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Abstract—Federated learning (FL) is a distributed machine
learning strategy that generates a global model by learning
from multiple decentralized edge clients. FL enables on-device
training, keeping the client’s local data private, and further,
updating the global model based on the local model updates.
While FL methods offer several advantages, including scalability
and data privacy, they assume there are available computational
resources at each edge-device/client. However, the Internet-of-
Things (IoT)-enabled devices, e.g., robots, drone swarms, and
low-cost computing devices (e.g., Raspberry Pi), may have limited
processing ability, low bandwidth and power, or limited stor-
age capacity. In this survey article, we propose to answer this
question: how to train distributed machine learning models for
resource-constrained IoT devices? To this end, we first explore
the existing studies on FL, relative assumptions for distributed
implementation using IoT devices, and explore their drawbacks.
We then discuss the implementation challenges and issues when
applying FL to an IoT environment. We highlight an overview
of FL and provide a comprehensive survey of the problem state-
ments and emerging challenges, particularly during applying
FL within heterogeneous IoT environments. Finally, we point
out the future research directions for scientists and researchers
who are interested in working at the intersection of FL and
resource-constrained IoT environments.

Index Terms—Convergence, federated learning (FL), global
model, local model, on-device training, resource-constrained
Internet-of-Things (IoT) devices.

I. INTRODUCTION

IN THIS section, we explain the motivation to conduct
a comprehensive survey on federated learning (FL) for

resource-constrained Internet-of-Things (IoT) devices, fol-
lowed by recently published prior works, and differentiate how
our proposed survey is necessary for the FL domain. After that,
we discuss our contributions and the necessity of conducting
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this research. Finally, at the end of this section, we briefly
highlight the organization of this article.

A. Motivation

The ever-growing data collected/produced at edge devices
are the result of billions of connected IoT devices as every
active IoT client extracts their observed data and pushes
those data to the edge. The traditional machine learning (ML)
approaches need to perform aggregation of that extracted data
element on a data center or a single machine, and such a learn-
ing scheme is common in different AI-based giant companies
such as Facebook and Google. Companies store all the data
collected in their data center, where they train the respective
ML model. To attain a better ML model under the conven-
tional centralized approach, the users may need to compromise
their privacy by sending private data to the data center. Such a
model training strategy is privacy intrusive, particularly when
the clients need to address their personal or sensitive data to
achieve a better training model.

FL is such an approach that is capable of training a model,
leveraging the private data of clients without ever sharing it
with other entities. However, the client may possess a lack
of resources to perform on-device computation and may fail
to reach the target convergence within an expected time.
Moreover, we may face some unique challenges that could
not be observed in a traditional FL-based approach in terms
of communication, computation, privacy, storage, power, and
energy utilization, e.g., straggler issue, high energy consump-
tion, handling dropped participants. This article reveals the
challenges of FL setting in such a situation and describes
the impact of having such resource-constrained clients within
a network by considering their practical constraints. To that
end, we emphasize the open research issues in this area and
enumerate numerous future directions.

B. Related Works and Contributions

Numerous studies from a wide range of research disciplines,
including databases, distributed systems, cryptography, ML,
and data mining, explored FL methods from various perspec-
tives. It is a prevailing goal to learn from the distributed data
set and simultaneously preserve privacy by not exposing the
data. In 1982, a cryptographic mechanism was developed to
apply on encrypted data [1]. The works of [2]–[6] are some
of the early examples to discover knowledge from local data
while maintaining privacy. To that end, the introduction of
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FL maintains privacy by storing client data only on-device,
eliminates the dependency on a single server to generate a
prediction model by performing computation on client devices,
and builds a smarter model by learning from various client
models. It is to be noted that any resource-constrained device
could be a server in an IoT environment; therefore, it is not
a good solution to consider such a device to store all the
extracted data of the available clients and generate a model
like conventional ML approach. Instead, the server can only
be used to perform aggregation on the collected local models
to generate an updated global model. In this article, we focus
on the deployment and implementation of FL in an IoT envi-
ronment, where the IoT nodes are considered as clients with
limited resources. These resources include computation power,
communication bandwidth, memory, and battery power. The
IoT clients may have different technical characteristics and
available resources, and that is why all the clients cannot be
treated the same. The list of abbreviations that are used in this
article is listed in Table I.

Several detailed surveys on FL have already been conducted
by assuming that all clients within the network are resource
unbounded. Li et al. [7] presented an overview of challenges,
open problems, and issues associated with FL by consider-
ing the heterogeneity of devices; however, they assumed that
all clients are resource-boundless. Yang et al. [8] focused
on the categorization of FL settings while Niknam et al. [9]
presented the issues of FL in a wireless environment. Besides,
a federated optimization-based framework is proposed in [10],
which is constructed by addressing challenges related to
both system and statistical heterogeneity. They mentioned
that straggler client is responsible for increasing statisti-
cal heterogeneity which put adverse impact during con-
vergence. By adding proximal terms during local training,
they obtained faster convergence and were able to ana-
lyze the effect of heterogeneity. Another exciting paper [11]
discussed FL from the perspective of mobile-edge comput-
ing (MEC), including a caching and communication mech-
anism at the edge, while a detailed survey is presented
in [12] by analyzing the recent advancement and issues of
FL.

There are a couple of survey papers available on FL
systems (FLSs), and we listed them in Table II. The papers
in Table II are classified according to the area of FL
and edge computing. FL survey papers [7], [7]–[12] are
mostly focused on FL settings, system design, and com-
ponents, implementation challenges, or on recent advance-
ments. On the other hand, edge computing surveys [13]–
[19] are mainly conducted on edge computing infrastructure,
applications including ML and AI, resource management,
wireless communication, and security and privacy issues.
However, all these works considered only heterogeneity of
systems or their statistical data, and did not discuss the
challenges that would arise when the clients are resource
bounded. Throughout this article, we point out the FL chal-
lenges while applying on a resource-constrained IoT envi-
ronment, analyze the potential solutions toward those chal-
lenges, and reveal the future directions of this domain. This
article is mainly a critical survey on the previous works

TABLE I
LIST OF ABBREVIATIONS USED IN THIS ARTICLE

that identifies gaps in resource-constrained FL implementa-
tion. To the best of our knowledge, this article is the first
comprehensive survey on FL for resource-constrained IoT
devices.

C. Organization

The remainder of this article is organized as follows. In
Section II, we present an overview and taxonomy of FL
with a comprehensive list of existing studies. In Section III,
we review distributed optimization and ML approaches.
Section IV presents a detailed analysis of the major challenges
of FL while applying on resource-constrained devices, which
is followed by Section V, where we discuss the potential solu-
tions of those emerging challenges. After that, in Section VI,
we present the existing FL applications, and in Section VII,
we highlight the future research direction in the FL-based IoT
domain. Finally, in Section VIII, we conclude our article.

II. OVERVIEW OF EXISTING STUDIES ON FEDERATED

LEARNING MODELS

This section covers the definition of FL, a detailed descrip-
tion of the FL taxonomy, a brief highlight on the existing
FL frameworks, and a comparison summary of the existing
FL-based studies, which are classified in terms of privacy
maintenance, attack schemes, fairness, learning effectiveness,
and resource utilization.

A. Definition of Federated Learning

FL can be defined as a distributed ML approach, where the
clients train themselves locally without sharing their direct
information to the server. By periodically updating a shared
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TABLE II
COMPARING OUR PROPOSED SURVEY PAPER WITH EXISTING SELECTED SURVEYS ON FL AND MEC

global model based on performing aggregation of each client
model information, this approach trains each device to capture
the global view [20]. A high-level architecture of FL process
is presented in Fig. 1. The FL process generally includes three
steps:

Step 1 (Initiate Training Task and Global Model): In the
initial phase, the central server decides the task requirement
and target application. A global model (W0

G) is initialized and
the server broadcasts that global model to the selected local
clients that are known as participants.

Step 2 (Local Model Update): Each participant generates
a model utilizing their local data. Upon receiving the global
model Wt

G (where t denotes the tth iteration), each client k
updates its model parameters Wt

i for finding optimal param-
eters that minimize the local loss function Fk(Wt

k). The local
optimal models are then shared with the FL server.

Step 3 (Global Aggregation): After receiving the local mod-
els from the participants, the FL server performs aggregations
and generates an updated global model (Wt+1

G ). The latest
global model is again shared with all the new participants.

Steps 2 and 3 are repeated until the central server reaches
a convergence by minimizing the global loss function F(Wt

G),
which can be expressed as follows [21]:

min
w

f (w) =
N∑

k=1

PkFk(w)

Fig. 1. FL procedure considering N number of participants.

where N is the total number of available devices, Pk(≥ 0)
indicates the relative impact of each device k while satisfying∑

k Pk = 1, and Fk(w) is the expected prediction loss on a
sample input of the kth device on parameter w. Each device
k possesses nk samples (where n = ∑

k nk). Thus, the relative
impact of each local device can be expressed as Pk = (nk/n).

B. Taxonomy of FL-Based Systems

FLS can be categorized according to data sample, commu-
nication, prediction model, scale, privacy, and participation
motivation (see Fig. 2). In this segment, we discuss each
individual categorization instance with proper examples.
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Fig. 2. Taxonomy of FL-based systems.

1) Partitioning Sample: While designing an FL model, we
need to analyze the data distribution records by utilizing both
the features and nonoverlapped instances. We can categorize
FL into: 1) Horizontal FL; 2) Vertical FL; and 3) Hybrid
FL based on the data samples distributed over networks and
feature space of those samples.

a) Horizontal FL: Horizontal or sample-based FL have
different data samples, but they share the same feature space.
In Fig. 3, we can see that two client devices have a data sam-
ple that is generated using some similar applications, and each
client device has an identical feature space. Each client gener-
ates a local model by utilizing the data samples and carry out
the FL process. We can also consider horizontal FL from the
perspective of real-life scenarios. Assume that two local super-
stores have different customers; thus, the user intersection set
would be minimal. However, the business structure and policy
of the two superstores may be similar, i.e., the feature spaces
are aligned. In such a case, we can apply horizontal FL to per-
form the learning action. Most of the FL studies conform to the
horizontal FL strategy, where the local participants train their
model by sharing the same feature space, and a similar global
model architecture is generated. Next-word prediction [22],
wake-word detector [23], and recommendation system [24]
are some examples of horizontal FL.

b) Vertical FL: In vertical or feature-based FL, the data
sets share different sample spaces, but the sample IDs are the
same (see Fig. 4). For instance, consider a bank and a super-
store in the same area. Most of their customers may be the
same, but their business structure, i.e., the feature space, is
different, and thus the user-space intersection is quite large.
We can consider another example. Assume that we want to
make a prediction model for product purchases based on user
information, credit card rating, and purchasing history. In such
a case, vertical FL can perform aggregation of these differ-
ent features and collaboratively construct a prediction model.
SecureBoost [25] and FedBCD [26] are some of the examples
of vertical FL.

c) Federated transfer learning: Federated transfer learn-
ing (FTL) [27] can be considered as the combination of

Fig. 3. Horizontal FL scenario.

Fig. 4. Vertical FL scenario.

both horizontal and vertical partitioning of data (see Fig. 5).
Horizontal and vertical FL would not be effective when two
clients (A and B) have small overlapping data samples and fea-
ture space, and we need to learn all the sample labels of a client
(e.g., client A). FTL is applicable in such scenarios, where the
data samples and feature spaces are both different in the two
clients’ data sets. In other words, FTL can be applied when
the clients’ local data can differ in terms of both data sam-
ples and feature space. For instance, a group of research labs
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Fig. 5. FTL scenario.

wants to invent a COVID-19 vaccine, but their samples (e.g.,
testing samples may contain different coronavirus categories)
and feature spaces (i.e., strategic plan and test results) may
be dissimilar. Similarly, two different multinational companies
located in different countries may have different customers
(i.e., samples) as well as distinguishable rules and regulations
(i.e., features). Due to geographical location difference of the
two companies, the overlapping data sample would be negligi-
ble, while due to different business types, there may be a very
small intersection in the feature space. In such a case, FTL
can be applied to handle variance in data sample and feature
space while performing on-device learning. In FTL, an over-
lapping representation between two feature space of the clients
are learned utilizing the small common data samples and each
client obtains predictions for local samples using one-side fea-
tures. Liu et al. [28] designed a framework that can learn a
feature representation of multiple parties based on common
instances.

2) Machine Learning Model: The appropriate ML model
needs to adapt based on the training objective. For instance,
if we want to classify the objects from an image, we need
to train the FL model using convolutional neural networks
(CNNs). Several existing studies develop ML models for FL
settings. The most popular ML model that is used in FL is fed-
erated stochastic gradient descent (Fed-SGD) coupled with the
neural network (NN), e.g., image classification [20] and word
prediction [22], [29]. The decision tree (DT) is another popular
and widely used ML method that is highly efficient for train-
ing models. In tree-based FL, a model is generated for training
single or multiple DTs. Cheng et al. [25] and Li et al. [30]
designed gradient boosting DTs (GBDTs) by considering both
horizontal and vertical partitioned data schemes. Different lin-
ear models (e.g., linear regression and classification, logistic
regression, and support vector machine (SVM) [31], [32]) are
convenient to handle. Such linear models are easier to learn
than different complex models (e.g., DTs and NNs). In a nut-
shell, many FL applications and frameworks are proposed on
FedSGD [20], [21], [33], [34]. SGD is basically a common
optimization technique that can be applied in different mod-
els, including SVM, linear regression, and NN. To improve
the model accuracy in a large-scale FLS and to cover the gap
between FLS with state-of-the-art ML models, it is necessary
to exploit the ML architecture for obtaining better FL training.

3) Federation Scale: FLS can be divided into cross-silo and
cross-device categories based on the scale of federation [7],
[12]. This categorization is performed based on the number of
clients and their data quantity.

Cross-Device: In cross-device FL, the number of clients can
be large, but each client has a limited size of data. Different
smartphones or IoT devices can be considered as the clients of
such a system, which could be millions or billions in number.
Recently, Google has invented an FL-based keyboard sugges-
tion [29] by training the model on-device of the user and
aggregate the model information in the server. However, in
such an approach, the clients may not be able to train them-
selves in a complex training environment because of resource
scarcity. Thus, the server needs to be capable enough to pro-
cess all the model information to generate a global training
model.

Cross-Silo: Cross-silo FL holds a relatively small number
of clients, but they own a large amount of data. Typically, in
cross-silo FL, the clients are data centers or different organiza-
tions. For instance, Amazon recommends products by training
models using the collected data from hundreds of data cen-
ters, where each data center stores large amounts of data and
configured with sufficient computational resources.

4) Encouragement Toward FL: In real-world FL appli-
cations, the clients need encouragement or motivation to
participate in the training phase and that can be carried out
through regulations or incentives mechanism. For instance,
Google FL keyboard suggestion [29] cannot force the users to
provide data, but they ensure better keyboard suggestions to
the users who upload their data. Such incentives motivate the
users to share information or performing on-device training.

C. Summary of Existing FL-Based Studies

There have been several studies on FL due to its positive
effect in terms of privacy preservation, resource utilization,
and overall efficiency of the learning scheme [35]. We have
extended the classification provided by Li et al. [35] and
presented a detailed summary of those studies in Table III.

We provide the classification of the prior works based on
two categories, i.e., FL algorithm (e.g., federated averaging
(FedAvg) [20]), and feature integration (e.g., blockchain-based
FL [36]). We categorized each work according to their data
partition scheme, i.e., vertical and horizontal, as discussed in
Section II-B1. For the sake of simplicity, different model types,
i.e., NNs, linear models, and DTs, are abbreviated as “NN,”
“LM,” and “DT,” respectively. We provide the model types in
some cases, where the authors applied multiple ML strategies
for their proposed approaches. For instance, Truex et al. [37]
combined differential privacy (DP) with multiparty compu-
tation to protect their system from inference threats and to
generate high-quality models. We included all three model
types (i.e., “NN,” “LM,” and “DT”) for [37] as they validated
their system using CNN, SVM, and DT. We also classified the
existing studies based on their decision-making architecture.
We realized that a major part of the existing approaches are
based on server-centric design using trusted servers (e.g., [38]).
However, such a server-centric decision-making architecture
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may face trust issues, particularly in a cross-silo FL setting.
In order to handle a cross-silo environment, one approach is
to replace the central server while enabling each client to
share their model parameters and maintaining a similar global
model. Such strategies increase the computational cost and
communication overhead as compared to the server-centric
approaches. In Table III, we explore such studies (e.g., [39])
as “Client-centric” in the “Decision-making” column. We also
considered the privacy methods that are deployed in prior
works and categorized them in three groups: 1) cryptographic
methods (CMs); 2) DP; and 3) hashing-based privacy. In CM,
a cryptographic strategy is adapted to encrypt client data (e.g.,
the tree boosting model [25]) during communication or data
storage considering the security threat involved in the learn-
ing process. DP is another privacy-preserving strategy, where
the patterns of groups within the data set are shared while
withholding raw data or information about any individual
(e.g., [40]). Besides, some studies (e.g., [30]) considered a
hashing-based privacy-preserving approach, where a hashing
algorithm is applied on data to generate a hash that is used
to verify data integrity. Finally, in the “Remark” column of
Table III, we highlighted the main research directions (e.g.,
effectiveness, fairness, privacy, and incentives) of the existing
FL studies.

III. DISTRIBUTED LEARNING AND OPTIMIZATION

ALGORITHMS

In this section, we discuss the areas of research related to
distributed learning and optimization techniques. Even though
the main focus of the article is not in such domains, a brief
highlight on these areas could motivate researchers to bring
with a new or improved version of distributed learning setting
or optimization techniques.

A. Federated Learning Algorithms

As we discussed earlier, after introducing FL by
McMahan et al. [20], several modified versions of the algo-
rithms are proposed that can be effective in different circum-
stances. In this segment, we present some of the well-known
and effective FL algorithms that would motivate researchers
to introduce an improved version of FL.

1) Federated Averaging: FedAvg algorithm [20] performs
training operation via a central server that propagates a shared
global model wt, where indicates t the communication round.
However, each client orchestrates local optimization using the
concept of SGD. This algorithm has five hyperparameters: 1) a
fraction of clients or participants C that takes part in the train-
ing round; 2) size of local minibatch B; 3) learning rate η;
4) number of local epoch on the client-side before updating of
the global model E; and 5) a learning rate decay λ. The algo-
rithm is presented in Algorithm 1. When the system starts, the
global model parameter wo is randomly initialized (line 1). At
each communication round of the server, a fraction of clients
is selected (line 3), and a random set of the client is chosen
for the training phase (line 4). Each client sends his/her local
optimal model parameter, which is then aggregated onto the

Algorithm 1: FedAvg [20]. The Index of N Clients Are
Denoted by k;B Represents the Minibatch Size of Local
Client, E Is the Number of Local Epochs, nk Is the Local
Examples of a Client While n Denotes the Total Data
Points, Pk Stores a Client Data Samples, and η Represents
the Learning Rate

1 Initialize wo

2 for each round t = 0, 1, 2, . . . do
3 c← max(�C · N�, 1)

4 Rt = random set of c clients
5 for each client k ∈ Rt in parallel do
6 wk

t+1 = UpdateFromClient (k, wt)

7 wt+1 ←∑N
k=1

nk
n wk

t+1
8 UpdateFromClient (k, w): // Run on client k
9 Batch← (split Pkinto batches of size B)

10 for each local epoch i from 1 to E do
11 for batch b ∈ Batch do
12 w← w− η∇�(w; b)

13 return w to server

Algorithm 2: Local GD [70]. η > 0 Represents the
Learning Rate, tp Denotes a Particular Communication
Time, and g Indicates a Fixed Number of GD Steps

1 Initialize vector w0

2 Initialize wk
0 = w0 for all k ∈ [N]

def= {1, 2, . . . , N}
3 for t = 0, 1, 2, . . . do
4 for k = 1, 2, . . . , N do
5 wk

t+1 ={ 1
N

∑N
g=1

(
wg

t − η∇fg
(
wg

t
))

, if t = tp, p ∈ {1, 2, . . .}
wk

t − η∇fk
(
wk

t

)
, otherwise

6 end for
7 end for

server (lines 5–7). The iteration period continues until a cer-
tain number of iterations, or if the update is small enough, or
reaches a convergence.

2) Local Gradient Descent: Large-scale models are often
constructed, and first-order techniques are applied to solve
related problems as they scale well in terms of dimension
and data size. One popular choice is to use the Local gradi-
ent descent (GD) approach, where the optimization process is
divided into epochs. Each iteration initiates to perform aver-
aging steps across available N devices. The rest of the other
epoch does not involve any further communication. Each client
device implements a fixed number of GD steps (declares from
the average model) using their local function independently in
parallel [70]. See the details in Algorithm 2.

3) FedProx: In FL settings, the clients may need to perform
a nonuniform amount of tasks that can handle the negative
effect of system heterogeneity. Still, too many clients’ updates
can diverge the overall methods in the results of underly-
ing heterogeneous data. Li et al. [21] proposed an algorithm
named FedProx that is particularly useful for the resource-
constrained FL-based IoT environment. They enable variable
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TABLE III
COMPARING THE EXISTING FL LITERATURE. NN : NEURAL NETWORKS, DT : DECISION TREE, LM: LINEAR MODEL, DP: DIFFERENTIAL PRIVACY, CM:

CRYPTOGRAPHIC METHOD

local updates from the participated devices by adding a prox-
imal term within the local subproblems. The proximal term is
useful in two aspects. First, it limits the client’s local updates
to address the statistical heterogeneity issue. Second, it helps
incorporate a variant amount of clients to work safely. We
summarize the technique in Algorithm 3.

4) q-FedAvg: Though the state-of-the-art FedAvg signif-
icantly accelerates the convergence speed [20], it fails to
allocate client resources fairly (performs uniform allocation
of resources). The allocation of resources is significantly cru-
cial when we consider resource-constrained devices for the
FL process. With this motivation, Li et al. [63] proposed the
q-FedAvg algorithm that can impose fairness based on the
clients’ contributions. In the q-FedAvg algorithm, for given
cost functions Fk and parameter q > 0 (which is the fairness
amount we wish to impose), the FL objective is defined as

min
w

fq(w) =
m∑

k=1

pk

q+ 1
Fq+1

k (w)

Algorithm 3: FedProx [21]

1 for t = 0, . . . do
2 Server randomly chooses a subset Rt of N devices

(each client k is chosen with probability Pk)
3 Server sends latest global model wt to all chosen

clients
4 Each device k ∈ Rt finds a wk

t+1 where, wk
t+1 ≈

arg minw hk(w;wt) = Fk(w)+ μ
2

∥∥w− wt
∥∥2

5 Each device k ∈ Rt sends wk
t+1 back to the server

6 Server aggregation, wt+1 = 1
N

∑
k∈Rt

wk
t+1

7 end for

where Fq+1
k (·) denotes (q + 1) as a power of Fk(·). Here, q

is a parameter that tunes the amount of fairness we wish to
impose. When q > 0, it prevents the execution of local SGD.
To solve the issues of the local updating approach, particularly
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Algorithm 4: q-FedAvg [63]

1 for t = 0, 1, 2, · · · do
2 Server randomly selects a subset Rt of N devices (each

client k is chosen with probability Pk)
3 Server sends latest global model wt to all chosen

clients
4 Each chosen client device k updates wt by performing

SGD for E epochs with η to obtain w̄k
t+1

5 Each selected client k computes:
6 �wk

t = L
(
wt − w̄k

t+1

)

7 �k
t = Fq

k (wt)�wk
t

8 hk
t = qFk

q−1(wt)
∥∥�wk

t

∥∥2 + LFk
q(wt)

9 Each selected client k sends his/her parameters �k
t

and hk
t to the server

10 Server update: wt+1 = wt −
∑

k∈St �k
t∑

k∈St hk
t

11 end for

while allocating resources, Li et al. [63] proposed a heuris-
tic solution by replacing the gradient with the client’s local
updates obtained by running SGD on each local device. The
algorithm is depicted in Algorithm 4.

B. Distributed Learning

As discussed in Section II, the central server of the FL
process orchestrates the learning process by managing the
contributions of its clients. Thus, it can be considered as a
single point of failure [see Fig. 6(b)]. Though large orga-
nizations and companies may afford to place a powerful,
robust, and secure central server to carry out the training
process, all types of sectors cannot adapt that [71]. Besides,
some clients within the network can slow down the over-
all process [72], [73]. The main idea of fully distributed and
decentralized learning is peer-to-peer communications of the
clients that eliminates the central server [see Fig. 6(c)]. In
contrast, on-device training without learning from a server
or its peers is shown in [see Fig. 6(a)]. In these figures,
the communication topology looks like a connected graph,
where each node represents a client, and the line between
two nodes specifies a communication channel. In a distributed
learning mechanism, each round corresponds to a local update
by the clients and information exchange with peers. Though
we do not have any global model or state as in the stan-
dard FL, still, we can design the process such that all clients
reach a global solution through local models. The local mod-
els can be converged through on-device training and learning
from their peers [12]. Fully decentralized SGD and other
optimization algorithms are recently getting popular for scal-
ability in large-scale systems [74] and decentralization of
networks devices [71], [75]–[82]. Note that even in the decen-
tralized distributed setting, a central authority may need that
will be in charge of setting up system configuration, learn-
ing tasks, hyperparameters, algorithm selection, or resolve
system failure. A degree of trust needs to establish among the

clients to replace the central authority. Alternatively, such deci-
sions can be made by a leader client, through a collaborative
consensus scheme [56], [59], [83].

C. Distributed and Federated Optimization

The early trend of distributed optimization was naive dis-
tributed variants of corresponding serial algorithms, which is
often inefficient in terms of communication. The second trend
is to design communication-efficient algorithms. The idea is
to perform a lot of local computation that is further followed
by a communication round. Such a technique is useful in
practice and distributed approximate Newton (DANE) [84],
CoCoA [85], and DiSCO [86] are some of the examples
of such distributed optimization techniques. In distributed
optimization, the data-centers possess huge data with relatively
few devices. Later on, federated optimization is introduced
to protect privacy in a better way. In that concept, the users
keep their data private and provide the computational power of
resources. Consequently, the data points are relatively smaller,
the number of devices is huge, and data patterns vary on
different devices.

There have been various methods to deal with dis-
tributed online optimization and distributed learning, includ-
ing stochastic variance reduced gradient (SVRG) [87], [88],
DANE [84] that is particularly for distributed optimization,
naive Federated SVRG, and Federated SVRG (FSVRG). The
desirable properties while designing an algorithm for unbal-
anced, non-independent and identically distributed (IID), and
massively distributed can be stated as follows [33].

1) An algorithm stays there in case it is initialized to the
optimal solution.

2) In case a single node possesses all data, the algorithm
should converge in O(1) communication rounds.

3) If all available features within the system occur on a
single node, then the problem can be decomposed, and
the algorithm is supposed to converge in O(1) rounds
of communication.

4) If we assume that each node has an identical data set,
then the algorithm converges in O(1) communication
rounds.

Property 1) is valuable for any optimization setting whereas
properties 2) and 3) are applicable in federated optimization
systems (e.g., unbalanced, non-IID, massively distributed). To
the end, property 4) is an extreme case, particularly for a dis-
tributed optimization setting where we have a large number of
IID data per device.

IV. LEARNING ON RESOURCE-CONSTRAINED DEVICES

Before discussing the challenges associated with resource-
constrained devices, it is essential to understand the definition
of on-device learning of edge devices clearly. We can define
an edge device as a resource-constrained entity with limited
computational power, storage capacity, transmission range, and
battery [89]. We consider an object as an edge device if it
cannot be integrated with additional resources, i.e., the device
resources cannot be increased or decreased. For instance, a
workstation cannot be considered as an edge device as we can
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Fig. 6. Different modeling approaches in federated networks. Depending on properties of the data, network, and application of interest, one may choose to
(a) learn separate models for each device, (b) fit a single global model to all devices, or (c) learn related but distinct models in the network.

Fig. 7. Core challenges of FL considering resource-constrained IoT devices.

integrate additional resources within that device. However, a
manufactured robot can be considered as an edge device since
we cannot directly incorporate any more support to the robot’s
capability. If we look at our today’s IoT world, then we can
see the use of resource-constrained devices in every aspect,
from monitoring the environment to controlling human life.
Within such an IoT environment, edge devices are utilized as
they are smaller in size and are more transportable. Different
kinds of robots, drones, and smartphones can be considered
as edge devices possessing limited resources that communicate
remotely. To attain optimal service performance from such IoT
components, we need to train those edge devices that prevent
them from being stragglers during the learning process. Those
devices should be trained with diversified sample environments
to perform accurate prediction in a variety of testing data. It
is not feasible to train those edge devices with a large data set
due to their limited resource availability. In this section, we
discuss the potential challenges we may face while considering
such resource-bounded IoT nodes in the FL environment (see
Fig. 7).

A. Communication Overhead

Communication overhead is considered one of the major
challenges in an FL-based IoT environment. The communi-
cation cost mainly increases due to the large sizes of data
passing during the process and the iterative and nonoptimized
approach of conducting communication between the server
and the clients. This problem becomes adverse when clients
possess insufficient resources. For instance, if a client pos-
sesses limited bandwidth, then the client would not be able
to communicate with the FL server effectively during model

training. Similarly, if a client has weak processing capability,
then performing an assigned local computational task would
be infeasible for that client. Furthermore, there could be large
data across the network that could produce a large model size,
and eventually, the resource-constrained clients would strug-
gle in dealing with such a large model. To carry out efficient
training in a large data network, the client models need to
be compressed so that the clients do not have to waste extra
resources in training a large model. If a majority of the FL
clients are resource constrained, then the FL process requires
more server–client interaction to reach a target convergence,
and the clients would not be able to afford such a high com-
munication cost. While frequent FL server–client interaction
can reduce convergence time, recurrent communication can
encounter high costs. Therefore, it is required to design an
effective optimization technique that can handle the tradeoff
between communication overhead and resource utilization of
the FL setting. Ma et al. [90] analyzed the tradeoffs of commu-
nication and resource expense; however, they did not address
the complexity of the clients’ local model solutions.

B. Heterogeneous Hardware

The training phase of FL can run on multiple devices, which
may belong to various generations of products. Such prod-
uct variation creates a network that consists of heterogeneous
devices with a discrepancy in computational ability, memory
size, or battery life. Therefore, the training period may vary
significantly across clients, and it is not effective to consider
all participants with the same scale. To achieve optimal results
in training, FL needs to be aware of heterogeneous hardware
configurations [7]. The proficient and trusted clients need to be
selected in the training phase considering system requirements.
After selecting suitable clients, it may be possible that a model
fails to send its local model due to connection error or out of a
battery issue (see Fig. 8). However, due to system requirements
(e.g., memory and bandwidth), most of the clients may not be
able to be a part of the training round. Besides, it is possible
that the majority of proficient clients go out of networks, and
we may end up with a few clients that do not satisfy system
requirements. Thus, carrying out the FL training process in
such a situation is challenging.

C. Limited Memory and Energy Budget

In Section IV-B, we discuss heterogeneous hardware chal-
lenges, and in this segment, we describe the memory
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Fig. 8. Systems heterogeneity scenario in FL.

availability and energy budget issue across heterogeneous FL
clients. Any FL client may have a very limited memory size,
or a client having a larger memory size may not have space.
Besides, the FL clients may have a preset energy budget, which
may not fulfill the system requirements during the training pro-
cess. While limited computational ability takes more process-
ing time, memory shortage leads to overflooding of the device.
Such situations encounter extra communication overhead and
degrade the system performance. Hard et al. [22] pointed out
the necessary hardware requirement, including the required
memory size and processing ability during their implementa-
tion of next-word prediction on the keyboard. They mentioned
that to simulate their application, the device should have a min-
imum of 2 GB of free memory, whereas many IoT devices
hardly possess even free megabytes of memory. Considering
such memory constraints, Haddadpour et al. [91] proposed
an approach of distributing shards of data across FL clients to
attain the target model swiftly. In their approach, they selected
proficient clients who possessed a greater memory size, energy
budget, higher bandwidth, and processing capability. However,
they did not discuss the memory management and data han-
dling for FL clients with limited available memory. We can
manage such memory limitation by storing limited sizes
of data, and in case of memory shortage, data aggrega-
tion technique can be applied to avoid memory outburst.
Wang et al. [67], Das and Brunschwiler [92], Jiang et al. [93],
and Xu et al. [94] analyzed hardware limitation challenges
in the implementation of FL by considering Raspberry Pi
and other types of resource-limited clients. They studied the
feasibility of implementing FL on resource-constrained edge
devices but did not cover the way of leveraging optimal
memory requirement and quantifying energy budget through-
out the FL process.

D. Scheduling

Existing federation optimization techniques can be
classified into synchronous and asynchronous training.
McMahan et al. [20], Konečnỳ et al. [33], [42], and
Bonawitz et al. [73] focused on analyzing federated
optimization that considers synchronous communication
during training between the FL server and clients. In every
training round, a subset of clients is triggered to perform a
task. However, device or network issues can compel some

clients to be unresponsive in the process, and the server
needs to wait until getting a response from sufficient clients.
Otherwise, the server drops that epoch as time-out and pro-
ceeds on to the next iteration. On the contrary, asynchronous
optimization enables FL participants to directly send gradients
to the FL server after every local update that is excluded in
synchronous FL optimization. Asynchronous training [95]
is applied in some recent works because of its faster con-
vergence when communication latency is comparatively
higher and heterogeneous across the clients. Xie et al. [96],
Zheng et al. [97], and Lian et al. [98] analyzed asynchronous
FL training with provable convergence by combining it with
federated optimization. We present the synchronous and
asynchronous FL behaviors in Fig. 9.

In an FL process, it is indispensable to set the training phase
of the participants, which is called scheduling. Scheduling
is explicitly important when there exists resource-constrained
IoT devices within the networks, and frequent interaction with
the server costs more resources. Optimized scheduling can
play a vital role in minimizing energy consumption as well
as utilizing less bandwidth. Scheduling should be carried out
in such a manner so that there remains less possibility of pos-
sessing old data by the participants. It is possible that some
participants can generate local models utilizing their old data
repeatedly while skipping new data [73]. Such a situation can
lead to resource-wastage without bringing any variations or
improvements in the model. Besides, any participant can col-
lect data by using a malicious application, and recognizing
such harmful application data can be a challenge as it needs
extra resources. Moreover, improper scheduling can lead to
slow learning or straggler issues, which is considered as one
of the reasons of a performance bottleneck, particularly for a
resource-constrained FL-based IoT environment. By straggler
clients, we mean the IoT devices that fail to respond within a
specified period while the other clients react to the server suc-
cessfully. Due to the slow response, the server needs to wait for
the straggler client model, resulting in a delay in performing
the aggregation of the model parameters in synchronizing FL.
If the number of such straggler clients is high, then the overall
model convergence would be at stake [99], [100]. Besides, in
the conventional FL approach, the straggler clients are simply
dropped [101]. However, if a significant portion of the clients
is straggler, and we drop all of them, then the model quality
would be extremely low [94]. Therefore, it is challenging to
leverage a proper scheduling and guarantee model convergence
even when a major portion of the clients are stragglers.

E. Energy-Efficient Training of DNNs

Deep NNs (DNNs) are applied in various artificial intelli-
gence and deep learning-based applications where the sam-
ple data set is large. A lot of edge applications are now
using DNN-based algorithms [102], [103] and there is an
increasing focus on making DNN inference efficient on edge
devices [104], [105]. Additionally, FL requires edge devices to
perform on-device training. However, training DNNs requires
high computational capability, large memory, and energy avail-
ability, and most of the IoT clients may lack such system
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Fig. 9. Difference between a synchronous and asynchronous FL.

configurations. Wu et al. [106] proposed an approach to reduce
the cost of training and inference by using lower bitwidth inte-
gers for both stages of the application. Jiang et al. proposed
an efficient learning technique using pruned models, while
Park et al. [107] proposed a strategy to generate a high-quality
ML model through on-device model output, parameters, and
data aggregation. Another interesting approach to training high
capacity models having fewer parameters is discussed in [23].
Specifically, in case the size and features of the training data
set are huge, we need to devise energy-efficient training on
resource-constrained clients, perhaps a challenging approach.

The memory requirement of the training phase of DNN has
been an issue that is well studied for training on large GPU
and CPU server clusters. Training on edge devices can bene-
fit by adapting techniques that have served well in managing
this problem in the server context, such as efficient gradi-
ent checkpointing [108], tensor rematerialization [109], and
recompute [110]. Cai et al. [111] proposed another way to
reduce the memory required for on-device training by intro-
ducing a lite residual module that can be adapted to new
data. By only changing this lightweight module and keep-
ing the other parameters constant, they reduce the memory
requirement of the training process.

Another factor that can cost extra energy resources during
training is mislabeled or unlabeled training data, particularly
when the size of the data set is large. The existing FL-based
applications consider that all extracted data are appropriately
labeled. Nevertheless, this assumption can be disproved if
the collected data are mislabeled via security holes or unla-
beled due to a network connection error. Mislabeled data
would generate a wayward model that eventually affects the
global model update. In case we have unlabeled data, it costs
extra resources to put labels, and that would be crucial for
resource-constrained IoT settings. Gu et al. [112] proposed a
framework to identify the mislabeled data which are injected
through data poisoning attacks. Using representation-based
fingerprints, they detect the malicious or compromised partic-
ipant’s data label while coming across erroneous predictions
during runtime. Tuor et al. [113] proposed a method of find-
ing and ignoring irrelevant data (possibly due to mislabeling)
from FL. To come up with a solution of unlabeled data,

Lim et al. [114] proposed a strategy to make labeling of
unlabeled data through applying collaborative learning with
the neighbor clients. Implementing the same procedure for
resource-constrained clients would be challenging in real time
as it needs additional resources.

F. Fairness in Federated Learning

Fairness in the FL process means the distribution of client
resources in an equitable manner. We can think of the global
model as a resource, which is responsible for serving the client
devices. However, the service that each user receives needs
to be fair, i.e., the resource allocation and accuracy distri-
bution across the client devices are unprejudiced. A minimax
optimization framework named Agnostic FL [38] is developed,
which can optimize the target distribution of the centralized
model and is formed as a mixture of participated client dis-
tributions. However, their proposed approach is applied only
at small scales. Li et al. [63] used a α-fairness metric and
proposed a q-Fair FL to ensure fair accuracy distribution. Their
proposed strategy can tune resource distribution by considering
the desired amount of fairness. A collaborative fair FL frame-
work is proposed in [115], which utilizes client reputation and
compels them to converge to different models. They achieved
fairness without degrading predictive performance. In [116],
an FL-based client selection process is investigated to mini-
mize clients’ model exchange time that guarantees long-term,
flexible fairness in the presence of rigid system constraints.
However, they could not figure out a way to quantify how the
fairness factor would impact the convergence speed and final
target accuracy.

Moreover, some recent works on the optimization of
resource allocation with incentive mechanisms for the FL pro-
cess can be found in [116]–[121]. Khan et al. [117] designed
an incentive-based FL model via a Stackelberg game for
motivating client participation in the learning process. With
the motivation of addressing issues related to costs and mis-
match between client’s contributions and receiving incentives,
Yu et al. [116], [122] proposed a payoff-sharing scheme named
FL Incentivizer (FLI). Their proposed scheme can dynami-
cally distribute a given budget among data owners by ensuring
maximization of collective utility and minimization of inequal-
ity, considering the received rewards and waiting time for
receiving those rewards. A trust and incentive-based FL model
is designed in [119], where they proposed to add local com-
putation results of the clients using the concept of blockchain
consensus to establish a public auditable and decentralized FL
ecosystem. In their model, honest clients can receive incen-
tives while malicious clients are punished heavily in terms of
payoffs. Besides, Nishio et al. [120] proposed a strategy of
estimating the contributions of each client in an FL process
and provide incentives accordingly, reducing the communica-
tion and computational overhead. Similarly, Cong et al. [121]
designed a client contribution-based incentive method for
FL but using the concept of Vickrey–Clarke–Groves (VCGs)
mechanism.

After analyzing the above-mentioned FL-fairness strat-
egy, we can conclude that any client within an FL-IoT
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environment may have resource scarcity. Therefore, designing
a fair resource allocation and distribution scheme is necessary
to reduce communication overhead, computation power, and to
achieve higher accuracy. We need to check clients’ activities,
resource status, and contributions toward model convergence
to ensure fairness in FL resource allocation.

G. Scalability of Federated Learning

In a realistic FL-based IoT environment, we may observe a
large number of IoT devices that are heterogeneous in nature
and possess limited resources. In such a situation, FL training
can be executed through effective client selection and optimal
resource utilization. Chen et al. [123] developed a framework
via joint learning and establishing wireless communication
among the FL clients. They discussed that the FL process can
be hampered due to packet errors or the unavailability of wire-
less resources (e.g., limited wireless bandwidth). Considering
the factors, they formulate an optimization problem consid-
ering joint learning, resource block allocation, and effective
user selection with a goal of minimizing FL loss function.
They derive a closed-form expression for FL convergence by
considering the effect of the wireless channel. Their proposed
framework ensures scalability and sparsification. Nishio and
Yonetani [66] design a client selection protocol, using FL edge
server. Their proposed model can manage the communica-
tion resources between the FL server and the clients, choosing
clients based on their resource conditions. Besides, an activ-
ity and resource-aware FL model is presented in [124]. They
proposed a strategy of examining client’s resources and assign-
ing trust scores to clients as per their contributions toward
model convergence. On the basis of sufficient resources and
a higher trust score, they only select a subset of eligible
clients for the training round from a large number of available
clients. Their proposed model ensures scalability, robustness,
and sparsification of the FL process. Ye et al. [125] proposed
a selective client model aggregation-based FL framework for
vehicular edge computing. Instead of a random selection of FL
clients, they leverage a technique of selecting clients based on
contract theory. Moreover, a trilayer lightweight FL framework
is proposed in [126] that is capable to handle a large number of
clients and their huge data streams across the networks. They
shrink large model size through pruning mechanism, select
clients based on their resource status and previous activities,
handle divergent local model update, and also allow a vari-
able local model update. Their proposed framework ensures
scalability, quantization, robustness, and sparsification.

H. Privacy Issues

In federated settings, we keep the raw data of each client
on-device due to privacy concerns. However, it is possible
to leak sensitive information [58], [127]–[129] through shar-
ing model update during the training process. For instance,
Carlini et al. [128] presented that sensitive patterns (e.g.,
credit card numbers) can be extracted from a user-trained
model based on recurrent NNs. In the case of having sen-
sitive data sets distributed across several data owners, privacy
can be preserved via secure multiparty computation (SMC)

or secure function evaluation (SFE). The protocol outcome
enables multiple data owners to collaboratively agree to gen-
erate a function without leaking any information [130]–[132].
Though several privacy definitions for FL are stated in [40],
[56], [58], [128], and [133]–[138], we can classify them as
global and local privacy. In the global privacy setting, the
server is assumed to be trusted, and local model updates are
private. In local privacy, individual local model updates are
generated on the client side and aggregated on the server.
In Table IV, we show key ideas of some existing FL-
based privacy-preserving approaches. However, due to the
presence of resource-constrained devices, the existing privacy-
preserving FL algorithms may not be suitable for running
on those devices. Thus, beyond ensuring rigorous privacy
guarantees, novel methods need to be designed that are com-
munication efficient, computationally cheap, and capable of
handling dropped participants.

V. POTENTIAL SOLUTIONS OF EMERGING CHALLENGES

IN DEPLOYING FEDERATED LEARNING ALGORITHMS ON

RESOURCE-CONSTRAINED IOT DEVICES

In the previous section, we explored the implementation
challenges of the FL process during on-device training with
resource-scarce devices. A clear direction toward possible
solutions for those emerging challenges can be effective in
future research of this domain. This section describes the
existing works and possible solutions of emerging challenges
during training of resource-constrained devices in an FL
environment.

A. Deploying Existing Algorithms to Reduce Communication
Overhead

We explored a couple of key approaches that aim to reduce
communication costs and can be classified into three cate-
gories: 1) decentralized training; 2) model compression; and
3) importance-based updating. The integration of such strate-
gies can be useful to overcome the tradeoffs and shortcomings
in this area. Haddadpour et al. [91] proposed an approach
to infuse redundancy among the clients to bring diversity
and reach convergence taking less communication round.
Chen et al. [123] also designed a framework of joint-learning
by considering the effect of wireless factors on participants
in the FL scenario. Some of these methods adapted model
compression strategies, but those methods may deteriorate
model accuracy and encounter high computational costs. Such
tradeoffs are empirical, i.e., we need to conduct several local
training rounds to find an optimal number of iterations before
making a communication. FL method can be more scalable
if we can apply effective optimization techniques that are for-
malized theoretically, and implemented and tested empirically.
Apart from compressing the model size, FL approaches can
be motivated by MEC paradigms and their applications. For
instance, Liu et al. [146] considered an intermediate model
aggregator for reducing instances during device-cloud commu-
nication. However, their model costs more time to converge
when the number of clients or edge servers increased. The sit-
uation becomes adverse when there exist non-IID data across

Authorized licensed use limited to: VinUni. Downloaded on June 26,2023 at 06:35:47 UTC from IEEE Xplore.  Restrictions apply. 



IMTEAJ et al.: SURVEY ON FEDERATED LEARNING FOR RESOURCE-CONSTRAINED IoT DEVICES 13

TABLE IV
EXISTING FL-BASED PRIVACY PRESERVING APPROACHES

Fig. 10. Infusing data redundancy through overlapping data collection.

the network. Through multitask learning [48], such a statis-
tical challenge can be handled. Moreover, FL models can be
exploited to efficiently utilize the storage and computing power
for facilitating efficient FL.

To reduce communication overhead, Imteaj and Amini [147]
and Sun et al. [148] discussed infusing redundancy among the
client data set to reach convergence with fewer communication
rounds. In Fig. 10, we see that a particular data collection point
L1 is used by two clients D1 and D4. Similarly, other data
collection points, i.e., L2, L3 and L4 are utilized by D1 and
D2, D2 and D3, and D3 and D4, respectively. This setting leads
to infusing redundant data samples among the client devices.

According to [33] and [149], a novel approach is proposed
to share compressed sizes of message and carry out the
reduced number of communication rounds to attain the target
model. With the same motivation, Caldas et al. [150] applied
lossy compression and federated dropout to train a smaller sub-
set of local clients and reduce client-to-server interaction and
local computation (see Fig. 11). Though frequent communica-
tion may accelerate convergence, recurrent interaction incurs
more communication costs. Every time a client interacts with
the server, it has to compromise its resources. To handle the
limited resources of the clients, a resource-optimization algo-
rithm is necessary to consider such a tradeoff. In this regard,
the authors in [26], [90], [151]–[155] studied the relation
between communication cost and effective resource utiliza-
tion, though they did not discuss the complications of the local
problem’s solution. Wang et al. [67] presented a distributed

control algorithm for minimizing the training loss under a
given resource budget. Besides, Wang et al. [11] designed
a framework to exchange learning parameters of the clients
through the collaboration for generating better local train-
ing models. Hence, this reduces communication overhead and
ensures both system and application level improvement, which
generates additional energy cost. A detailed discussion on the
tradeoffs between FL training period and energy requirement
cost can be seen in [114] and [156]–[158]. They minimized
the weighted sum of the training completion period and energy
consumption, applying an iterative algorithm. In the case of
delay-sensitive scenarios, they adjusted the weights so that
FL participants would expend more energy to achieve time
minimization.

However, most of the studies that we discussed do not
consider the heterogeneity of client resources. Due to such het-
erogeneity, some of the approaches cannot be adapted in such a
resource-constrained FL-based IoT environment. For instance,
the key idea of [20] was to allow for more computation on
the mobile-edge side, e.g., by conducting more local updates
before interacting with the server. Such an application requires
processing power, which may not be feasible for IoT clients
with weak-processing units. Finally, the resource-limitations
may cause a straggler effect.

B. Convergence Guarantee in Asynchronous FL

In Section IV-D, we highlighted the difference between
synchronous and asynchronous communication. Most of the
existing FL approaches are implemented on the concept
of synchronous FL, where the global model aggregation
depends on the receiving of all the local model parameters
of the participants. Previous works obtained fast conver-
gence in such synchronous FL procedures, as they assumed
all participants have sufficient resources (e.g., computation,
bandwidth, memory). In consequence, even the slowest par-
ticipant does not affect much the overall accuracy; and
eventually, the model convergences. On the other hand, in
asynchronous FL, the server performs aggregation whenever
a model is received and may include a participant in the
middle of the training phase. This approach enables scal-
ability within the system and reduces the straggler impact,
but cannot guarantee convergence. In Table V, we point out
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Fig. 11. Reducing size of the model by (1) generating a submodel applying Federated Dropout, (2) lossily compressing the obtained resulting object which
is passed to the client, who (4) applies decompression and trains that using its own local data, and (5) again compresses the update which is sent back to
network server. There it is (7) again decompressed and finally, (8) aggregated to be a part of the global model.

the key ideas of different asynchronous FL-based approaches.
Sprague et al. [159] analyzed the issues of ensuring con-
vergence of asynchronous FL but did not present a solution
to overcome such issues. Xie et al. [96] proposed asyn-
chronous federated optimization, [159] discussed on the asyn-
chronous FL for geospatial applications, [160]–[162] proposed
a DP-based asynchronous FL strategy for MEC, and [163]
presented a blockchain-based secure data sharing strategy
for asynchronous FL. Still, none of these works guaran-
tee convergence during asynchronous FL communication of
resource-constrained clients. Thus, formulating a method to
ensure convergence in asynchronous FL can be a new research
direction.

C. Quantification of Statistical Heterogeneity

FL training becomes complicated when the training
data across devices are not identical in terms of data
modeling and convergence behavior of the training process.
Several ML works focused on the designing of statisti-
cal heterogeneity via meta-learning [166], [167], multitask
learning [168], [169], which are further extended to FL
settings [24], [48], [170]–[173]. For instance, an optimization
framework MOCHA [48] allows for personalization through
multitask learning; however it considers convex objectives and
is limited to its ability while scaling to massive networks.
Corinzia and Buhmann [171] modeled a Bayesian network by
performing variational inference during learning. Though their
proposed approach can handle both convex and nonconvex
models, it encounters high cost while generalizing to large fed-
erated networks. Besides, Eichner et al. [172] aimed to identify
cyclic patterns within data samples, while a detailed analysis of
transfer learning strategy for personalization during FL can be
seen in [170]. While the client data tend to be heterogeneous in
terms of the number of samples, data set structure, and format
in a non-IID setting, all existing works on FL adjust the statisti-
cal heterogeneity after the training phase begins. It impacts the
training quality, and the lack of proper quantification of such
heterogeneity can cause poor training performance. A local
dissimilarity approach is proposed [174] to quantify statistical
sample variation, where the resource-quantification starts after
the training starts. Li and Wang [175] proposed a centralized
approach of handling heterogeneity of FL model training but
did not consider specific support and analysis for statistical
heterogeneity. Li et al. [21] proposed a reparametrization of

the FedAvg [20] algorithm that can scale up divergent model
updates and guarantees convergence while learning over statis-
tical heterogeneous networks. However, they did not quantify
the level of statistical heterogeneity while selecting clients
during training or performing model aggregation.

D. Data Cleaning and Handling False Data Injection

In a real-world FL-based IoT environment, the IoT clients
generate their models based on their extracted data. In a con-
ventional FL-based IoT approach, there is no intermediate
stage to refine the sensor data, which may cause a falsi-
fied local model with an erroneous update that eventually
misleads the global model aggregation. As the number of
such false data injected clients increases, the model accuracy
reduces at the same phase. In time, it brings down the chance
of reaching convergence. Bagdasaryan et al. [60] proposed
a backdoor FL to identify malicious attacks during feder-
ated aggregation. They developed a train-and-scale scheme
to restrict anomaly detectors from looking at the client’s
model weights or accuracy during FL tasks. Fung et al. [176]
explained the vulnerability of sybil attacks in the FL process.
They proposed a defense mechanism that can identify poi-
soning sybils by analyzing the diversity of FL clients during
model training. However, none of them considered real-time
false-data injection onto the IoT clients, which needs further
research.

E. Reducing Energy Consumption and On-Device Training

In line with our previous discussion, the clients of the
IoT domain may possess a weak-processing unit. Therefore,
it is challenging to conduct inference, training on devices,
and executing timely interaction with the server through an
energy-efficient communication scheme. However, on-device
training causes two problems. First, the generated on-device
model size needs to be small enough so that it fits within
the device memory and still captures most of the data
complexity to compute an effective model. The on-device
inference problems are solved in [177] and [178], but the
on-device training issues are not expounded. Second, the
system can require high computational and storage availabil-
ity for on-device training than these IoT clients can provide.
Section IV-E presented some approaches suitable for special-
ized neumorphic or field-programmable gate array (FPGA)

Authorized licensed use limited to: VinUni. Downloaded on June 26,2023 at 06:35:47 UTC from IEEE Xplore.  Restrictions apply. 



IMTEAJ et al.: SURVEY ON FEDERATED LEARNING FOR RESOURCE-CONSTRAINED IoT DEVICES 15

TABLE V
ASYNCHRONOUS FL-BASED APPROACHES

hardware or miss the combative constraints observed in the
FL-IoT domain. Figuring out the solution to this dual problem
is paramount. A potential direction can be found in [179].
They proposed an IoT-based network architecture to enable
creating high-capacity client models with 15-38x fewer param-
eters compared to the conventional model experienced for
such applications. Kumar et al. [177] proposed a tree-based
approach to predict 2-kB RAM IoT devices, e.g., Arduino
Uno board that possessed 8-bit ATmega328P microcontroller
without any floating-point support, and 32 KB size of the
read-only flash. Their proposed algorithm attains standard
prediction accuracy by constructing a tree model that shrinks
the model size and reduces prediction costs. They learned a
sparse tree with high-powered nodes, carrying out the tree’s
learning process through sparsely projecting data within a low-
dimensional space, and collaboratively learning all projection
parameters and trees. Investigating such architecture to enable
learning within the resource-constrained FL environments is
an unexplored domain.

As we discussed, FL needs on-device training; there-
fore, any research that can enable energy-efficient execution
of ML algorithms can help FL in turn. If we consider
resource-constrained nodes for an IoT environment, then pro-
longing battery-power life duration is a challenge. Due to
repeated interactions with the server, the battery charge can
be reduced significantly. Minimizing the depreciation of bat-
tery power while interacting with the server is challenging.
Kumar et al. [177] developed a tree-based algorithm for mak-
ing a prediction on resource-constrained IoT devices (i.e.,
Arduino) that possess only 2-kB RAM. Still, they did not per-
form the training operation on resource-constrained IoT nodes.
Gupta et al. [180] designed a kNN-based algorithm that works
on resource-scarce IoT nodes (≤ 32-kB RAM and 16-MHz
processor) to predict through supervised learning, but the edge
devices are not trained locally. Therefore, it is essential to
design an improved version of the FL algorithm that can han-
dle small computational power as well as storage to train IoT
nodes on edges, and how we can manage the energy consump-
tion of client nodes during the training phase is also an open
issue. An exciting direction in this front is dynamic compu-
tation technologies. Dynamic computation techniques activate
only a part of the NN for an input. This can help achieve both
efficient training and inference as only a part of the NN is
updated for each input. There are many different ways one

can introduce dynamic computation to a NN. The techniques
can be divided into three broad categories—dynamic channel
pruning (DCP), dynamic-layer skipping (DLS), dynamic spa-
tial gating (DSG), DLS, and Mixture of Experts (MoE). DSG
techniques ([181], [182]) identify spatial regions in the OFM
that are deemed important and focus their attention only on
those parts of the OFM. DCP techniques identify channels in
the OFM that are deemed unimportant and skip computations
for those channels ([183], [184]). DLS techniques are more
specific to ResNet style architecture with skip connections or
RNN-based models ([185], [186]). Finally, MoE is based on
the idea that instead of using a single large NN to process
an input data, multiple domain experts can be used to process
the input. Based on the input, the results from the domain
experts can be given more weight. The routing to the experts
is done via a predictor network. By gating experts that are
deemed unimportant for the input, one can achieve faster com-
putation [187]. DCP techniques can be viewed as a specific
instantiation of the techniques in this domain.

Beyond algorithm innovations, there has been a surge of
work in the domain of design of software and hardware that
executes ML algorithms efficiently. Here, efficiency refers to
any or all of reduced energy consumption, faster runtime, and
smaller memory footprint. The works in this area can be cat-
egorized in the domain of novel instructions for executing
ML in the CPU [188], [189], design of specialized accel-
erators [190]–[192], optimized software library [193], [194],
development of new memory technologies [195], and near
data processing to enable large storage using smaller energy
budget [196]. However, the vast majority of these works are
focused on the efficient inference of ML algorithms. A lot
of these optimizations could be tailored to enable suitable
training. Thus, further research in understanding the training
algorithms of ML and how they execute on hardware can help
tailor these solutions to solve this issue. The work described
above modifies traditional hardware to make them amenable to
ML. In traditional hardware, the unit responsible for process-
ing information (processing unit) is separated from the unit
responsible for storing data (memory). The instructions and
data are fetched from memory and executed in the processing
unit. This is called the von Neumann architecture. Apart from
this, there is an entire body of works in the domain of neuro-
morphic computing [197], [198] dedicated to replicating the
extreme power efficiency of the human brain by developing
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new hardware that mimics its synaptic structure. The main dif-
ference with traditional hardware lies in the non von Neumann
architecture of these hardware as the processing and memory
elements are not separate. We refer the readers to [197] to get
a better overview of this field. FL can also benefit from edge
units built using this neuromorphic hardware that can enable
efficient on-device learning.

F. Managing Dropped Participants

Internet availability and network connection power are cru-
cial, particularly while applying FL in an IoT environment.
Any FL-IoT participant may go out of the network in the
middle of the training phase or during the interaction with
the server due to mobility, bandwidth shortage, lack of trans-
mission power, or out of battery life. Most of the recent
works considered that all FL participants maintain a contin-
uous connection with the server and cannot drop connection
in the middle. In the real-world FL-IoT environment, such a
scenario is not feasible, and any participant may go offline
due to out-of-resources. Dropping off a significant portion
of the participants would fail to generate an effective global
model. It is difficult to understand whether a client gives
a slow response because of the network issue or resource-
shortage. Figuring out the potential problem may help us act
according to the problem scenario. Das and Brunschwiler [92]
presented a solution to handle straggler clients by acknowl-
edging their resource utilization (i.e., computation power)
after each local update. They formed a predictive model
by analyzing the client’s resource utilization and adjusting
local computation accordingly. Another strategy is to per-
form asynchronous training, i.e., updating the global model
whenever it receives a model update from any of the partic-
ipated clients [67], [165]. Moreover, a recently invented FL
framework, FedProx [199] can handle heterogeneity in feder-
ated networks. FedProx allows a partial amount of work from
each client device through a reparameterization of the conven-
tional FedAvg algorithm. However, when most of the clients
within the network perform a low amount of partial works,
their approach may take longer to reach convergence. Imteaj
and Amini [126] proposed the activity and resource-aware FL
strategy that can handle straggler issues by examining resource
status, labeling clients with trust values in accordance to their
contributions toward model convergence, and accepting vari-
able works from the participated clients. However, further
research needs to be conducted to optimize hyperparameters
while enabling variable or partial works from the clients.

G. Privacy Preservation

The existing FL approaches aim to improve privacy by
adapting classical cryptographic protocols and algorithms,
such as DP and SMC. An FL-based SMC protocol is proposed
in [73] to protect client model updates. Through this method,
the server cannot see the local update parameter but can
still extract some information by observing the aggregated
results after each round. However, this approach encoun-
ters a high communication cost, which is not feasible for a
resource-constrained FL-IoT environment. Geyer et al. [40],

McMahan et al. [56], and Zhao et al. [200] applied DP to
FL to achieve a global DP, but the hyperparameters of these
approaches affect the communication and model accuracy. An
adaptive gradient clipping technique is presented in [201] to
handle this issue. In [58], a modified version of local privacy is
designed to limit the power of adversaries that guarantees more
robust privacy than global privacy and results in better model
accuracy. Another interesting approach to a DP mechanism
based on metalearning is proposed in [136] that can be used
in FL through personalization. Besides, DP can be coupled
with model compression strategies to reduce communication
overhead and attain an improved version of privacy simultane-
ously [7], [135]. Furthermore, some prior works [202]–[205]
proposed mechanisms to preserve privacy in a blockchain-
enabled FL-based IoT environment. However, most of these
approaches did not consider the heterogeneous resources of
clients. They did not analyze the feasibility of applying a
robust privacy-preserving algorithm that can be adapted with-
out a straggler effect. Further research needs to be conducted to
obtain maximum privacy benefits for the resource-constrained
heterogeneous FL-based IoT environment.

VI. APPLICATIONS OF FEDERATED LEARNING

FL fits best in applications where we need to deal with
sensitive information and, therefore, on-device training is more
important than passing local data to the server. Most of the
existing FL applications are based on labeled data collected
from clients or user activities (e.g., type URLs or keyboard,
click button). In this section, we discuss some existing FL
applications to better understand the real-world impact of FL.

A. Resource-Sufficient Federated Learning Application

Recommendation System: A recommendation system can
be compared to an information filtering scheme that tries to
predict user preference or rating for an item. In the con-
ventional recommendation system, user preference or rating
would be shared with other users, and privacy is not main-
tained in many cases. Instead of sharing such private data,
Chen et al. [24] proposed a federated meta-learning frame-
work through which each local client shares his/her algorithm
rather than his/her data or local model. In particular, federated
metalearning is useful when the model size is large; therefore,
sharing the algorithm is more flexible than sharing a model.

Next-Word Prediction: A popular ML-based application is
next-word prediction, where a model is constructed that can
predict what the next probable word would be. Such a cen-
tralized ML application may transfer private user data (e.g.,
SMS and URLs) to the server and may leak any sensi-
tive information about the user. From that motivation, an
on-device distributed ML-based framework is designed by
Hard et al. [22], which is inspired by the FedAvg algorithm.
They trained each participant locally and obtained a higher
recall than the conventional approach. In this way, FL helps a
user make predictions by learning his/her typing behavior and
indirectly reading the user’s mind.

Keyword Spotting: Wake-word detector applications are
prevalent nowadays. For instance, Amazon’s “Hey Alexa”

Authorized licensed use limited to: VinUni. Downloaded on June 26,2023 at 06:35:47 UTC from IEEE Xplore.  Restrictions apply. 



IMTEAJ et al.: SURVEY ON FEDERATED LEARNING FOR RESOURCE-CONSTRAINED IoT DEVICES 17

wake-word detector is used to play different songs, or exe-
cute different commands, while Google’s wake-word detector
“Hey Google” is used for different purposes including driving,
e.g., to get direction on a map. However, most of those appli-
cations are based on the cloud-based system and pass user
data to the server. Unlike this, an embedded speech model is
proposed [23], where they used a wake-word detector “Hey
Snips” to recognize the user’s voice. They used a crowd-
sourced data set and applied the FL strategy by keeping user
information private.

Relevant Content Suggestions for On-Device Keyboard:
Google has recently implemented a virtual keyboard appli-
cation, named Gboard, where they applied the FL strategy to
suggest relevant content [29]. It works on user-click or ignores
situations that are stored in training cache and the value is
added when related contents are suggested. Based on user-
click, the information is stored in the cache and fed into the
on-device training process. In this work, inference and training
are performed on-device. Only the model updated parameters
are shared with the server, while globally trained models are
deployed on each client.

B. Resource-Constrained Federated Learning Application

Smart Robotics: A lifelong reinforcement FL framework for
mobile robots is proposed in [50]. They designed an architec-
ture to enhance navigation systems of mobile robots to learn
efficiently from prior knowledge and adapt to a new environ-
ment effectively. They used two types of transfer learning for
fast adaptation of the mobile robots within a new environment.
Their proposed system is scalable but lacks security, privacy,
robustness, and sparsification.

Smart Object Detection: Yu and Liu [213] designed
an approach of optimizing object detection by considering
Kullback–Leibler divergence (KLD) during the measurement
of weights divergence of the client’s local models. They
adapted the abnormal weight suppression technique to reduce
the effects of weight divergence that may be caused by
unbalanced and non-IID data.

Smart Healthcare: In healthcare services, the FL-based IoT
concept can be extremely effective to preserve the privacy of
sensitive medical data. The IoT devices can be useful to gen-
erate data streams of patient’s status, and FL can be used to
undertake early precautions or treatment utilizing the historical
data. Yuan et al. [214] developed an FL framework for smart
healthcare by applying the FL mechanism and reduced com-
putation load of IoT devices during training. Their proposed
approach also took the edge of communication overhead dur-
ing interaction of FL server and IoT devices. However, their
developed framework does not guarantee convergence, and is
incapable of performing a successful learning process in the
presence of malfunction or edge/cloud server failure.

On-Device Ranking: Another application of FL is to rank
a search result. For instance, if we query something in our
device, an automated search result appeared. This is done by
making an expensive call to the server. To reduce such cost,
implementation of on-device training to generate a ranking of

search results is proposed in [73], which is particularly use-
ful for resource-constrained devices. By observing the user’s
selected item from a ranked list, their system puts a label
whenever a user interacts with the ranking feature. In this way,
user preference is not revealed to anyone, and communication
overhead is reduced by a significant margin.

Anomaly Detection: An autonomous self-learning scheme
is proposed in [215] to identify compromised devices within
IoT networks. Relying on unlabeled crowdsource data and
depending on the device-type-specific behavior profiles, their
proposed system can learn the anomaly detection model with-
out requiring any labeled data or human intervention to
operate. They apply the FL strategy to aggregate behavior
profiles for effective intrusion detection.

Resource-Efficient Training of UAV-Enabled IoT Devices:
A particle swarm-based air quality monitoring framework
is proposed in [57]. Their proposed system enables energy-
efficient lightweight model training of unmanned aerial vehi-
cles (UAVs) using aerial haze images and predicts air qual-
ity index (AQI) while preserving privacy. To sense ground
systems, they proposed a Graph CNN-based long short-term
memory (LSTM) model for obtaining accurate and real-time
AQI inference. Besides, Tang et al. [216] addressed the issue
of reducing latency and improving the energy efficiency of
UAV-enabled IoT devices by optimizing battery resources
and wireless bandwidth. They employed a deep determinis-
tic policy gradient (DDPG) strategy to evaluate their system
cost.

In Table VI, we present a detailed summary of some existing
FL applications.

VII. FUTURE DIRECTIONS FOR FEDERATED LEARNING

ALGORITHMS CONSIDERING RESOURCE-CONSTRAINED

IOT DEVICES

As we discussed, FL is a recently invented distributed ML
technique that can be considered as an emerging research area.
After examining the core challenges of the FL process while
applying on resource-constrained IoT devices in Section IV,
and analyzing some potential solutions of those emerging chal-
lenging in Section V, we point-out potential future directions
in FL-based IoT environments. In this section, we highlight
the future directions of this domain.

1) In an FL-based IoT environment, it can be experi-
enced that some clients possess more data (e.g., due
to frequent use of a particular application or having a
greater memory size) compared to other clients within
the underlying IoT network setting. Such a discrepancy
in the number of data samples, particularly due to hetero-
geneous memory size and availability, leads to massive
deviation in terms of training periods from participant-
to-participant. The nonuniform data distribution raises
issues in generating the representation of the population
distribution of any client data set. Handling such dis-
parity within the local training data set needs further
research.

2) To ensure convergence for asynchronous learning in a
Non-IID setting in the presence of resource-constrained
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TABLE VI
LIST OF EXISTING FL APPLICATIONS

devices, loss functions of the nonconvex problem (i.e.,
an objective function that has multiple feasible regions,
and each region has multiple locally optimal points) need
to be considered, and supportive algorithms should be
proposed.

3) In an FLS, we may need to choose a cluster head that
would be responsible for passing the aggregated model
parameter to the server for energy efficiency. The cluster
head can collect client model parameters from its region
in a synchronized fashion, while the central server can
receive those locally aggregated models through a syn-
chronous or asynchronous manner. Here, the leader can
act as an intermediate aggregator and can avoid strag-
gler nodes. It can marginally reduce power consumption
as well as can minimize bandwidth requirements of the
FLS, which could be effective for resource-constrained
FL-based IoT environment. However, the leader node
needs to be proficient to conduct swift operations and
should be trustworthy to avoid false data injection.

4) A device-centric automatic wake-up mechanism can be
useful in determining the optimal period to carry out
interaction with the server. Such an approach can reduce
unnecessary communication with the server and avoid
sending a model update when the client’s local data
does not change much. Besides, the automatic wake-up
mechanism may help the resource-constrained devices
to reserve energy, which could be utilized in further
training.

5) Client mobility can drastically change the overall system
behavior. A network may hold a large number of active
clients before the training starts, and after some period,
most of them could go out of network. As a result, some
areas may own a large number of clients, while some
other regions may not be able to generate a feasible
model due to a lack of active clients. Therefore, how
to handle the mobility issues of the IoT devices and
ensure successful federated model training is a potential
research direction.

6) During the FL process, we may observe statistical het-
erogeneity among the client data. Such heterogeneity
compels the clients to perform more interactions with

the server, or with its neighbor nodes. The existing
works did quantification of such statistical heterogene-
ity after initiating the training, which may cost extra
resources and may have crucial impact on local training
of the resource-constrained devices. Extensive research
needs to be conducted to quantify the statistical het-
erogeneity even before the initialization of FL training
to avoid idiosyncratic situations due to data sample
variations.

7) Effective incentives mechanism design is essential to
encourage FL clients to share their model information.
Some incentives or regulations schemes are imple-
mented in blockchain [217]–[219], and some incentive
mechanisms are proposed for high-quality federated
data [220], [221]. Still, more extensive research needs
to be conducted on the incentives mechanism design to
upgrade the effectiveness of FL. An example of such a
design is how game-theory models can be adapted in
FLS or, in addition to the accuracy, what new benefit
can be provided to the user to encourage them for join-
ing in FL training. Besides, as the FL participants can
be resource-bounded, or the participants can be busi-
ness competitors, it is mandatory to design a strategy
that divides the overall earnings to ensure the long-term
engagement of the participants. Furthermore, more focus
needs to be placed on how to defend against adversarial
attacks that try to collect the majority of the incentives.

8) A lightweight blockchain framework for the FL-IoT set-
ting needs to be designed that can ensure robustness
and enhance privacy and security while interacting with
the server or neighbor clients. Blockchain can prevent
model parameters or algorithm temperament and ver-
ify the model update and exchange. Some blockchain
paradigm for on-device training is discussed in [36]
and [222], but they designed that the framework without
considering the challenges of the weak-processing unit
and limited memory of IoT devices. Further research
needs to be conducted on designing miner selection,
block mining, consensus algorithm, validating a chain,
atomicity, and blockchain interoperability, especially for
FL with resource-constrained IoT clients.
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9) The FL structure leads us to think about integrating
trust model to avoid adversarial clients during training.
Selecting a client based on only resource availability
would lead us to choose a malicious client. However,
we can design a trust-based model based on the client’s
previous contribution to learning within the network and
interacting with other clients. Typically, it is assumed
that the server is trustworthy, and we can use the server
to generate the trust model by analyzing the behavior of
the clients. The incentive mechanism can be designed
based on the generated trust model, and this may open
us a new research direction.

VIII. CONCLUSION

This article presented a comprehensive survey on FL algo-
rithms and analyzed the implementation challenges while
performing on-device training. We particularly emphasized
the issues of the FL process while considering resource-
constrained IoT devices as FL clients. First, we presented a
highlight over FL algorithms that can enable efficient and scal-
able model training in edge devices. Then, we presented an
overview of the FL taxonomy and analyzed the existing papers
to distinguish our contribution as compared to prior surveys.
We discussed distributed learning and optimization techniques
and explained various aspects of distributed algorithms for
decision-making purposes. We analyzed the challenges dur-
ing the on-device learning of resource-constrained devices
and discussed existing feasible solutions. After analyzing the
challenges, we described the emerging challenges of FL imple-
mentation in resource-constrained IoT devices, which needs
extensive further research. Afterward, we explored the exist-
ing FL applications to provide a better understanding of
the FL role in real-world applications. Finally, we listed
the potential future directions of deploying FL within the
resource-constrained heterogeneous IoT environment.
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