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a b s t r a c t

Federated learning is a set-up in which multiple clients collaborate to solve machine learning problems,
which is under the coordination of a central aggregator. This setting also allows the training data
decentralized to ensure the data privacy of each device. Federated learning adheres to two major
ideas: local computing and model transmission, which reduces some systematic privacy risks and
costs brought by traditional centralized machine learning methods. The original data of the client is
stored locally and cannot be exchanged or migrated. With the application of federated learning, each
device uses local data for local training, then uploads the model to the server for aggregation, and
finally the server sends the model update to the participants to achieve the learning goal. To provide
a comprehensive survey and facilitate the potential research of this area, we systematically introduce
the existing works of federated learning from five aspects: data partitioning, privacy mechanism,
machine learning model, communication architecture and systems heterogeneity. Then, we sort out
the current challenges and future research directions of federated learning. Finally, we summarize the
characteristics of existing federated learning, and analyze the current practical application of federated
learning.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Backgrounds of federated learning

With the development of big data, the amount of data is no
onger the focus of our attention. The urgent problem that needs
o be solved is the privacy and security of data. The leakage
f data is never a small problem, and recently the public pay
rowing attention to data security [1–3]. Not only individuals,
ollectives and society are also strengthening the protection of
ata security and privacy. Taking the General data Protection
egulations implemented by the European Union on May 25th,
018 as an example, GDPR [4] aims to protect users’ personal
rivacy and data security. It requires operators to clearly express
he user agreements and cannot deceive or induce users to give
p the privacy requirements. In addition, operators are prohibited
rom training model without the user’s permission. At the same
ime, it allows users to delete their private data. Similarly, China’s
yber Security Law of the People’s Republic of China [5] and the
eneral principles of the Civil Law of the People’s Republic of
hina [6], which have been implemented since 2017, also point
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950-7051/© 2021 Elsevier B.V. All rights reserved.
out that network operators shall not disclose, tamper with or
destroy the personal information they collect. When conducting
data transactions with the third, it is necessary to ensure that the
proposed contract clearly specifies the scope of the data to be
traded and the obligations of data protection. The establishment
of these laws and regulations poses new challenges to the tra-
ditional data processing mode of artificial intelligence to varying
degrees.

In the field of artificial intelligence, data is the foundation,
therefore model training cannot be performed without data.
However, data often exists in the form of data islands. The direct
solution to data islands is to process the data in a centralized
manner. The popular data processing method is through cen-
tralized collection, unified processing, cleaning and modeling.
In most cases, data is leaked during collection and processing.
With the improvement of regulations, user’s private information
is well protected, but it is getting harder to collect data to train
models. How to legally solve the problem of data islands has
attracted a lot of attention and thinking of artificial intelligence.
To solve the dilemma of data silos, traditional data statistics
methods are already stretched in the face of various regulations.
Federated learning shifts the focus of research to the problem
of data islands. The traditional machine learning mostly uses the
centralized method to train the machine learning model, which
requires the training data to be concentrated in the same server.

https://doi.org/10.1016/j.knosys.2021.106775
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.106775&domain=pdf
mailto:sxlljcxy@gmail.com
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C. Zhang, Y. Xie, H. Bai et al. Knowledge-Based Systems 216 (2021) 106775

I
t
i
i
u
d
T
t
t
u
l
i
o
d
r
d
l
p

t
i
p
c
f
f
l
t
t
d
t
o
f

v
p
d
m
p
g
t
b
l
i
l
t
f
o
I
b
t
p
m
p
d
m
s
w
t
t
d
o

i
e
t
l

n fact, due to the laws and regulations of data privacy protection,
he centralized training method which may leak the data and
nvade the privacy of the data owner is getting harder to be
mplemented. In the centralized training settings, if mobile phone
sers want to train machine learning models with their own
ata, it is obvious that the amount of their data is not enough.
herefore, before the federated learning, mobile phone users have
o send their personal phone data to the central server, which can
rain the machine learning models with the data integrated from
sers. Compared with the centralized training method, federated
earning which belongs to distributed training method, enables
ndividual users in different spatial locations to collaborate with
ther users to learn machine learning models, and all personal
ata that may contain sensitive personal information can be
etained on the device. With the help of federated learning, in-
ividual users can benefit from obtaining a well-trained machine
earning model without having to send their privacy-sensitive
ersonal data to a central server [7].
Federated learning opens up new research directions for ar-

ificial intelligence. Federated learning provides a novel train-
ng method to build personalized models without violating user
rivacy. With the advent of artificial intelligence chipsets, the
omputing resources of client devices have become more power-
ul. Artificial intelligence model training is also gradually shifting
rom the central server to the terminal equipment. Federated
earning provides a privacy protection mechanism that can effec-
ively use the computing resources of the terminal device to train
he model, which prevent private information from being leaked
uring data transmission. Since the number of mobile devices and
he devices in other fields is countless, there are a large amount
f valuable dataset resources, and federated learning can make
ull use of it.

The main feature of federated learning is to ensure the pri-
acy of users, but it is very different from traditional privacy
rotection algorithms applied in the field of big data, such as
ifferential privacy and k-order anonymity. Federated learning
ainly protects user privacy by exchanging encrypted processed
arameters, while the attackers cannot get source data. All these
uarantee that federated learning will not leak user privacy at
he data level, and there is no violation of GDPR and other
ills. Federated learning can be divided into horizontal federated
earning, vertical federated learning and federated transfer learn-
ng according to the distribution of data. Horizontal federated
earning is suitable in the case that the user features of the
wo datasets overlap a lot, but the users overlap little. Vertical
ederated learning is available in the case that the user features
f the two datasets overlap little, but the users overlap a lot.
n the case that the users and user features of the two datasets
oth rarely overlap, we can use transfer learning to overcome
he lack of data or tags. Federated learning is similar to multi-
arty computing and distributed machine learning. There are
any types of distributed machine learning, including distributed
ublishing model results, distributed storage training data, and
istributed computing tasks. The parameter server in distributed
achine learning is one of the tools to accelerate the training
peed of machine learning models. It stores data on different
orking nodes in a distributed manner and allocates resources
hrough a trusted central server in order to efficiently obtain
he final training model. In federated learning, compared with
istributed machine learning, each worker node is the sole owner
f its own data and a training participant of the model.
The main embodiment of federated learning to ensure privacy

s that users have complete autonomy over local data, which
mphasizes the privacy protection of data owners. There are
wo main types of privacy protection mechanisms in a federated

earning environment. A common method is to use encryption

2

algorithms such as homomorphic encryption and secure aggre-
gation. Another popular method is to add the noise of differential
privacy to the model parameters. The federated learning [8] pro-
posed by Google adopts a combination of secure convergence
and differential privacy to ensure privacy. There are also other
studies [9] that use only homomorphic encryption protection
parameters to achieve privacy protection.

1.2. Challenges to federated learning

In order to effectively protect the privacy of enterprises and
users, some challenges need to be solved in the federated learn-
ing. (1) Privacy protection: Since federated learning is proposed to
solve the problem of privacy data protection in machine learning,
we must ensure that the training model in federated learning
does not reveal users’ private information. (2) Insufficient amount
of data: A large amount of data is required to train a model
with excellent performance in traditional machine learning, but
in a distributed environment, the amount of data on each mobile
device is insufficient. On the other hand, collecting all data in
a centralized manner can result in huge expenses. Therefore,
federated learning requires each device to use local data to train
the local model, and then all the local models are uploaded to
the server to be aggregated into a global model. (3) Statistical
heterogeneity: There are a large number of edge devices in the
federal environment, and the data held by these devices may
be Non-IID (Non-Independent and Identically Distributed). For
example, in a smart medical system, the electronic medical record
data structure of different types of diseases is different, and it is
a big challenge to train these Non-IID data sets.

1.3. Main contributions

The main contributions of this paper are as follows: (1) Review
the development of federated learning. (2) Introduce the existing
work of federated learning from five aspects: Data Partitioning,
Privacy Mechanism, Machine Learning Model, Communication
Architecture and Systems Heterogeneity. (3) Sort out the current
challenges and future research directions of federated learning.
(4) Summarize the characteristics of existing federated learn-
ing, and analyzes the current practical application of federated
learning.

2. Related works

Federated learning is actually a kind of encrypted distributed
machine learning technology, in which participants can build a
model without disclosing the underlying data, so that the self-
owned data of each enterprise does not leave the local. Through
the parameter exchange under the encryption mechanism, a vir-
tual common model is established. Under such a mechanism, all
parties involved can successfully link up the data island and move
towards common development.

2.1. Definition of federated learning

In the practical application scenario [8], it is assumed that
N users {U1, . . .Un} own their own database {D1, . . .Dn}, and
each of them cannot directly access to other people’s data to
expand their own data. As shown in Fig. 1, federated learning is to
learn a model by collecting training information from distributed
devices. It contains three basic steps [10]: (1) Server sends the
initial model to each device. (2) The device Ui does not need to
share its own source data, but can federally train its own model
Wi with the local data Di. (3) Server aggregates the collected local

{ } ′
models W1, . . .Wn to the global model W , and then update the
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Fig. 1. A schematic diagram of federated learning. In order to guarantee the privacy of the data, federated learning only permits all the remote devices exchange
the model gradient with central server. During this process, each distributed devices train their own model with the local data, then they upload the local model to
the central server. After aggregating all the gathered models, the server returns the new global model to each devices.
global model to replace each user’s local model. With the rapid
development of federated learning, the efficiency and accuracy
of federated training models are getting closer and closer to
centralized training models [11]. It is playing an important role
in many areas that need to take into account privacy.

2.2. The development of federated learning

As a new privacy protection framework, federated learning
is not well understood by the public. The following examples
describe the working process of federated learning. Suppose that
there are a host of different enterprises want to collaborate on
training a machine model [12]. According to the GDPR criterion,
the data of each sides cannot be roughly merged without the con-
sent of their respective users [4]. On the other hand, an enterprise
can train a machine learning model according to its local data. It
is assumed that all parties establish a task model, but it is difficult
to train an ideal machine learning model because of the limited
and incomplete data of their own enterprises. The purpose of
federated learning is to solve these problems. Federated learning
ensures that the local data of their respective enterprises do not
go out. Under the principle of not violating the law of privacy
protection, parameters are exchanged between the clients and
the server through an encryption mechanism to establish a global
model.

3. Categorizations of federated learning

This section summarizes the categorizations of federated
learning in five aspects: data partition, privacy mechanisms, ap-
plicable machine learning models, communication architecture,
and methods for solving heterogeneity. For easy understanding,
we list the advantages and applications of these categorizations
in Table 1.

3.1. Data partition

According to the different distribution patterns of sample
space and feature space of data, as shown in Fig. 2, federated
learning can be divided into three categories: horizontal feder-
ated learning, vertical federated learning, and federated transfer
learning [12].
3

3.1.1. Horizontal federated learning
Horizontal federated learning is suitable in the case that the

user features of the two datasets overlap a lot, but the users
overlap little. Horizontal federated learning is to split the datasets
horizontally (by the user dimension), then take out the part of
the data that user features are the same but users are not exactly
the same for training. In other words, data in different rows
have the same data features (aligned by user features). Therefore,
horizontal federated learning can increase the user sample size.
For example, there are two providers of the same service in
different regions whose user groups come from their respective
regions and have little overlap with each other. However, their
businesses are very similar, so the user features of the records
are the same. In this respect, we can use horizontal federated
learning to train a model, which can not only increase the total
number of training samples, but improve the accuracy of the
model. In horizontal federated learning, it is common for all
parties to calculate and upload local gradients so that the central
server can aggregate them into a global model. The processing
and communication of gradients in horizontal federated learn-
ing may leak users’ private information. The common solutions
for this problem are homomorphic encryption [13], differential
privacy [14] and secure aggregation [15], which can ensure the
security of switching gradients in horizontal federated learning.

Google proposed a data federated modeling scheme for An-
droid phone model updates in 2016 [8,10]: when a single user
uses an Android phone, the user constantly updates the model
parameters locally and uploads the parameters to the Android
cloud, so that all data owners with the same feature dimen-
sion can establish a federated model. The system is a typical
application of horizontal federated learning, which adopts the
methods of differential privacy [14] and secure aggregation. Kim
et al. [16] proposed a horizontal federated learning framework
called BlockFL, in which each mobile device uses the block chain
network to update the local learning model. Smith et al. [17]
proposed a federated learning method called MOCHA to solve se-
curity problems in multitasking, which allows many sites to work
together to complete tasks and ensure privacy and security. The
multi-task federated learning also improves the communication
cost of the original distributed multi-task learning and improves
the fault tolerance of the original mechanism. In [11,18], the data
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ategorizations of federated learning.
Categorization Methods Advantage Applications

Data partitioning
Horizontal federated learning Increase user sample size Android phone model update; logistic

regression
Vertical federated learning Increase feature dimension Decision tree; neural network
Federated transfer learning Increase user sample size and feature

dimension
Transfer learning;

Privacy mechanism
Model aggregation Avoid transmitting the original data Deep network federation learning; PATE

method
Homomorphic encryption Users can calculate and process the

encrypted data
Ridge regression; federated learning

Differential privacy Can successfully protect user privacy by
adding noise

Traditional machine learning; deep learning

Applicable machine
learning model

Linear models Concise form, easy to model Linear regression; ridge regression
Tree models Accurate, stable, and can map non-linear

relationships
Classification tree; regression tree

Neural network models Learning capabilities, highly robust and
fault-tolerant

Pattern recognition, intelligent control

Methods for solving
heterogeneity

Asynchronous communication Solve the problem of communication delay Device heterogeneity

Sampling Avoid simultaneous training with
heterogeneous equipment

Pulling Reduction with Local Compensation
(PRLC)

Fault-tolerant Mechanism Can prevent the whole system from
collapsing

Redundancy algorithm

Heterogeneous Model Can solve the corresponding heterogeneous
device

(LG-FEDAVG) algorithm
Fig. 2. The different data partition of horizontal federated learning, vertical federated learning, and federated transfer learning.
s divided by client, allowing the client to keep private data from
eing uploaded to the server. Instead, each client calculates the
ocal gradient, uploads the server, and maintains the global model
or gradient updates.

.1.2. Vertical federated learning
Vertical federated learning is available in the case that the user

eatures of the two datasets overlap little, but the users overlap a
ot. Vertical federated learning is to divide the datasets vertically
by user feature dimension), then take out the part of data that
sers are the same but user features are not exactly the same
or training. In other words, data in different columns have the
ame user (aligned by user). Therefore, vertical federated learning
an increase the feature dimension of training data. For example,
here are two different institutions, one is a bank in one place,
nd the other is an e-commerce company in the same place. Their
ser groups are likely to include most of the residents of the area,
o there is a greater intersection of users. However, because banks
ecord users’ income and expenditure behavior and credit rating,
hile e-commerce keeps users’ browsing and purchasing history,
heir user features have almost no intersection. Vertical federated
earning is to aggregate these different features in an encrypted
tate to enhance the ability of the model. At present, many
achine learning models such as logical regression model, tree
tructure model and neural network model have been gradually
roved to be based on this federated system.
There are many machine learning algorithms for vertical par-

ition of data, such as classification [19], statistical analysis [20],
4

gradient descent [21], safe linear regression [22,23], data min-
ing [24]. In some vertical federated learning, there are also data
based on vertical partition. In [25], a vertical federated learn-
ing system called SecureBoost is proposed, in which all parties
combine user features to train together to improve the accuracy
of decision-making, which is a lossless training scheme. In [26],
Hardy et al. proposed a logical regression model with privacy
protection based on vertical federated learning. The model uses
pipelined entity analysis and distributed logic regression of Pail-
lier additive homomorphic encryption [27], which can effectively
protect privacy and also improve the accuracy of the classifier.

3.1.3. Federated transfer learning
In the case that the users and user features of the two datasets

both rarely overlap, we do not segment the data, but can use
transfer learning to overcome the lack of data or tags. This
method is called federated transfer learning [9]. For example,
there are two different institutions, one is an e-commerce in
China, the other is a social application in the United States. Due to
geographical restrictions, the user groups of the two institutions
have little overlap. At the same time, due to the different types
of institutions, the data features of the two datasets are only
a small part of the overlap. In this case, in order to carry out
effective federated learning, transfer learning must be introduced
to solve the problems of small unilateral data size and small label
samples, so as to improve the effectiveness of the model. The
most suitable situation for transfer learning [28] is when you try
to optimize the performance of a task but there is not enough
related data for training. For example, it is difficult for hospital
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adiology departments to collect many X-ray scans to build a
ood radiology diagnosis system. At this time, transfer learning
ill help us with other related but different tasks, such as image
ecognition task, to learn a radiology diagnosis system. Through
ederated transfer learning, we can not only ensure the privacy
f data, but also transfer the model of auxiliary tasks to director
earning, and solve the problem of small amount of data.

.2. Privacy mechanisms

The most important feature of federated learning is that coop-
rative clients can keep their own data locally, and need to share
odel information to train the target model, but the model infor-
ation will also disclose some private information [29]. The com-
on means to protect federal privacy are model aggregation [15],
omomorphic encryption [13] and differential privacy [14].

.2.1. Model aggregation
Model aggregation is one of the most common privacy mech-

nisms of federation learning, which trains the global model by
ummarizing the model parameters from all parties, so as to
void transmitting the original data in the training process. Shashi
t al. [30] enabled multiple devices to participate in federal train-
ng based on the established incentive mechanism. In order to
btain efficient results, the communication efficiency optimiza-
ion during the parameter exchange process must be considered
n real time. Compared with establishing incentive mechanisms,
u et al. [31] demonstrated local adaptation based on fine-tuning,
ulti-task learning and knowledge extraction to help improve

he privacy of individual participants and the accuracy of robust
ederated models. Therefore, participants can obtain the benefits
f federated learning and achieve better results than local models
ithout compromising the privacy or integrity of the model.
McMahan et al. [18] proposed a deep network federation

earning framework based on iterative model averaging, which
rains the global model by summarizing the local model in each
ound of updates. The PATE [32] method is based on the aggre-
ation of knowledge and is transferred from the Teacher model
rained by separated data to the Student model whose attributes
an be exposed. The PATE combines multiple models trained with
isfederated data sets in a black box way, which provides an
ccurate guarantee for the privacy of the training data. Yurochkin
t al. [33] developed a Bayesian nonparametric framework for
ederated learning of neural networks, which establishes a global
odel by matching neurons in the local model. The combination
f federated learning and multitasking [17] allows multiple users
o train models of different tasks locally, which is also a typical
ethod of model aggregation. In [16,34], federated learning and
lock chain are combined to exchange and update the model data
f each equipment based on the block chain. Finally, under the
uarantee of the block chain protocol, the model parameters are
afely aggregated.

.2.2. Homomorphic encryption
General encryption schemes focus on data storage security. It

s impossible for users without a key to get any information about
he original data from the encryption results, and cannot perform
ny calculation operations on the encrypted data, otherwise it
ill lead to unsuccessful decryption. However, homomorphic en-
ryption can solve the computing problem of general encrypted
ata, because it is concerned with the security of data processing.
he most important feature of homomorphic encryption is that
sers can calculate and process the encrypted data, but no orig-
nal data will be disclosed in the process. At the same time, the
ser with the key decrypts the processed data, which is exactly
5

the expected result. It is common in the Ridge regression sys-
tem [15,35], which combines homomorphic encryption to meet
the privacy requirements. The performance of communication
and computing overhead has been improved.

Homomorphic encryption is the icing on the cake for federated
learning. When using federated learning, the gradient exchange
between the users and the server may leak the private informa-
tion of users. Homomorphic encryption can solve this problem
very well, it can deal with the encrypted model without affecting
the training results of the model. In [13], the additive homomor-
phism is used to ensure the sharing security of model parameters,
so that the privacy of each client will not be leaked out by the
central server. Hardy et al. [26] proposed a federated logical
regression model, which uses additive homomorphism scheme
to effectively resist honest and curious attackers. Liu et al. [36]
proposed a federated learning framework for transfer learning, in
which the privacy mechanism also uses additive homomorphic
encryption to encrypt model parameters to protect data privacy.
Cheng et al. [25] used entity alignment technology to obtain com-
mon data to build a decision tree model called SecureBoost, and
homomorphic encryption is used to protect model parameters.

3.2.3. Differential privacy
Differential Privacy [37] is a new privacy definition proposed

by Dwork in 2006 to solve the problem of privacy disclosure in
statistical databases. Under this definition, the calculation results
of the database are insensitive to the changes of a specific record,
and a single record in the dataset or not in the dataset has little
impact on the calculation results. Therefore, the risk of privacy
disclosure caused by the addition of a record to the dataset is
controlled in a very small and acceptable range, and the attacker
cannot obtain accurate individual information by observing the
calculation results. In the training process of traditional machine
learning [38] and deep learning [39], it is popular to add noise to
the output to apply differential privacy in the process of gradient
iteration, so as to achieve the goal of protecting user privacy.
In practice, Laplace mechanism and exponential mechanism are
usually used to achieve differential privacy protection. A lot of
research work is carried out around the two aspects of privacy
protection and validity. Adding more noise will inevitably affect
the validity. To achieve the balance between privacy and validity
is the most popular research direction at present. For example,
differential privacy can be combined with model compression
technology [40] to maximize privacy benefits while improving
performance.

Differential privacy is divided into global differential privacy
and localized differential privacy. Both kinds of differential pri-
vacy can guarantee ε−the differential requirements of a single
user, but the application scenarios are slightly different. Geyer
et al. [41] proposed a federated optimization algorithm with
differential privacy, which is applied to clients to ensure their
global differential privacy. The trained model itself contains a
large number of super-parameters to ensure communication and
accuracy. Due to the addition of noise, it will cause a great loss of
validity. In the follow-up work, in order to avoid blindly adding
unnecessary noise, Thakkar et al. [42] designed a paradigm prun-
ing scheme based on adaptive gradient to reduce the penetration
of noise to the gradient. Under the condition that the validity of
global privacy protection is limited, Bhowmick et al. [29] designed
a minimax optimal privatization mechanism, which simulates
the local privacy protection strategy of users, limits the power
of potential attackers, and achieves better model performance
than strict local privacy. Li et al. [43] proposed a new gradient-
based differential private parameter transfer algorithm, which is
applied to the modeling task of non-convex federal language, and
achieves the performance close to that of non-private model. Qi
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t al. [44] designed a recommendation model based on federated
earning for news recommendation. The model with local check-
ng privacy is trained on multi-user equipment, and users are
andomly selected to upload the local model to the server and
ggregate into a new global model.

.3. Applicable machine learning models

Federated learning is gradually infiltrating into the popular
achine learning model, which aims to ensure the privacy and
fficiency of the model. We mainly consider three types of models
upported by federation learning: linear model, decision tree and
eural network.

.3.1. Linear models
Linear models are mainly divided into three categories: linear

egression, ridge regression and lasso regression. Du et al. [19]
roposed the training of linear model in the federated environ-
ent, which solves the security problem of entity parsing, and

inally achieves the same accuracy as the non-private solution.
ikolaenko et al. [35] designed a ridge regression system with
omomorphic encryption and Yao’s protocol [45], which obtained
he best performance. Compared with other models, the linear
odel is simple and easy to implement, and it is an effective
odel for implementing federated learning.

.3.2. Tree models
Federated learning can be used to train single or multiple de-

ision trees, such as gradient boosting decision trees and random
orests. Gradient Boosting Decision Tree (GBDT) algorithm is a
idely mentioned algorithm in recent years, which is mainly due
o its good performance in many classification and regression
asks. Zhao et al. [46] implemented the GBDT privacy protection
ystem for the first time in regression and binary classification
asks. The system securely aggregates the regression trees trained
y different data owners into a collection to prevent the disclo-
ure of user data privacy. Cheng et al. [25] proposed a framework
alled SecureBoost, which trains the gradient lifting decision tree
odel for horizontal and vertical partition data, and enables users

o establish a federated learning system.

.3.3. Neural network models
Neural network model is a popular direction of machine learn-

ng at present, which aims to train neural network to carry out
omplex tasks. In the federal environment, the research on deep
eural network is becoming more and more popular. Drones can
lay an important role in a variety of services, such as trajectory
lanning, target recognition and target location. In order to pro-
ide more efficient services, the UAV (Unmanned Aerial Vehicle)
roup usually trains the model through deep learning, but due to
he lack of continuous connection between the UAV group and
he ground base station, the centralized training method cannot
lay the real-time performance of the UAV. Zeng et al. [47] was
he first to implement distributed federated learning algorithm
n UAV group, joint power allocation and scheduling, and op-
imize the convergence speed of federated learning. The main
tep of this algorithm is that the leading UAV summarizes the
ocal flight model trained by the rest of the UAV to generate
he global flight model, which is forwarded to the rest of the
AV through the intra-group network. Bonawitz et al. [48] built
scalable federated learning system for mobile devices on the
asis of TensorFlow, which can train a large number of distributed
ata models. Yang et al. [12] set up a federated deep learning
ramework based on data partition to achieve priority application
n enterprise data. In addition to enterprise data applications,
he traffic flow information in government affairs big data often
6

contains a lot of user privacy. Liu et al. [49] combine GRU (Gated
Recurrent Unit) neural network for traffic flow prediction with
federated learning, and propose a clustering FedGRU algorithm,
which integrates the optimal global model, and captures the
spatio-temporal correlation of traffic flow data more accurately.
Experiments on real data sets show that its performance is much
better than that of non-federated learning methods.

At present, federated learning has been widely used in ma-
chine learning models, but with the rapid development of ma-
chine learning, it is still a challenge to propose practical and
efficient federated learning tasks.

3.4. Communication architecture

The federated learning application scenario is faced with some
problems, such as uneven distribution of user data, equipment
computing power and so on. With the development of smart
home and other devices, there is also a multitude of Non-IID data
needs to be processed without leaking sensitive information. Ac-
cording to the actual complex situation, choosing an appropriate
training method is helpful to the implementation of the model.

In the design of distributed training, all remote devices can
communicate with the central server and participate in the up-
date of the global model. In the federal setting, the flexibility
of local updates and customer participation affect the training
validity of the overall model. In [50], a model called FedProx
is proposed, which combines edge device data for distributed
training, and uses a federal average [18] model optimization
method to ensure the robustness and stability of the target task.
Federated Averaging (FedAvg) [18] is the most common model
optimization method in federated learning. This method averages
the randomly declining gradient data uploaded locally, and then
updates it and distributes it back locally. In multitask learn-
ing [17], the FedAvg model optimization method was proved to
have good performance. In order to solve the critical problem
that the communication cost of model updating is too high in
federated learning, Konecny et al. [11] compressed the model
data by the methods of quantization, random rotation and sec-
ondary sampling to reduce the communication pressure between
the central server and all users. Caldas et al. [51] adopted lossy
compression and Federated Dropout to reduce server-to-device
communication. Sattler et al. [52] proposed a Sparse Ternary
Compression protocol, which converges faster than the federated
average algorithm for federated training of Non-IID Data. In order
to protect their data privacy and solve the imbalance of Non-
IID data, Yang et al. [53] proposed a new federated average
algorithm, which aggregates the global model by calculating the
model weighted average of different devices.

3.5. Methods for solving heterogeneity

In the application scenario of federated learning, the difference
of equipment will affect the inefficiency of the whole training
process. In order to solve the problem of system heterogene-
ity, there are four kinds of diversion: asynchronous commu-
nication, device sampling, fault-tolerant mechanism and model
heterogeneity.

3.5.1. Asynchronous communication
In the traditional data center setup, there are two common

schemes based on parallel iterative optimization algorithm: syn-
chronous communication and asynchronous communication.
However, in the face of the diversity of devices, the synchronous
scheme is easy to be disturbed, so in the federated learning multi-
device environment, the asynchronous communication scheme
can better solve the problem of scattered devices. Duchi et al. [54]
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ade use of the sparsity of data to study parallel and asyn-
hronous algorithms, which can better solve the problem of
eterogeneity of training equipment. In the memory sharing
ystem [55], the asynchronous scheme solves the problem of
evice heterogeneity very well. Although asynchronous update
as achieved good benefits in distributed systems [56–60], the
roblem of delay in device communication aggravates the dis-
dvantage of device heterogeneity. In the process of federation
earning, because of the necessity of real-time communication,
t is the first choice to solve the heterogeneity of the system
ccording to the scheme of asynchronous communication.

.5.2. Sampling
In federated learning, not every equipment needs to par-

icipate in every iterative training process. In some federated
earning scenarios, the equipment is selected to participate in
he training, while in another part of the scene, the equipment
akes the initiative to participate in the training. In the work
f [17,18,48], the equipment is passively involved in the process
f federated learning. Nishio et al. [61] proposed a new proto-
ol FedCS, to solve the problem of resource-constrained client
election, which adds more clients to the training process and
mproves the performance of the model. Kang et al. [62] designed
n incentive mechanism based on contract theory to encourage
ocal devices with high-quality data to actively participate in
he effective federated learning process and improve learning
ccuracy. Qi et al. [44] designed a news recommendation model
ased on federated learning, which also randomly selected local
radients of users to upload to the server to train the global
odel. Wang et al. [63] proposed a novel approach named Pulling
eduction with Local Compensation (PRLC), which is based on
ederated learning to achieve end-to-end communication. The
ain idea of PRLC is that in each iteration, only part of the
evices participate in the model update, and the devices that do
ot participate are updated locally through the PRLC method to
educe the gap with the global model. Finally, it is proved that
he convergence rate of the PRLC method is the same as that of
he uncompressed method in the case of strong convexity and
on-convexity, and has better scalability.

.5.3. Fault-tolerant mechanism
In the unstable network environment, the fault-tolerant mech-

nism can prevent the system from collapsing, especially in the
istributed environment. When multiple devices work together,
nce there is a device failure, it will affect other devices. Feder-
ted learning is a hot research direction at present, with the assis-
ance of multiple devices to protect the privacy of multiple users.
imilarly, we also need to consider the device admissibility in
he federated learning environment. Wang et al. [64] focused on
he federated learning method and proposed a control algorithm
o determine the best tradeoff between local update and global
arameter aggregation to adapt to the limitation of equipment
esources. Yu et al. [50] improved the linear acceleration char-
cteristics of the distributed random gradient descent algorithm
y reducing communication. There are also some works [11,17]
hat ignore the participation of equipment directly, which does
ot affect the efficiency of federated learning in multi-task learn-
ng. Another option for tolerating equipment failures [65] is to
ntroduce algorithm redundancy by coding calculation. Incorrect
ata on mobile devices may lead to fraud in federal learning. Kang
t al. [66] proposed a federal learning scheme based on reliable
taff selection by introducing reputation as a metric and block
hain as a reputation management scheme, which can effectively
revent malicious attacks and tampering.
7

3.5.4. Model heterogeneity
Data is the cornerstone of the training model. When collecting

unevenly distributed data from multi-party devices to train the
federated model, it will seriously affect the final efficiency of the
model. Reasonable processing of data from different devices has a
vital impact on federated learning. In order to solve the problem
of statistical data heterogeneity, the federated learning network
is mainly divided into three modeling methods: (a) single device
has its own model; (b) trains a global model suitable for all
devices; (c) trains relevant learning models for tasks.

Yu et al. [67] proposed a general framework for training using
only positive labels, that is Federated Averaging with Spreadout
(FedAwS), in which the server adds a geometric regularizer after
each iteration to promote classes to be spread out in the embed-
ding space. However, in traditional training, users also need to
use negative tags, which greatly improves the training efficiency
and ensures the accuracy of classification tasks. Zhao et al. [52]
built a global model by training a small part of the data between
edge devices to improve the training accuracy of Non-IID data.
Khodak et al. [68] designed and implemented an adaptive learn-
ing method in the setting of statistical learning, which improved
the performance of small sample learning and federated learning.
Eichner et al. [69] considered fast data adaptive training between
the global model and specific equipment to solve the problem of
data heterogeneity during federated training. Corinzia et al. [70]
proposed a federated learning algorithm called VIRTUAL, which
regards the federated network of the central server and the
client as a Bayesian network and uses approximate variational
reasoning to train on the network, showing the most advanced
performance on federated learning real datasets. Different from
previous methods, the center of gravity is biased towards local or
global models. Liang et al. [71] proposed a Local Global Federated
Averaging (LG-FEDAVG) algorithm that combines local represen-
tation learning with global model federated training. Theoretical
analysis shows that the combination of local and global models
reduces data variance, reduces device variance, and improves the
flexibility of the model when dealing with heterogeneous data.
Experiments show that LG-FEDAVG can reduce the communica-
tion cost, deal with heterogeneous data and effectively learn the
fair representation of fuzzy protected attributes.

4. Applications

4.1. Service recommendation

4.1.1. Google keyboard
Google began a project in 2016 to establish federated learning

among Android mobile users [8] to improve the quality of key-
board input prediction, while simultaneously ensure the security
and privacy of users. The development of the language model
will also promote the development of the recommendation sys-
tem [72]. Combined with federated learning, it can be extended to
other recommendation applications. When users make a request,
the subsequent suggestion can be quickly provided by the model.

4.1.2. Intelligent medical diagnosis system
Due to the protection of patient privacy, it becomes very

difficult to collect medical data scattered in various hospitals. As a
result, medical data becomes a scarce resource. The development
of artificial intelligence has brought revolutionary changes to the
allocation of medical resources and disease diagnosis. However,
there are security challenges in the collection and processing
of data, such as the disclosure of patients’ private data [73].
Cohen et al. [74] analyzed the existing legal and moral chal-
lenges according to the privacy needs of patients, and discussed
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ow to make better use of patient data without divulging pri-
acy in the future. Too small amount of data and insufficient
abels are two problems faced by medical data, and the exist-
ng federated transfer learning can solve these problems. Lee
t al. [75] used the interconnected medical system to collate
ealth outcome data and longitudinal real data, and design and
mplement an integrated multi-federated learning network based
n APOLLO network to transform real-world data into medical
iagnostic evidence to assist doctors in forward-looking diagnosis
f patients.

.2. Wireless communication

For wireless communication, the early methods based on tra-
itional models are no longer suitable for the existing increasingly
omplex wireless networks, and the popularity of deep networks
as also brought a new direction to the establishment of wireless
etwork models [76].
Niknam et al. [77] applied the important functions of fed-

rated learning in the field of wireless communication, such as
dge computing and 5G network, and made a detailed analysis.
hen carried out simulations on standard data sets to prove
he availability and security of federated learning in the field
f wireless communication. Mohammad et al. [78] studied the
pplication of federated learning in wireless network and edge
omputing, and established a federated model with the help of
emote parameter server through its own data set of each device.
ran et al. [79] designed and implemented a federated learn-
ng model based on light wave power, which is a new method
pplied in the physical layer to manage the network through
esource allocation to achieve the highest transmission efficiency.
owever, the noise problem is always difficult to solve, so Ang
t al. [80] proposed a robust federated learning algorithm against
ireless communication noise. They simplified the noise problem

n the aggregation process and the broadcast process to a paral-
el optimization problem based on the expected model and the
orst-case model. The corresponding optimization problem can
e achieved through the SLA (Service-Level Agreement) algorithm
nd the sampling-based SCA (Service Component Architecture)
lgorithm. The experimental results show that the algorithm has
chieved good results in improving the prediction accuracy and
educing loss.

We can not only obtain a good global model without sharing
ur own private data, through the training process of feder-
ted learning, but also can reduce the communication burden
f the equipment. Nguyen et al. [81] applied federated learning
o the Wireless Internet of Things system in smart home, which
mproves the accuracy of attack detection and increases the com-
unication efficiency. Savazz et al. [82] proposed a serverless

earning method for federated learning applications of 5G wire-
ess networks, which shares model parameters through local
radient iterative calculation of each device and a consistency-
ased method. Abad et al. [83] designed a hierarchical federated
earning framework for wireless heterogeneous cellular network
HCN), in which the method of gradient sparse and period average
s adopted to improve the communication efficiency of the model.

. Challenge and future work

.1. Challenge

Federated learning is an emerging field, although federated
earning has played a role in some area, it still faces several
hallenges in performance optimization, next is the three main
hallenges.
8

5.1.1. Privacy protection
In federated learning, privacy protection is a major concern.

Federated learning protects the private data on each device by
exchanging model gradients with server, instead of raw data.
However, the model communication during the entire training
process can also leak sensitive information to a third party, for
example, the reverse deduction of models. Although there are
some methods to improve the privacy of data recently, these
methods all increase the complexity of calculation and increase
the computational burden of the federated network. In order to
further effectively protect the security of private data, we need
to find new methods to prevent private data from being leaked
during model transmission.

5.1.2. Communication cost
In federated learning, communication is a key bottleneck. In

fact, a federated network may consist of a multitude of de-
vices, such as millions of remote mobile devices. A training of a
federated learning model may involve a large amount of commu-
nication. In addition, the communication speed in the network
cannot be guaranteed, so the communication cost of federated
learning is very worth considering. Therefore, in order to make
federated learning practical, it is necessary to develop methods
with high communication efficiency.

5.1.3. Systems heterogeneity
Due to different hardware and network connections, the com-

puting and communication capabilities of each device in the
federated network may be different. Devices which are simulta-
neously active in a network usually account for only a small por-
tion. For example, a millions of devices network sometimes only
has hundreds of active devices simultaneously. Each device may
also be unreliable, thus the heterogeneity of these systems greatly
exacerbates the challenges of fault tolerance. Therefore, federated
learning methods must tolerate heterogeneous hardware and be
robust to offline devices in the network.

5.1.4. Unreliable model upload
In federated learning, mobile nodes may mislead the server

[66] to aggregate the global model intentionally or unintention-
ally. For deliberate behavior, the attacker may send malicious
model parameters to affect the aggregation of the global model,
thereby causing errors in model training. On the other hand,
the unstable mobile network environment may cause some un-
expected behaviors of mobile devices, such as uploading some
low-quality models, which will adversely affect federated learn-
ing. Therefore, for federated learning, it is crucial to resist this
unreliable local model upload.

5.2. Future work

In order to solve the challenges indicated above, there are
some possible future work directions worth studying:

5.2.1. Privacy restrictions
In fact, due to the heterogeneity of various devices in the

network, their privacy restrictions have their own different char-
acteristics, so it is necessary to define the privacy restrictions
of batch devices at a more detailed level to ensure the privacy
guarantee of specific samples, which can provide strong privacy.
The development of privacy protection methods based on privacy
restrictions of specific devices is an interesting and continuing
direction for future work.
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.2.2. Trade-off between communication cost and computational
ressure
We can mainly consider two aspects to improve the efficiency

f communication: iteratively send small messages, or reduce
he total number of communication rounds. For example, we
an use model compression technology to reduce the data size
ommunicated in federated learning. In terms of reducing com-
unication rounds, the models that need to be communicated
an be screened according to their importance. We can also
ombine these two methods, which can greatly reduce the cost
f communication between mobile devices and servers, but it
lso increases some computational pressure. Finding the trade-off
etween communication cost and computational pressure is the
ain direction of future work.

.2.3. Multi-center federated learning
The challenge of heterogeneity hinders federated learning.

ome recent studies [83–86] have shown that if the heterogeneity
f the devices in the system can be obtained in advance, all
obile devices can be grouped according to the heterogeneity,
nd a local central server can be assigned to each group. We
an first aggregate a group of similarly heterogeneous device
odels, and then send them to the server to aggregate into a
lobal model. Studying multi-center federated learning to solve
eterogeneous challenges is a promising direction in future work.

.2.4. Reliable client selection
In federated learning, mobile devices may upload unreliable

ata, which could cause that the server fail to aggregate the global
odel. Therefore, it is crucial to find trustworthy and reliable
lients in federated learning tasks. [66] introduced the concept
f reputation as a metric to measure the reliability of the client.
herefore, we can select a highly reliable client during each round
f model update to ensure the reliability of federated learning.
he improvement of reliable federated learning based on this
ethod is a far-reaching research direction in the future.

. Conclusion

With the development of big data and artificial intelligence,
he public’s requirements for privacy are becoming more and
ore stringent. Consequently, federated learning was brought up,
hich is a new solution for cross-platform privacy protection. As
model that can be used in practical, federated learning has been
ccepted by more and more researchers and enterprises today
hen it emphasizes data privacy and data security. On the one
and, if users are unable to train satisfactory models because
f insufficient data, federated learning can aggregate multi-party
ser models and update the integrated model without exposing
he original data. On the other hand, when users have not enough
ata labels to learn, federated learning can not only provide them
ith a secure model sharing mechanism, but also migrate models
o specific tasks to solve the problem of insufficient data labels.
his paper introduces the basic definition, related technologies
nd specific classification of federated learning, then discusses
he practical application scenarios of federated learning, and sort
ut the current challenges and future research directions of fed-
rated learning. It is believed that in the near future, federated
earning can provide secure and shared security services for more
pplications and promote the stable development of artificial
ntelligence.
9
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