for their convenience.

A challenging problem is how to design a fair incentive
mechanism, such that the party that contributes more can
also benefit more from federated learning. There have been
some successful cases for incentive designs in block-
chain [48], [210]. The parties inside the system can be collab-
orators as well as competitors. Other incentive designs like
[79], [80] are proposed to attract participants with high-
quality data for FL. We expect game theory models [76],
[124], [150] and their equilibrium designs should be revis-
ited under the FLSs. Even in the case of Google Keyboard,
the users need to be motivated to participate this collabora-
tive learning process.

4 SUMMARY OF EXISTING STUDIES

In this section,' we summarize and compare the existing
studies on FLSs according to the aspects considered in
Section 3.

4.1 Methodology

To discover the existing studies on FL, we search keyword
“Federated Learning” in Google Scholar. Here we only con-
sider the published studies in the computer science
community.

Since the scale of federation and the motivation of federa-
tion are problem dependent, we do not compare the existing
studies by these two aspects. For ease of presentation, we
use “NN”, “DT” and “LM” to denote neural networks, deci-
sion trees and linear models, respectively. Moreover, we
use “CM” and “DP” to denote cryptographic methods and
differential privacy, respectively. Note that the algorithms
(e.g., federated stochastic gradient descent) in some studies
can be used to learn many machine learning models (e.g.,

1. Last updated on January 19, 2022 We will periodically update this
section to include the state-of-the-art and valuable FL studies. Please
check out our latest version at this URL: https://arxiv.org/abs/
1907.09693. Also, if you have any reference that you want to add into
this survey, kindly drop Dr. Bingsheng He an email (hebs@comp.nus.
edu.sg).
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logistic regression and neural networks). Thus, in the
“model implementation” column, we present the models
implemented in the experiments of corresponding papers.
Moreover, in the “main area” column, we indicate the major
area that the papers study on.

4.2 Individual Studies

We summarize existing popular and state-of-the-art
research work, as shown in Table 1. From Table 1, we have
the following four key findings.

First, most of the existing studies consider a horizontal
data partitioning. We conjecture a part of the reason is that
the experimental studies and benchmarks in horizontal data
partitioning are relatively ready than vertical data partition-
ing. However, vertical FL is also common in real world,
especially between different organizations. Vertical FL can
enable more collaboration between diverse parties. Thus,
more efforts should be paid to vertical FL to fill the gap.

Second, most studies consider exchanging the raw model
parameters without any privacy guarantees. This may not
be right if more powerful attacks on machine learning mod-
els are discovered in the future. Currently, the mainstream
methods to provide privacy guarantees are differential pri-
vacy and cryptographic methods (e.g., secure multi-party
computation and homomorphic encryption). Differential
privacy may influence the final model quality a lot. More-
over, the cryptographic methods bring much computation
and communication overhead and may be the bottleneck of
FLSs. We look forward to a cheap way with reasonable pri-
vacy guarantees to satisfy the regulations.

Third, the centralized design is the mainstream of current
implementations. A trusted server is needed in their set-
tings. However, it may be hard to find a trusted server espe-
cially in the cross-silo setting. One naive approach to
remove the central server is that the parties share the model
parameters with all the other parties and each party also
maintains the same global model locally. This method bring
more communication and computation cost compared with
the centralized setting. More studies should be done for
practical FL with the decentralized architecture.

Last, the main research directions (also the main chal-
lenge) of FL are to improve the effectiveness, efficiency, and
privacy, which are also three important metrics to evaluate
an FLS. Meanwhile, there are many other research topics on
FL such as fairness and incentive mechanisms. Since FL is
related to many research areas, we believe that FL will
attract more researchers and we can see more interesting
studies in the near future.

Due to the page limit, we present representative and
popular studies to cover comprehensive topics in the fol-
lowing sections. We select the paper accordingly to the Goo-
gle Scholar citations as well as a balance on the state-of-the-
art. For the full description of all studies in Table 1, please
refer to Section 3 of the supplementary material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2021.3124599.

4.2.1 Effectiveness Improvement

While some algorithms are based on SGD, the other algo-
rithms are specially designed for one or several kinds of
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model architectures. Thus, we classify them into SGD-based
algorithms and model specialized algorithms accordingly.

SGD-Based. FedAvg [119], as introduced in Section 2.3.3
and Fig. 1a, is now a typical and practical FL framework
based on SGD. In FedAvg, each party conducts multiple
training rounds with SGD on its local model. Then, the
weights of the global model are updated as the mean of
weights of the local models. The global model is sent back
to the parties to finish a global iteration. By averaging the
weights, the local parties can take multiple steps of gradient
descent on their local models, so that the number of commu-
nication rounds can be reduced compared with FedSGD.

A key challenge in federated learning is the heterogene-
ity of local data (i.e., non-IID data) [97], which can degrade
the performance of federated learning a lot [82], [100], [103].
Since the local models are updated towards their local
optima, which are far from each other due to non-IID data,
the averaged global model may also far from the global
optima. To address the challenge, Li et al . [100] propose
FedProx. Since too many local updates may lead the aver-
aged model far from the global optima, FedProx introduces
an additional proximal term in the local objective to limit
the amount of local changes. Instead of directly limiting the
size of local updates, SCAFFOLD [82] applies the variance
reduction technique to correct the local updates. While Fed-
Prox and SCAFFOLD improve the local training stage of
FedAvg, FedNova [175] improves the aggregation stage of
FedAvg. It takes the heterogeneous local updates of each
party into consideration and normalizes the local models
accordingly before averaging.

There are few studies on SGD-based vertical federated
learning. [111] propose the Federated Stochastic Block Coor-
dinate Descent (FedBCD) for vertical FL. By applying coor-
dinate descent, each party updates its local parameter for
multiple rounds before communicating the intermediate
results. They also provide convergence analysis for
FedBCD. Hu et al. [71] propose FDML for vertical FL assum-
ing all parties have the labels. Instead of exchanging the
intermediate results, it aggregates the local prediction from
each of the participated party.

Neural Networks. Although neural networks can be
trained using the SGD optimizer, we can potentially
increase the model utility if the model architecture can also
be exploited. Yurochkin et al. [196] develop probabilistic
federated neural matching (PFNM) for multilayer percep-
trons by applying Bayesian nonparametric machinery [55].
They use an Beta-Bernoulli process informed matching pro-
cedure to combine the local models into a federated global
model. The experiments show that their approach can out-
perform Fed Avg on both IID and non-IID data partitioning.

Wang et al. [174] show how to apply PFNM to CNNs
(convolutional neural networks) and LSTMs (long short-
term memory networks). Moreover, they propose Federated
Matched Averaging (FedMA) with a layer-wise matching
scheme by exploting the model architecture. The experi-
ments show that FedMA performs better than FedAvg and
FedProx [100] on CNNs and LSTMs.

Trees. Besides neural networks, decision trees are also
widely used in the academic and industry [32], [51], [84],
[96]. Compared with NNs, the training and inference of

trees are highly efficient. However, the tree parameters
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cannot be directly optimized by SGD, which means that
SGD-based FL frameworks are not applicable to learn trees.
We need specialized frameworks for trees. Among the tree
models, the Gradient Boosting Decision Tree (GBDT)
model [32] is quite popular. There are several studies on
federated GBDT.

There are some studies on horizontal federated GBDTs.
Zhao et al. [200] propose the first FLS for GBDTs. In their
framework, each decision tree is trained locally without
the communications between parties. The trees trained in
a party are sent to the next party to continuous train a
number of trees. Differential privacy is used to protect the
decision trees. Li ef al. [95] exploit similarity information
in the building of federated GBDTs by using locality-sensi-
tive hashing [42]. They utilize the data distribution of local
parties by aggregating gradients of similar instances.
Within a weaker privacy model compared with secure
multi-party computation, their approach is effective and
efficient.

Linear/Logistic Regression. Linear/logistic regression can
be achieved using SGD. Here we show the studies that are
not SGD-based and specially designed for linear/logistic
regression.

In the horizontal FL setting, Nikolaenko et al. [128] pro-
pose a system for privacy-preserving ridge regression. Their
approaches combine both homomorphic encryption and
Yao’s garbled circuit to achieve privacy requirements. An
extra evaluator is needed to run the algorithm. In the verti-
cal FL setting, Sanil et al. [149] present a secure regression
model. They focus on the linear regression model and secret
sharing is applied to ensure privacy in their solution. Hardy
et al. [66] present a solution for two-party vertical federated
logistic regression. They apply entity resolution and addi-
tively homomorphic encryption.

Others. There are many studies that combine FL with
other machine learning techniques such as multi-task learn-
ing [144], meta-learning [52], and transfer learning [134].

Smith et al. [156] combine FL with multi-task learn-
ing [24], [198]. Their method considers the issues of high
communication cost, stragglers, and fault tolerance for MTL
in the federated environment. Chen et al. [31] adopt meta-
learning in the learning process of FedAvg. Instead of train-
ing the local NNs and exchanging the model parameters,
the parties adopt the Model-Agnostic Meta-Learning
(MAML) [52] algorithm in the local training and exchange
the gradients of MAML. Dai ef al. [41] considers Bayesian
optimization in federated learning. They propose federated
Thompson sampling to address the communication effi-
ciency and heterogeneity of the clients. Their approach can
potentially be used in the parameter search in federated
learning.

Another issue in FL is the package loss or party discon-
nection during FL process, which usually happens on
mobile devices. When the number of failed messages is
small, the server can simply ignore them as they have a
small weight on the updating of the global model. If the
party failure is significant, the server can restart from the
results of the previous round [22]. We look forward to more
novel solutions to deal with the disconnection issue for
effectiveness improvement.

Summary. We summarize the above studies as follows.
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e As the SGD-based framework has been widely stud-
ied and used, more studies focus on model special-
ized FL recently. We expect to achieve better model
accuracy by using model specialized methods. More-
over, we encourage researchers to study on feder-
ated decision trees models. The tree models have a
small model size and are easy to train compared
with neural networks, which can result in a low com-
munication and computation overhead in FL.

e The study on FL is still on a early stage. Few studies
have been done on appling FL to train the state-of-
the-art neural networks such as ResNeXt [117] and
EfficientNet [166]. How to design an effective and
practical algorithm to train a complex machine learn-
ing model is still a challenging and on-going research
direction.

e While most studies focus on horizontal FL, there is
still no well developed algorithm for vertical FL.
However, the vertical federated setting is common
in real world applications where multiple organiza-
tions are involved. We look forward to more studies
on this promising area.

4.2.2 Practicality Enhancement

Communication Efficiency. While the computation of FL can
be accelerated using modern hardware and techniques [93],
[94], [114] in high performance computing community [181],
[183], the FL studies mainly work on reducing the commu-
nication size during the FL process.

Koneény et al. [87] propose two ways, structured
updates and sketched updates, to reduce the communica-
tion costs in FedAvg. The first approach restricts the struc-
ture of local updates and transforms it to the multiplication
of two smaller matrices. Only one small matrix is sent dur-
ing the learning process. The second approach uses a lossy
compression method to compress the updates. Their
method can reduce the communication cost by two orders
of magnitude with a slight degradation in convergence
speed.

Beside the communication size, the communication
architecture can also be improved to increase the training
efficiency. Marfoq et al . [118] consider the topology design
for cross-silo federated learning. They propose an approach
to find a throughput-optimal topology, which can signifi-
cantly reduce the training time.

Privacy, Robustness and Attacks. Although the raw data is
not exchanged in FL, the model parameters may leak sensi-
tive information about the training data [125], [154]. Thus, it is
important to provide privacy guarantees for the exchanged
messages.

Differential privacy is a popular method to provide pri-
vacy guarantees. Geyer ef al. [56] apply differential privacy
in federated averaging from a client-level perspective. They
use the Gaussian mechanism to distort the sum of updates
of gradients to protect a whole client’s dataset instead of a
single data point.

Truex et al. [168] combine both secure multiparty compu-
tation and differential privacy for privacy-preserving FL.
They use differential privacy to inject noises to the local
updates. Then the noisy updates will be encrypted using
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the Paillier cryptosystem [133] before sent to the central
server.

For the attacks on FL, one kind of popular attack is back-
door attack, which aims to achieve a bad global model by
exchanging malicious local updates. Bagdasaryan et al. [14]
conduct model poisoning attack on FL. The malicious par-
ties commit the attack models to the server so that the global
model may overfit with the poisoned data. The secure
multi-party computation cannot prevent such attack since it
aims to protect the confidentiality of the model parameters.
Xie et al. [187] propose a distributed backdoor attack on FL.
They decompose the global trigger pattern into local pat-
terns. Each adversarial party only employs one local pat-
tern. The experiments show that their distributed backdoor
attack outperforms the central backdoor attack.

Fairness and Incentive Mechanisms. By taking fairness into
consideration based on FedAvg, Li et al. [102] propose
g-FedAvg. Specifically, they define the fairness according to
the variance of the performance of the model on the parties.
If such variance is smaller, then the model is more fair.
Thus, they design a new objective inspired by o-fairness.
Based on federated averaging, they propose g-FedAvg to
solve their new objective. The major difference between
g-FedAvg with FedAvg is in the formulas to update model
parameters.

Kim et al. [85] combine the blockchain architecture with
FL. On the basis of federated averaging, they use a block-
chain network to exchange the devices’ local model
updates, which is more stable than a central server and can
provide the rewards for the devices.

Summary. We summarize the above studies as follows.

e Besides effectiveness, efficiency and privacy are the
other two important factors of an FLS. Compared
with these three areas, there are fewer studies on
fairness and incentive mechanisms. We look forward
to more studies on fairness and incentive mecha-
nisms, which can encourage the usage of FL in the
real world.

e For the efficiency improvement of FLSs, the commu-
nication overhead is still the main challenge. Most
studies [72], [87], [151] try to reduce the communica-
tion size of each iteration. How to reasonably set the
number of communication rounds is also promising
[208]. The trade-off between the computation and
communication still needs to be further investigated.

e For the privacy guarantees, differential privacy and
secure multi-party computation are two popular
techniques. However, differential privacy may
impact the model quality significantly and secure
multi-party computation may be very time-consum-
ing. It is still challenging to design a practical FLS
with strong privacy guarantees. Also, the effective
robust algorithms against poisoning attacks are not
widely adopted yet.

4.2.3 Applications

One related area with FL is edge computing [44], [127],
[140], [195], [201], where the parties are edge devices. Many
studies try to integrate FL with the mobile edge systems. FL
also shows promising results in recommender system [12],
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[27], [207], natural language processing [65], etc. Here we
introduce the studies on edge computing and recommender
systems.

Edge Computing. Nishio and Yonetani [130] implement
federated averaging in practical mobile edge computing
(MEC) frameworks. They use an operator of MEC frame-
works to manage the resources of heterogeneous clients.
Wang et al. [177] perform FL on resource-constrained MEC
systems. They address the problem of how to efficiently uti-
lize the limited computation and communication resources
at the edge. Using federated averaging, they implement
many machine learning algorithms including linear regres-
sion, SVM, and CNN. He et al. [67] also consider the limited
computing resources in the edge devices. They propose
FedGKT, where each device only trains a small part of a
whole ResNet to reduce the computation overhead.

Recommender Systems. Ammad-ud din et al. [12] formulate
the first federated collaborative filter method. Based on a
stochastic gradient approach, the item-factor matrix is
trained in a global server by aggregating the local updates.
They empirically show that the federated method has
almost no accuracy loss compared with the centralized
method. Tan et al. [165] build a federated recommender sys-
tem (FedRecSys) based on FATE. FedRecSys has imple-
mented popular recommendation algorithms with SMC
protocols. The algorithms include matrix factorization, sin-
gular value decomposition, factorization machine, and deep
learning.

Summary. We summarize the above studies as follows.

e Edge computing naturally fits the cross-device feder-
ated setting. A nontrivial issue of applying FL to
edge computing is how to effectively utilize and
manage the edge resources. The usage of FL can
bring benefits to the users, especially for improving
the mobile device services.

e FL can solve many traditional machine learning
tasks such as image classification and work predic-
tion. Due to the regulations and “data islands”, the
federated setting may be a common setting in the
next years. With the fast development of FL, we
believe that there will be more applications in com-
puter vision, natural language processing, and
healthcare.

4.2.4 Benchmark

Benchmark is important for directing the development of
FLSs. Multiple benchmark-related works have been con-
ducted recently, and several benchmark frameworks are
available online. We categorize them into three types: 1)
General purpose benchmark systems aim at comprehensively
evaluate FLSs and give a detailed characterization of differ-
ent aspects of FLSs; 2) Targeted benchmarks aim at one or
more aspects that concentrated in a small domain and tries
to optimize the performance of the system in that domain;
3) Dataset benchmarks aim at providing dedicated datasets
for federated learning.

General Purpose Benchmark Systems. FedML [68] is a
research library that provides both frameworks for feder-
ated learning and benchmark functionalities. As a bench-
mark, it provides comprehensive baseline implementations
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for multiple ML models and FL algorithms, including
FedAvg, FedNAS, Vertical FL, and split learning. Moreover,
it supports three computing paradigms, namely distributed
training, mobile on-device training, and standalone simula-
tion. Although some of its experiment results are currently
still at a preliminary stage, it is one of the most comprehen-
sive benchmark frameworks concerning its functionalities.

OAREF [70] provides a set of utilities and reference imple-
mentations for FL benchmarks. It features the measurement
of different components in FLSs, including FL algorithms,
encryption mechanisms, privacy mechanisms, and commu-
nication methods. In addition, it also features realistic parti-
tioning of datasets, which utilizes public datasets collected
from different sources to reflect real-world data distributions.

Targeted Benchmarks. Nilsson et al. [129] propose a
method utilizing correlated t-test to compare between dif-
ferent types of federated learning algorithms while bypass-
ing the influence of data distributions. Three FL algorithms,
FedAvg, FedSVRG [87] and CO-OP [180] are compared in
both IID and non-IID setup in their work, and the result
shows that FedAvg achieves the highest accuracy among
the three algorithms regardless of data partitioning.

Zhang et al. [199] present a benchmark targeting at semi-
supervised federated learning setting, where users only
have unlabelled data, and the server only has a small
amount of labelled data, and explore the relation between
final model accuracy and multiple metrics, including the
distribution of the data, the algorithm and communication
settings, and the number of clients. Utilizing the experiment
results, their semi-supervised learning improved method
achieves better generalization performance.

Datasets. LEAF [23] is one of the earliest dataset proposals
for federated learning. It contains six datasets covering dif-
ferent domains, including image classification, sentiment
analysis, and next-character prediction. A set of utilities is
provided to divide datasets into different parties in an IID
or non-IID way. For each dataset, a reference implementa-
tion is also provided to demonstrate the usage of that data-
set in the training process.

Summary. We summarize the above studies as follows.

e Benchmarks serve an important role in the develop-
ment of federated learning. Through different types
of benchmarks, we can quantitatively characterize
the different components and aspects of federated
learning. Benchmarks regarding the security and pri-
vacy issues in federated learning are still at an early
stage and require further development.

e Currently no comprehensive enough benchmark
system has been implemented to cover all algorithms
or application types in FLSs. Even the most compre-
hensive benchmark systems lack supports for certain
algorithms and evaluation metrics for each level of
the system. Further development of comprehensive
benchmark systems requires the support of extensive
FL frameworks.

e  Most benchmark researches are using datasets which
are split from a single dataset, and there is no con-
sensus on what type of splitting method should be
used. Similarly, regarding the non-IID problem,
there is no consensus on the metric of non-IID-ness.
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Fig. 3. The FATE system structure.

Using realistic partitioning method, as proposed in
FedML [68] and OARF [70] may mitigate this issue,
but for federated learning at a large-scale, realistic
partitioning is not suitable due to the difficulty of
collecting data from different sources.

4.3 Open Source Systems

In this section, we introduce five open source FLSs: Feder-
ated AI Technology Enabler (FATE),”> Google TensorFlow
Federated (TFF),”> OpenMined PySyft* Baidu PaddleFL,’
and FedML.°

4.3.1 FATE

FATE is an industrial level FL framework developed by
WeBank, which aims to provide FL services between differ-
ent organizations. FATE is based on Python and can be
installed on Linux or Mac. It has attracted about 3.2k stars
and 900 forks on GitHub. The overall structure of FATE is
shown in Fig. 3. It has six major modules: EggRoll, Federa-
tedML, FATE-Flow, FATE-Serving, FATE-Board, and Kube-
FATE. EggRoll manages the distributed computing and
storage. It provides computing and storage AIPs for the
other modules. FederatedML includes the federated algo-
rithms and secure protocols. Currently, it supports training
many kinds of machine learning models under both hori-
zontal and vertical federated setting, including NN,
GBDTs, and logistic regression. FATE assumes that the par-
ties are honest-but-curious. Thus, it uses secure multi-party
computation and homomorphic encryption to protect the
communicated messages. However, it does not support dif-
ferential privacy to protect the final model. FATE-Flow is a
platform for the users to define their pipeline of the FL pro-
cess. The pipeline can include the data preprocessing, feder-
ated training, federated evaluation, model management,
and model publishing. FATE-Serving provides inference
services for the users. It supports loading the FL models
and conducting online inference on them. FATE-Board is a
visualization tool for FATE. It provides a visual way to track
the job execution and model performance. Last, KubeFATE
helps deploy FATE on clusters by using Docker or Kuber-
netes. It provides customized deployment and cluster man-
agement services. In general, FATE is a powerful and easy-
to-use FLS. Users can simply set the parameters to run a FL
algorithm. Moreover, FATE provides detailed documents
on its deployment and usage. However, since FATE pro-
vides algorithm-level interfaces, practitioners have to mod-
ify the source code of FATE to implement their own
federated algorithms. This is not easy for non-expert users.

2. https:/ /github.com/Federated AI/FATE

3. https://github.com/tensorflow /federated

4. https:/ / github.com/OpenMined /PySyft

5. https:/ /github.com/PaddlePaddle/PaddleFL
6. https:/ /github.com/FedML-AI/FedML
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Fig. 4. The TFF system structure.

4.32 TFF

TFF, developed by Google, provides the building blocks for
FL based on TensorFlow. It has attracted about 1.5k stars
and 380 forks on GitHub. TFF provides a Python package
which can be easily installed and imported. As shown in
Fig. 4, it provides two APIs of different layers: FL. API and
Federated Core (FC) APIL. FL API offers high-level interfa-
ces. It includes three key parts, which are models, federated
computation builders, and datasets. FL API allows users to
define the models or simply load the Keras [61] model. The
federated computation builders include the typical feder-
ated averaging algorithm. Also, FL API provides simulated
federated datasets and functions to access and enumerate
the local datasets for FL. Besides high-level interfaces, FC
API also includes lower-level interfaces as the foundation of
the FL process. Developers can implement their functions
and interfaces inside the federated core. Finally, FC pro-
vides the building blocks for FL. It support multiple feder-
ated operators such as federated sum, federated reduce,
and federated broadcast. Developers can define their own
operators to implement the FL algorithm. Overall, TFF is a
lightweight system for developers to design and implement
new FL algorithms. Currently, TFF does not consider con-
sider any adversaries during FL training. It does not pro-
vide privacy mechanisms. TFF can only deploy on a single
machine now, where the federated setting is implemented
by simulation.

4.3.3 PySyft

PySyft, first proposed by Ryffel et al. [145] and developed by
OpenMined, is a python library that provides interfaces for
developers to implement their training algorithm. It has
attracted about 7.3k stars and 1.7k forks on GitHub. While
TFF is based on TensorFlow, PySyft can work well with
both PyTorch and TensorFlow. PySyft provides multiple
optional privacy mechanisms including secure multi-party
computation and differential privacy. Thus, it can support
running on honest-but-curious parties. Moreover, it can be
deployed on a single machine or multiple machines, where
the communication between different clients is through the
websocket API [155]. However, while PySyft provides a set
of tutorials, there is no detailed document on its interfaces
and system architecture.

4.3.4 PaddleFL

PaddleFL is a FLS based on PaddlePaddle,” which is a deep
learning platform developed by Baidu. It is implemented on
C++ and Python. It has attracted about 260 stars and 60
forks on GitHub. Like PySyft, PaddleFL supports both

7. https:/ / github.com /PaddlePaddle/Paddle
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Fig. 5. The PaddleFL system structure.

differential privacy and secure multi-party computation
and can work on honest-but-curious parties. The system
structure of PaddleFL is shown in Fig. 5. In the compile
time, there are four components including FL strategies,
user defined models and algorithms, distributed training
configuration, and FL job generator. The FL strategies
include the horizontal FL algorithms such as FedAvg.
Vertical FL algorithms will be integrated in the future.
Besides the provided FL strategies, users can also define
their own models and training algorithms. The distributed
training configuration defines the training node informa-
tion in the distributed setting. FL job generator generates
the jobs for federated server and workers. In the run time,
there are three components including FL server, FL
worker, and FL scheduler. The server and worker are the
manager and parties in FL, respectively. The scheduler
selects the workers that participate in the training in each
round. Currently, the development of PaddleFL is still in
a early stage and the documents and examples are not
clear enough.

4.3.5 FedML

FedML provides both a framework for federated learning
and a platform for FL benchmark. It is developed by a team
from University of Southern California [68] based on
PyTorch. FedML has attracted about 660 stars and 180 forks
on GitHub. As an FL framework, It's core structure is
divided into two levels, as shown in Fig. 6. In the low-level
FedML-core, training engine and distributed communica-
tion infrastructures are implemented.

The high-level FedML-API is built on top of them and pro-
vides training models, datasets, and FL algorithms. Refer-
ence application/benchmark implementations are further
built on top of the FedML-APIL While most algorithms imple-
mented on FedML does not consider any adversaries, it sup-
ports applying differential privacy when aggregating the
messages from the parties. FedML supports three computing
paradigms, namely standalone simulation, distributed com-
puting and on-device training, which provides a simulation
environment for a broad spectrum of hardware require-
ments. Reference implementations for all supported FL algo-
rithms are provided. Although there are still gaps between

On-device training

Environments —P Distributed computing

— Standalone simulation

— FLalgorithms
— { FedML-API }—P Models

— Datasets

[ FedML

Security/privacy

FedML-core —F Communication

— Learning framework

Fig. 6. The FedML system structure.
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TABLE 2
The Comparison Among Some Existing FLSs
Supported features FATE 1.5.0 TFF 0.17.0 PySyft 0.3.0 PaddleFL 1.1.0 FedML
Operation systems Mac v/ v 4 v 4
Linux v v 4 4 4
Windows v v 4
ios 4
Android 4
Data partitioning horizontal v v v v v
vertical v v 4
Models NN v v v v v
DT v
LM v v v v v
Privacy Mechanisms Dr v 4 v 4
M v v v/
Communication simulated v 4 4 v v
distributed v v 4 4
Hardwares CPUs v v 4 v v
GPUs v v v

The notations used in this table are the same as Table 1. The cell is left empty if the system does not support the corresponding feature. There is no release version

for FedML.

some of the experiment results and the optimal results, they
provide useful information for further development.

4.3.6 Others

There are other closed source federated learning systems.
NVIDIA Clara® has enabled FL. It adopts a centralized
architecture and encrypted communication channel. The
targeted users of Clara FL is hospitals and medical institu-
tions. Ping An Technology aims to build a federated learn-
ing system named Hive [2], which targets at the financial
industries. While Clara FL provides APIs and documents,
we cannot find the official documents of Hive.

4.3.7 Summary

Overall, FATE, PaddleFL, and FedML try to provide algo-
rithm-level APIs for users to use directly, while TFF and
PySyft try to provide more detailed building blocks so that
the developers can easily implement their FL process. Table 2
shows the comparison between the open-source systems. In
the algorithm level, FATE is the most comprehensive system
that supports many machine learning models under both
horizontal and vertical settings. TFF and PySyft only imple-
ment Fed Avg, which is a basic framework in FL as shown in
Section 4.2. PaddleFL supports several horizontal FL algo-
rithms currently on NNs and logistic regression. FedML inte-
grates several state-of-the-art FL algorithms such as FedOpt
[141] and FedNova [175]. Compared with FATE, TFF, and
FedML, PySyft and PaddleFL provide more privacy mecha-
nisms. PySyft covers all the listed features that TFF supports,
while TFF is based on TensorFlow and PySyft works better
on PyTorch. Based on the popularity on GitHub, PySyft is
currently the most impactful federated learning system in
the machine learning community.

8. https://developer.nvidia.com/clara

5 SyYSTEM DESIGN

Fig. 7 shows the factors that need to be considered in the
design of an FLS. Here effectiveness, efficiency, and privacy
are three important metrics of FLSs, which are also main
research directions of federated learning. Inspired by feder-
ated database [153], we also consider autonomy, which is
necessary to make FLSs practical. Next, we explain these
factors in detail.

5.1 Effectiveness

The core of an FLS is an (multiple) effective algorithm (algo-
rithms). To determine the algorithm to be implemented
from lots of existing studies as shown in Table 1, we should
first check the data partitioning of the parties. If the parties
have the same features but different samples, one can use
FedAvg [119] for NNs and SimFL [95] for trees. If the parties
have the same sample space but different features, one can
use FedBCD [111] for NNs and SecureBoost [36] for trees.

5.2 Privacy

An important requirement of FLSs is to protect the user pri-
vacy. Here we analyze the reliability of the manager. If the

FedAvg, SimFI

FedBCD, SecureBoost

Federated Leaming Systems

nest but curious

DP, SMC

g
-
TEE, Blockchain

Not trusted

Drop out

Fault tolerance
| Autonomy Partics
Incentive mechanisms

Selfish

Fig. 7. The design factors of FLSs.
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manager is honest and not curious, then we do not need to
adopt any additional technique, since the FL framework
ensures that the raw data is not exchanged. If the manager is
honest but curious, then we have to take possible inference
attacks into consideration. The model parameters may also
expose sensitive information about the training data. One
can adopt differential privacy [38], [56], [120] to inject ran-
dom noises into the parameters or use SMC [20], [21], [66] to
exchanged encrypted parameters. If the manager cannot be
trusted at all, then we can use trusted execution environ-
ments [35] to execute the code in the manager. Blockchain is
also an option to play the role as a manager [85].

5.3 Efficiency

Efficiency is an important factor in the success of many
existing systems such as XGBoost [32] and ThunderSVM
[182]. Since federated learning involves multi-rounds train-
ing and communication, the computation and communica-
tion costs may be large, which increases the threshold of
usage of FLSs. To increase the efficiency, the most effective
way is to deal with the bottleneck. If the bottleneck lies in
the computation, we can use powerful hardware such as
GPUs [40] and TPUs [75]. If the bottleneck lies in the com-
munication, the compression techniques [16], [87], [151] can
be applied to reduce the communication size.

5.4 Autonomy

Like federated databases [153], a practical FLS has to con-
sider the autonomy of the parties. The parties may drop out
(e.g., network failure) during the FL process, especially in
the cross-device setting where the scale is large and the par-
ties are unreliable [77]. Thus, the FLS should be robust and
stable, which can tolerate the failure of parties or reduce the
number of failure cases. Google has developed a practical
FLS [22]. In their system, they monitor devices’ health statis-
tics to avoid wasting devices’ battery or bandwidth. Also,
the system will complete the current round or restart from
the results of the previously committed round if there are
failures. Zhang et al. [197] propose a blockchain-based
approach to detect the device disconnection. Robust secure
aggregation [15] is applicable to protect the communicated
message in case of party drop out. Besides the disconnection
issues, the parties may be selfish and are not willing to share
the model with good quality. Incentive mechanisms [79],
[80] can encourage the participation of the parties and
improve the final model quality.

5.5 The Design Reference

Based on our taxonomy shown in Section 3 and the design
factors shown in Fig. 7, we derive a simple design reference
for developing an FLS.

The first step is to identity the participated entities and the
task, which significantly influence the system design. The
participated entities determines the communication architec-
ture, the data partitioning and the scale of federation. The
task determines the suitable machine learning models to
train. Then, we can choose or design a suitable FL algorithm
according to the above attributes and Table 1. After fixing
the FL algorithm, to satisfy the privacy requirements, we

may determine the Iprivacy mechanisms to protect the
Authorized lic
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communicated messages. DP is preferred if efficiency is more
important than model performance compared with SMC.
Last, incentive mechanism can be considered to enhance the
system. Existing systems [22], [68] usually do not support
incentive mechanisms. However, incentive mechanisms can
encourage the parties to participate and contribute in the sys-
tem and make the system more attractive. Shapley value
[172], [178] is a fair approach that can be considered.

For real-world applications of federated learning sys-
tems, please refer to Section 5 of the supplementary mate-
rial, available online.

5.6 Evaluation

The evaluation of FLSs is very challenging. According to
our studied system factors, it has to cover the following
aspects: (1) model performance, (2) system security, (3) sys-
tem efficiency, and (4) system robustness.

For the evaluation of the model, there are two different
settings. One is to evaluate the performance (e.g., prediction
accuracy) of the final global model on a global dataset. The
other one is to evaluate the performance of the final local
models on the corresponding non-IID local datasets. The
evaluation setting depends on the objective of FL, i.e., learn
a global model or learn personalized local models.

While theoretical security/privacy guarantee is a good
evaluation metric for system security, another way is to con-
duct membership inference attacks [154] or model inversion
attacks [53] to test the system security. These attacks can be
conducted in two ways: (1) white-box attack: the attacker
has access to all the exchanged models during the FL pro-
cess. (2) black-box attack: the attacker only has access to the
final output model. The attack success ratio can be an evalu-
ation metric for the system security.

The efficiency of the system includes two parts: computa-
tion efficiency and communication efficiency. An intuitive met-
ric is the training time, including the computation and
communication time. Note that FL is usually a multi-round
process. Thus, for a fair comparison, one approach is to use
time per round as a metric. Another approach is to record the
time or round to achieve the same target performance [82], [99].

It is challenging to quantifying the robustness of an FLS.
Inspired by robust aggregation in Byzantine tolerant distrib-
uted learning [19], [157], where the number of tolerated Byz-
antine adversaries is used to evaluate the robustness, we
can use the maximum number of disconnected parties that
can tolerate during the FL process as the metric to evaluate
the robustness of an FLS.

6 VISION

In this section, we show interesting directions to work on in
the future. Although some directions are already covered in
existing studies introduced in Section 4, we believe they are
important and provide more insights on them.

6.1 Heterogeneity

The heterogeneity of the parties is an important characteris-
tic in FLSs. Basically, the parties can differ in the accessibil-
ity, privacy requirements, contribution to the federation,
and reliability. Thus, it is important to consider such practi-
cal issues in FLSs.

ensed use limited to: VinUni. Downloaded on June 26,2023 at 06:42:56 UTC from IEEE Xplore. Restrictions apply.
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Dynamic Scheduling. Due to the instability of the parties,
the number of parties may not be fixed during the learning
process. However, the number of parties is fixed in many
existing studies and they do not consider the situations
where there are entries of new parties or departures of the
current parties. The system should support dynamic
scheduling and have the ability to adjust its strategy when
there is a change in the number of parties. There are some
studies addressing this issue. For example, Google’s sys-
tem [22] can tolerate the drop-out of the devices. Also, the
emergence of blockchain [205] can be an ideal and trans-
parent platform for multi-party learning. However, to the
best of our knowledge, there is no work that study a
increasing number of parties during FL. In such a case,
more attention may be paid to the later parties, as the cur-
rent global model may have been welled trained on exist-
ing parties.

Diverse Privacy Restrictions. Little work has considered
the privacy heterogeneity of FLSs, where the parties have
different privacy requirements. The existing systems adopt
techniques to protect the model parameters or gradients for
all the parties on the same level. However, the privacy
restrictions of the parties usually differ in reality. It would
be interesting to design an FLS which treats the parties dif-
ferently according to their privacy restrictions. The learned
model should have a better performance if we can maxi-
mize the utilization of data of each party while not violating
their privacy restrictions. The heterogeneous differential
privacy [8] may be useful in such settings, where users have
different privacy attitudes and expectations.

Intelligent Benefits. Intuitively, one party should gain
more from the FLS if it contributes more information. Exist-
ing incentive mechanisms are mostly based on Shapley val-
ues [172], [178], the computation overhead is a major
concern. A computation-efficient and fair incentive mecha-
nism needs to be developed.

6.2 System Development
To boost the development of FLSs, besides the detailed algo-
rithm design, we need to study from a high-level view.

System Architecture. Like the parameter server [69] in
deep learning which controls the parameter synchroniza-
tion, some common system architectures are needed to be
investigated for FL. Although FedAvg is a widely used
framework, the applicable scenarios are still limited. For
example, while unsupervised learning [99], [100], [119] still
adopt model averaging as the model aggregation method,
which cannot work if the parties want to train heteroge-
neous models. We want a general system architecture,
which provides many aggregation methods and learning
algorithms for different settings.

Model Market. Model market [169] is a promising plat-
form for model storing, sharing, and selling. An interesting
idea is to use the model market for federated learning. The
party can buy the models to conduct model aggregation
locally. Moreover, it can contribute its models to the market
with additional information such as the target task. Such a
design introduces more flexibility to the federation and is
more acceptable for the organizations, since the FL just like
several transactions. A well evaluation of the models is
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important in such systems. The incentive mechanisms may
be helpful [79], [80], [185].

Benchmark. As more FLSs are being developed, a bench-
mark with representative data sets and workloads is quite
important to evaluate the existing systems and direct future
development. Although there have been quite a few bench-
marks [23], [68], [70], no benchmark has been widely used
in the experiments of federated learning studies. We need a
robust benchmark which has representative datasets and
strict privacy evaluation. Also, comprehensive evaluation
metric including model performance, system efficiency, sys-
tem security, and system robustness is often ignored in
existing benchmarks. The evaluation of model performance
on non-1ID datasets and system security under data pollu-
tion needs more investigation.

Data Life Cycles. Learning is simply one aspects of a feder-
ated system. A data life cycle [138] consists of multiple
stages including data creation, storage, use, share, archive
and destroy. For the data security and privacy of the entire
application, we need to invent new data life cycles under FL
context. Although data sharing is clearly one of the focused
stage, the design of FLSs also affects other stages. For exam-
ple, data creation may help to prepare the data and features
that are suitable for FL.

6.3 FL in Domains

Internet-of-Thing. Security and privacy issues have been a hot
research area in fog computing and edge computing, due to
the increasing deployment of Internet-of-thing applications.
For more details, readers can refer to some recent sur-
veys [123], [160], [193]. FL can be one potential approach in
addressing the data privacy issues, while still offering reason-
ably good machine learning models [105], [126]. The addi-
tional key challenges come from the computation and energy
constraints. The mechanisms of privacy and security introdu-
ces runtime overhead. For example, Jiang et al. [73] apply
independent Gaussian random projection to improve the
data privacy, and then the training of a deep network can be
too costly. The authors need to develop a new resource sched-
uling algorithm to move the workload to the nodes with more
computation power. Similar issues happen in other environ-
ments such as vehicle-to-vehicle networks [147].

Regqulations. While FL enables collaborative learning
without exposing the raw data, it is still not clear how FL
comply with the existing regulations. For example, GDPR
proposes limitations on data transfer. Since the model and
gradients are actually not safe enough, is such limitation
still apply to the model or gradients? Also, the “right to
explainability” is hard to execute since the global model is
an averaging of the local models. The explainability of the
FL models is an open problem [62], [148]. Moreover, if a
user wants to delete its data, should the global model be
retrained without the data [58]? There is still a gap between
the FL techniques and the regulations in reality. We may
expect the cooperation between the computer science com-
munity and the law community.

7 CONCLUSION

Many efforts have been devoted to developing federated
learning systems (FLSs). A complete overview and summary
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for existing FLSs is important and meaningful. Inspired by
the previous federated systems, we have shown that hetero-
geneity and autonomy are two important factors in the
design of practical FLSs. Moreover, with six different
aspects, we provide a comprehensive categorization for
FLSs. Based on these aspects, we also present the comparison
on features and designs among existing FLSs. More impor-
tantly, we have pointed out a number of opportunities, rang-
ing from more benchmarks to integration of emerging
platforms such as blockchain. FLSs will be an exciting
research direction, which calls for the effort from machine
learning, system and data privacy communities.
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