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Abstract
Federated learning (FL) is a machine learning approach that decentralizes data and its pro-
cessing by allowing clients to train intermediate models on their devices with locally stored 
data. It aims to preserve privacy as only model updates are shared with a central server 
rather than raw data. In recent years, many reviews have evaluated FL from the system 
(general challenges) or server’s perspectives, ignoring the importance of clients’ perspec-
tives. Although FL helps users have control over their data, there are many challenges aris-
ing from decentralization, specifically from the perspectives of clients who are the main 
contributors to FL. Therefore, in response to the gap in the literature, this study intends to 
explore client-side challenges and available solutions by conducting a systematic literature 
review on 238 primary studies. Further, we analyze if a solution identified for one type of 
challenge is also applicable to other challenges and if there are impacts to consider. The 
conclusion of this survey reveals that servers and platforms have to work with clients to 
address client-side challenges.
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1 Introduction

Despite the heightened public awareness and technological and regulatory efforts, frequent 
data breaches and privacy violations are still being reported.1 The problem is that large 
amounts of data are centralized to a single service provider with current data storage and 
processing architectures, leading to a single point of privacy failure. The recently emerged 
Machine Learning (ML) architecture, named Federated Learning (FL), decentralizes 
data and its processing pipelines by allowing users2 to train intermediate models in their 
devices, effectively collaborating with the central service to build a global model for all 
clients without having to surrender the raw data to the central service.

Figure 1 describes the system architecture of FL and the training procedure. Steps 2, 3, 
4, and 5 are repeated over time to keep the global model up to date across clients.

Formally, FL can be considered an optimization problem where the goal is to minimize 
a global objective function that aggregates local models while respecting the constraints 
imposed by the distributed nature of the contributing clients and data (Wang et al. 2021a). 
Let C represent the N number of clients participating in FL. Each client i ∈ C has a local 
dataset Di . The objective is to train a global model M by aggregating the local models of 
the clients. In FL, the learning process involves minimizing a loss function that is calcu-
lated on each client. This is achieved through a weighted aggregation method. The objec-
tive of FL is to minimize the following objective function as in Eq. (1):
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Fig. 1  The system architecture of FL

1 https:// tinyu rl. com/ f4z6b br9.
2 We use the terms “users” and “clients” in this paper. Users are individuals with devices. Clients refer 
to users’ devices that train the data in the FL process. As a user participates in the FL process through the 
client (devices), thus client can be considered the endpoint for the user. Hence, we refer “clients” to both 
devices and users. When required to distinguish the users (individuals) from devices, we will explicitly refer 
to them as “users”.

https://tinyurl.com/f4z6bbr9
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Where w represents the model parameters, N is the total number of clients, wi is the weight 
assigned to client i, and fi(w) is the local loss function computed on client i. The objective 
function is minimized by iteratively updating the model parameters based on the aggre-
gated contributions from each client. The weights assigned to each client can be influenced 
by factors such as client performance, available resources, or fairness considerations. To 
ensure privacy, FL employs techniques like federated averaging or secure aggregation.

Although this paradigm shift helps users have greater control and transparency over 
their data, many challenges arise from decentralization. For example, clients may “drop 
out” during the training phase due to poor network connectivity; or maintaining model per-
formance is challenging due to unreliable model updates from clients; or users may con-
tribute heterogeneous data/devices, causing model divergence and straggling (Lyu et  al. 
2020b; Lo et al. 2021b; Kulkarni et al. 2020). Many researchers have extensively studied 
and surveyed many of these general FL challenges recently. For instance, previous papers 
have focused on the system (design aspects (Rahman et al. 2021) and general challenges 
such as communication efficiency (Shahid et  al. 2021), model performance (Wang et  al. 
2021b), and security (Lyu et al. 2020b) or the server’s perspective (statistical heterogeneity, 
client motivatability, and scalability) (Imteaj et al. 2021; Rahman et al. 2021).

However, the challenges from the clients’ perspectives are still under-explored. We refer 
to “client-side challenges” as the challenges clients face during the FL training procedures. 
The challenges may arise from security and privacy viewpoints (e.g., malicious servers or 
dishonest “peers”) and the complexity of FL processes as the computational burden is now 
placed on the clients.

These client-side challenges can affect a few or all clients on the network. For example, 
being able to personalize (fine-tune) a global model to a particular client would only affect 
those who want the capability. Privacy management challenges are relevant to every client.

We choose client-side challenges as our study focus because (i) client participation 
plays an important role in FL as they contribute resources. Shifting the data processing to 
clients may cause unintended mishaps and privacy risks as the wider population has lim-
ited technical knowledge (Kairouz et al. 2021), (ii) as clients contribute data and resources 
for FL, they should certainly be entitled to receive some benefits for their contribution. 
However, most clients are not technically savvy to define their requirements or understand 
the internal black-box mechanisms. For example, many mobile phone users are unaware 
that the predictions on Google keyboards are built using their data and resources,3 and (iii) 
most surveys focused on the FL challenges in general. To the best of our knowledge, the 
review of client-side challenges and solutions is not yet well documented in the literature.

We conducted a comprehensive literature review on the selected research papers, tuto-
rials, dissertations, and magazines in the FL domain to lay out the challenges from the 
clients’ perspectives. We categorized and grouped the articles according to their primary 
focus areas. We combine some focus areas to illustrate the challenges better. For example, 
data management, computation cost management, and communication cost management 
are combined as resource management. Further, we study the survey papers on the general 
FL challenges such as lack of motivation of clients, computational/communication cost, 

(1)minwF(w) =
1

N

N
∑

i=1

wi ⋅ fi(wi)

3 https:// tinyu rl. com/ 2p98x 899.

https://tinyurl.com/2p98x899
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and privacy/security attacks (Lyu et al. 2020b; Rahman et al. 2021; Blanco-Justicia et al. 
2021) and define the effect of these challenges from the client’s perspective. For example, 
incentive mechanism is a widely discussed issue for motivating clients to participate in 
FL. Previous papers discuss this issue in terms of incentive mechanism processes, algo-
rithms, and client motivation. But, clients are more interested in the benefits and transpar-
ency of incentives to compare the benefits among themselves. In another example, despite 
extensive discussions on privacy challenges in the literature, a thorough analysis of these 
challenges from the clients’ perspective is lacking. Our study specifically focuses on exam-
ining five client-specific challenges: auditability, data granularity, re-identification, and 
consented data sharing under the privacy management challenge. By delving into these 
aspects, we aim to shed light on clients’ unique issues. Correspondingly, our work con-
cluded with six main categories of client-side challenges.

The overall objectives of this survey are (i) outlining FL challenges from clients’ per-
spectives, (ii) providing an overview of the current research activities for the client-side 
challenges, (iii) summarising the challenges with existing approaches, and (iv) helping 
researchers to understand the open problems and future trends. We derived research ques-
tions (RQ) to achieve all the objectives and discuss them in the following section.

1.1  Research questions

1. RQ 1 What are the client-side challenges in FL? (Sect. 3): To enhance the usability of 
FL to clients, we first need to understand the challenges from the clients’ perspectives. 
Therefore the first research question focuses on client-side challenges.

2. RQ 2 What are the state-of-the-art solutions that address these challenges? (Sect. 4): As 
we analyze the challenges in RQ 1.0, we examine state-of-the-art solutions to the given 
challenges in this question.

3. RQ 3 Can a solution identified for one type of challenge be applied to other types of 
challenges? Are there any impacts to consider? (Sect. 5): Drawing on previous research 
and our understanding of existing solutions for the identified challenges, we assess a 
particular solution’s impact on the other challenges. Specifically, we analyze whether 
the solution can be applied to solve or potentially exacerbate other challenges.

4. RQ 4 What are the open challenges and possible future trends? (Sect. 6): This RQ 
focuses on open challenges and future trends in solving client-side challenges, which 
the literature does not cover fully.

The contributions of this paper are as follows: (i) identifying the challenges of FL from 
clients’ perspectives, (ii) comprehensive analysis of the solutions given in state-of-the-art 
approaches with 238 studies, and (iii) analysis and discussion on the impacts of applying 
the solutions to the identified challenges.

1.2  Sources selection and strategy

We followed a Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) (Page et al. 2021) approach to conduct the survey. We searched through Google 
Scholar search engine to identify research papers on different client-side challenges. We set 
the time frame from 01.01.2017 to 31.01.2022. The source collection statistics in search 
strings and the number of articles are tabulated in Table 1. Besides the initial search, we 
included some additional papers using snowballing process  (Wohlin 2014) through the 
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bibliography of identified research papers. As our paper focuses on identifying the client-
side challenges of FL, we included the search strings to retrieve the papers that discuss the 
challenges. Firstly, we screened the papers via title and abstract for including or excluding 
the papers. Figure 2 shows the PRISMA and snowball approach of the paper search and 
selection process.

After the initial screening through the title and abstract, we excluded 813 papers for 
the following reasons: long-short repetitive papers, non-relevance of the focused area, and 
a certain solution applied in multiple domains. We ended up with 331 papers for further 
full-text articles assessment with snowballing references. As we mainly focus on client-
side challenges, we excluded 93 papers that were focused on the general challenges, survey 
papers (but we included them in our related works section), application papers (same tech-
nology applied in different domains), white papers, irrelevant to client-side issues, short 
versions of extended papers, and papers which adapt FL as privacy preserved approach 
(pure FL without any extensions). Finally, this study covered 238 studies.

The remainder of the article is organized as follows. Section 2 discusses related surveys 
in FL and how our study is unique from others. Section 3 introduces the client-side chal-
lenges in FL. Section 4 presents the state-of-art solutions to the client-side challenges. Sec-
tion 5 discusses the linkage of challenges and applicability of current technologies. Sec-
tion 6 opens the opportunities and trends for future work. Finally, we conclude the review 
in 7 concludes the survey.

2  Related works

This section provides an overview of the existing review papers on FL. Initially, we con-
ducted a comprehensive search to identify and gather all the relevant surveys and reviews 
pertaining to FL. The majority of these surveys primarily focused on providing a general 
overview of FL, including its design aspects, application domains, and the overall chal-
lenges associated with FL.

However, to the best of our knowledge, no surveys have specifically delved into 
the FL challenges from the clients’ perspectives. While certain literature surveys have 
addressed individual challenges clients face, they often lack a comprehensive analysis 
that considers the clients’ viewpoints. Given this gap, our main focus was to thoroughly 

#records identified
through db searches

(n =1114)

#records after duplicates
removed (n =1114)

#systematic review
reference check

"snowballing" (n =30)

#records remaining after
title and abstract

screenings (n = 331)

#records excluded
(n = 813)

#full-text articles
excluded with reasons

(n = 93)

#full-text articles assessed
for eligibility (n= 331)

#studies included in
systematic review

(n =238)

Fig. 2  PRISMA and snowballing approach for paper searching and selection (# implies number of)
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examine the client-side challenges in FL, considering the available state-of-the-art solu-
tions from the clients’ perspectives.

General surveys focused on the high-level view of the FL environments, such as defi-
nitions, components, algorithms, optimization, importance, design aspects, application 
domains, trends, general challenges, and evaluation approaches. Previous surveys (Rah-
man et al. 2021; Li et al. 2020e; Aledhari et al. 2020) discussed the characteristics of 
FL, the general challenges, and the available solutions for FL with future trends. With 
these general views of FL, Yang et al. (2019) and Kairouz et al. (2021) included privacy 
and security aspects of FL also in their survey. Moreover, the studies (Li et al. 2021e; 
Zhang et al. 2021a) provided a comprehensive study of FL systems, incorporating model 
building, data partitioning, privacy, scalability, and communication architecture aspects 
of FL. On another note, Lo et al. (2021b) conducted a systematic review from a software 
engineering perspective. They covered FL lifecycles such as background understanding, 
requirements analysis, architecture design, implementation, and future trend evaluation.

Some other general surveys have investigated the algorithms and applications of FL. 
These surveys provide comprehensive overviews of the various algorithms and diverse 
application areas in which FL has been implemented. Li et al. (2020b) examines FL’s 
evolution and prevailing applications in industrial engineering. It aims to guide future 
applications and optimization in FL by reviewing related studies, addressing challenges, 
and discussing realistic applications in IoT devices, industrial engineering, and health-
care. Likewise, Wang et al. (2021b) provides practical recommendations and guidelines 
for designing and evaluating federated optimization algorithms through concrete exam-
ples and practical implementation. They also address the lack of consensus on core con-
cepts in FL and offer suggestions on problem formulation and algorithm design. Ding 
et al. (2022) provides an outlook on the challenges and opportunities in FL across five 
emerging directions: algorithm foundation, personalization, hardware and security con-
straints, lifelong learning, and nonstandard data. The paper also touches on the chal-
lenges of data incompleteness, polarity, and complex dependency in FL.

Table 1  The statistics of source selection

# Implies number of

Search strings #Selected/ 
retrieved

Focused challenge

allintitle: personalisation OR personalization OR personalised 
OR personalized “Federated learning”

50/96 Personalisation

allintitle: incentive OR “client motivation” “Federated learning” 37/53 Client Incentive
allintitle: Federated learning privacy OR “granular privacy” OR 

auditability
40/502 Privacy management

allintitle: fairness “Federated learning” 29/33 Fairness
allintitle: Federated learning communication OR “communica-

tion cost” OR allintitle: Federated learning “resource optimiza-
tion” OR “computation cost” OR computation OR “energy 
efficient” OR “data update cost” OR “data cost” “Federated 
learning”

62/395 Resource management

allintitle: Federated learning “data security” OR “device secu-
rity” OR defense

20/35 Data/device security

Total 238/1114
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Moreover, various systematic reviews have extensively examined different domains 
in the context of FL, including resource-constrained Internet of Things (IoT) (Imteaj 
et al. 2021; Du et al. 2020), mobile edge networks (Lim et al. 2020), wireless commu-
nication (Niknam et al. 2020), and healthcare and informatics (Xu et al. 2021). These 
reviews have explored existing studies, assumptions, challenges, applications, and prob-
lems within each domain.

Several surveys, including (Lyu et  al. 2020b; Alazab et  al. 2021; Mothukuri et  al. 
2021; Blanco-Justicia et al. 2021; Ma et al. 2020; Kurupathi and Maass 2020; Enthoven 
and Al-Ars 2021; Briggs et al. 2021), specifically delve into the comprehensive analy-
sis of privacy and security challenges, applications, key techniques, trends, and open 
problems in the overall system of FL. In addition, prior studies such as (Kulkarni et al. 
2020; Tan et  al. 2021) have specifically examined the challenge of personalization in 
FL, providing insights into motivation, taxonomies, strategies, and future opportuni-
ties. A comprehensive analysis of incentive mechanisms in FL has been conducted by 
exploring existing works and key techniques in studies (Zhan et  al. 2021; Zeng et  al. 
2021). Communication challenges in FL have been addressed by Shahid et al. (2021), 
while fairness challenges have been surveyed by Shi et al. (2021), covering aspects such 
as basic assumptions, fairness notions, taxonomies, metric evaluation, and future direc-
tions. However, these surveys primarily focus on the challenges of FL from a general 
perspective, implying a lack of emphasis on the client or user viewpoint. Table 2 out-
lines the parallel surveys that focused on FL.

Our work distinguishes itself from others in the following ways: (i) We specifically 
address the client-side challenges in a federated environment, recognizing the signifi-
cance of clients in contributing resources and data. We highlight the potential risks and 
privacy concerns associated with complex FL processes delegated to clients, (ii) We 
thoroughly analyze the client-side challenges and their interdependencies in a feder-
ated environment, (iii) We adopt the PRISMA approach, providing a clear methodol-
ogy for our survey, which is lacking in many existing works, (iv) we extensively cover 
research papers and survey papers in our review, (v) We discuss the open client-side 
challenges and future trends, and (vi) our review is up-to-date, incorporating papers 
published until January 2022.

In contrast to existing surveys that primarily examine FL challenges from the sys-
tem, server, technical, and taxonomy perspectives, our work takes a unique approach 
by analyzing the challenges and solutions specifically from the clients’ perspectives. 
We provide insights into the impacts involved in addressing these challenges. To the 
best of our knowledge, this work represents the first comprehensive exploration of cli-
ent-side challenges in FL, offering a fresh perspective on the existing literature in this 
domain.

3  Client‑side challenges in federated learning

This section describes the client-side challenges in the FL environment. Through a com-
prehensive analysis of the literary works, we were able to identify six main categories of 
client-side challenges such as (i) personalization, (ii) privacy management, (iii) incentive 
management, (iv) resource management, (v) data and devices security management, and 
(vi) fairness management. We analyzed these challenges more granularly from the clients’ 
perspectives and identified precise issues under the above categories as shown in Fig. 3.
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3.1  Personalization

Generally, personalization means designing a product/service to meet a user’s require-
ments.4 Based on the literature (Tan et al. 2021; Kulkarni et al. 2020; Li et al. 2021f), we 
describe the personalization challenge from the clients’ perspectives as follows.

In FL, clients with a common goal join the FL environment because they do not have 
enough data to attain their objective with high performance and generalization guarantees. 
In a traditional FL setting, every client receives the same global model. However, some 
clients may require personalized models catered for their preferences, much like the recom-
mendation systems. For example, the next word prediction scenario in Gboard,5 each cli-
ent’s data can have quite different distributions (e.g., due to different texting habits) There-
fore, next-word predictions should be personalized to the client while handling generalized 

Table 2  Summary of exciting surveys on federated learning

*The years in parentheses refer to the years of research publications that covered in the review article

Scope Survey papers

Federated learning challenges: clients’ perspective Our survey (2016–2022 January)
General overview of federated environment Lo et al. (2021b) (2016–2020), Rahman et al. (2021) 

(2016–2020), Li et al. (2021e) (2016–2019), Zhang 
et al. (2021a) (2016–2019), Kairouz et al. (2021) 
(2016–2019) Li et al. (2020e) (2016–2020), Aled-
hari et al. (2020) (2016–2020), Yang et al. (2019) 
(2016-2019)

General overview federated environment Application and algorithm of FL: Applications: Li 
et al. (2020b) (2016–2020), Optimization algo-
rithm: Wang et al. (2021b) (2016–2021), Algorith-
mic challenges: Ding et al. (2022) (2016–2021)

General overview federated environment: domain-
wise

IoT: Imteaj et al. (2021) (2016–2021), Du et al. 
(2020) (2016-2020), Mobile edge network: Lim 
et al. (2020) (2016–2020), Wireless communica-
tion: Niknam et al. (2020) (2016-2019), Healthcare 
and informatics: Xu et al. (2021) (2016–2019)

Certain challenge: privacy and security Lyu et al. (2020b) (2016–2020), Alazab et al. (2021) 
(2016–2021), Mothukuri et al. (2021) (2016–2020), 
Blanco-Justicia et al. (2021) (2016–2020), Ma 
et al. (2020) (2016-2020), Kurupathi and Maass 
(2020) (2016–2020), Enthoven and Al-Ars (2021) 
(2016–2020), Briggs et al. (2021) (2016-2020)

Certain challenge: personalization Kulkarni et al. (2020) (2016–2020), Tan et al. (2021) 
(2016–2021)

Certain challenge: incentive Zhan et al. (2021) (2016–2020), (Zeng et al. 2021) 
(2016–2021)

Certain challenge: communication Shahid et al. (2021) (2016-2021)
Certain challenge: fairness Shi et al. (2021) (2016–2021)

4 https:// dicti onary. cambr idge. org/ dicti onary/ engli sh/ perso naliz ation.
5 https:// en. wikip edia. org/ wiki/ Gboard.

https://dictionary.cambridge.org/dictionary/english/personalization
https://en.wikipedia.org/wiki/Gboard
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situations (predictions of unknown sentences not in the client’s data) with global predic-
tions. Another case is that some clients’ data are unique, which means the performance of 
the global model may not be satisfactory. The users may then may wish to fine-tune the 
model to get more personalized results.

Achieving an optimal balance between generalization and personalization poses a sig-
nificant challenge for clients in the context of FL. It is crucial to strike the right balance to 
obtain the best results. The algorithm should be designed to handle the optimal balance by 
leveraging the available client data to address this.

3.2  Privacy management

Even in a federated environment, privacy is a concern, as sensitive information can be 
leaked through the built models (Zhu and Han 2020). It can occur due to the dishonest 
server or collusion attacks of other clients. The inference of raw data from the model poses 
a significant concern as it results in the loss of data control for the owners. This data leak-
age can potentially give rise to severe issues and vulnerabilities for the data owners.

We conducted a comprehensive analysis of the literature on privacy management 
(Mothukuri et  al. 2021; Kurupathi and Maass 2020; Enthoven and Al-Ars 2021; Fang 
et al. 2022; Katevas et al. 2020), considering users’ perspectives and categorizing precise 
issues under privacy management. Additionally, we examined general privacy threats such 
as linkability, identifiability, non-repudiation, detectability, information disclosure, content 
unawareness, and consent non-compliance (Deng et al. 2011), adapting the relevant chal-
lenges to the FL context from the users’ viewpoints. Consequently, this survey addresses 
four key issues in privacy management: auditability, consent data sharing, data granularity, 
and reidentification.

Client-side
challenges

Personalization

Privacy
management

Incentive
management

Resource
management

Data and device
security

Fairness
management

Auditability
Granularity
Reidentification
Consented sharing

Transparency

Data management
Communication cost
Computational cost

Measuring fairnesss
Practice of fairness

Fig. 3  The overview of the client challenges
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3.2.1  Auditability

Auditing is an assessment mechanism for measuring the quality of a process’s lifecycle 
to ensure accuracy and efficacy.6 It allows users to make judgments based on all transac-
tions that have occurred in the past. In the context of FL, auditing becomes more complex 
due to the involvement of multiple parties. It involves recording all FL activities, including 
model parameter transactions, participation records, model attributes, data or resource con-
tributions, and accuracy. By providing visibility into the FL environment, auditing enables 
users to understand ongoing activities and make informed decisions about their continued 
participation.

3.2.2  Consented data sharing

Consented data sharing involves participants willingly agreeing to share their data, fully 
aware of the associated risks, benefits, and purpose(Deng et  al. 2011). In the context of 
FL, individuals may unknowingly provide excessive information,7 ultimately relinquishing 
control over their data. The more information a client discloses, the greater the potential 
risk of privacy breaches.

3.2.3  Data granularity

Data granularity refers to the level of detail present in a data.8 In the context of FL, where 
a large amount of client data is involved, users should be able to determine the granularity 
level when building models. Each user may have different privacy preferences, with some 
preferring to share more data and others opting to limit the sharing of specific data items, 
such as location, medical history, and ethnicity, or reducing the granularity of address 
information to city or zip code level. However, manually managing these settings can be 
cumbersome and inconvenient for users.

3.2.4  Reidentification

While FL is appreciated by many users for its ability to protect their actual data, recent 
studies (Orekondy et al. 2018) have demonstrated that data can still be reidentified from 
models built through FL. In order to prevent data reidentification and protect their valu-
able and current data, clients need mechanisms to safeguard against inference attacks. For 
instance, location trajectories can reveal sensitive information such as points of interest, 
social relationships, and user identities (Khalfoun et al. 2021), which poses a significant 
threat to clients, given the widespread collection of precise location data by IoT devices. 
Therefore, it is crucial to implement privacy protection mechanisms to safeguard users’ 
privacy.

6 https:// www. egnyte. com/ guides/ gover nance/ data- audit ing.
7 https:// tinyu rl. com/ 2p98x 899.
8 https:// c3. ai/ gloss ary/ featu res/ data- granu larity/.

https://www.egnyte.com/guides/governance/data-auditing
https://tinyurl.com/2p98x899
https://c3.ai/glossary/features/data-granularity/
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3.3  Incentive management

Clients play a crucial role in the FL process by contributing valuable resources such as 
computation capacity, battery, data, memory, and bandwidth. However, these resources are 
limited and costly for clients, who also face privacy and security risks when participating 
in FL. In order to incentivize clients and encourage their active involvement, the FL frame-
work offers various incentives such as personalized models that perform well on their own 
test data, accurate global models trained on comprehensive datasets, monetary compensa-
tion, reputation benefits, user-defined incentives, and auxiliary information like bias and 
model fairness considerations (Tu et al. 2022). These incentives aim to offset the costs and 
provide clients with tangible benefits for their contributions in FL.

Incentive mechanisms are widely discussed in the literature (Zhan et al. 2021; Tu et al. 
2022; Ding et al. 2020; Kang et al. 2019a; Liu and Wei 2020), focusing on rewards types, 
motivation towards client participation, incentive calculation challenges, and incentive 
scheme design. They discussed the generic challenges of incentive mechanisms such as (i) 
complexity in determining an optimal incentive for the clients in a closed environment with 
no information on data structure, resource capability, and client infrastructure (Zeng et al. 
2021), (ii) deriving an appropriate metric to quantify the contribution of clients. Generally, 
local model accuracy is used as the evaluation metric, which can be biased to some clients 
with unique values that do not contribute much to the global model (Zhan et al. 2021; Zeng 
et al. 2021), and (iii) consequently, motivating clients to actively participate in FL through 
incentives becomes a challenging task, as the design of an approximation scheme is often 
intricate (Kang et al. 2019b). It is important to note that these challenges are predominantly 
addressed by the servers, as they bear the responsibility of resolving these more generic 
issues in the context of incentive mechanisms.

However, the issue of transparency arises as a prominent concern in incentive manage-
ment for clients, as it greatly influences clients’ decisions regarding participation. Transpar-
ency entails being fully visible, open to scrutiny, and clear, with no hidden aspects.9 How-
ever, due to confidentiality reasons, clients typically do not share their incentive decisions 
and compensation information with others, resulting in a lack of transparency in incentive 
scheme selection. This lack of transparency can lead to unfairness or ignorance of entitle-
ments among clients. Furthermore, users with limited technical expertise may struggle to 
assert their rights and claim their rightful rewards. Balancing transparency with the need 
for confidentiality, fairness, security, and privacy presents a significant challenge in design-
ing a robust and transparent incentive allocation mechanism.

3.4  Resource management

Given clients’ devices’ limited and costly resources, effective resource management 
becomes essential to ensure optimal performance within the given capacity limitations. 
The literature has extensively analyzed resource management in three key categories: data 
management (Moon et al. 2020; Jeong et al. 2018; Shin et al. 2020), computation manage-
ment (Nour et al. 2021; Ren et al. 2019; Ji et al. 2021), and communication management 
(Shahid et al. 2021; Yue et al. 2022; Sattler et al. 2019b). Following a similar approach, we 

9 https:// www. techt arget. com/ whatis/ defin ition/ trans paren cy.

https://www.techtarget.com/whatis/definition/transparency
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address client-side challenges in resource management by comprehensively considering all 
three aspects in our survey.

3.4.1  Data management

The current digital age boosts the quantity and frequency of data generation from various 
resources (such as social networks, IoT devices, and health centres). The heterogeneous 
nature of devices results in varying amounts and quality of data generated by different cli-
ents. Consequently, the performance of FL global models is adversely affected when built 
using diverse datasets. Particularly, clients with limited, unique, or unbalanced data are 
significantly impacted by this challenge.

Poor performance is a common issue experienced by clients in FL, and one of the rea-
sons behind this is data management challenges, such as data scarcity, data imbalance, and 
data representation. Our survey focuses on addressing data imbalance and representation 
challenges while acknowledging that data sparsity is commonly addressed in the literature 
through techniques like sampling. However, managing data in the FL environment is par-
ticularly challenging as the data remains decentralized. Consequently, the proposed solu-
tions should consider client-side approaches (considering clients’ limited technical exper-
tise) or platform-based mechanisms that respect user privacy.

3.4.2  Computation cost management

Many researchers (Imteaj et  al. 2021; Nour et  al. 2021; Ren et  al. 2019; Ji et  al. 2021) 
widely analyzed the computation cost management challenge as it directly affects clients’ 
participation. Typically, servers run these complex algorithms in a centralized architecture 
with hundreds of GPU machines to produce their model. But, resource-constrained devices 
run the FL algorithms in the background while managing their main tasks. Given the 
enormous resource requirements of FL algorithms, clients’ devices are often limited and 
energy-consuming. Consequently, many clients are hesitant to dedicate all their resources 
solely to the FL process. However, clients often lack control over their devices, limiting 
their ability to decide when to participate. This lack of authority over participation poses 
challenges for clients in achieving better local models, efficiently utilizing resources, and 
minimizing computational costs.

3.4.3  Communication cost management

Besides preserving privacy, FL divides the computational power among clients and reduces 
the communication burden by transferring models instead of raw data. However, despite 
these advantages over traditional centralized architectures, clients still encounter communi-
cation challenges. These challenges arise from the resource constraints of devices, unrelia-
ble network connections, communication frequency, the transmission of large gradient vec-
tors in complex deep neural networks, and the distance between clients and servers (Shahid 
et al. 2021).
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3.5  Data and devices security management

The multi-party closed nature of the FL environment, where client and server information 
is not exchanged, introduces vulnerabilities and challenges in monitoring trustworthiness. 
Additionally, the FL environment is dynamic, with new clients and models constantly being 
introduced, requiring a continuous verification process. This ongoing verification process 
adds complexity to ensuring the trustworthiness of participants in the FL ecosystem.

The literature (Alazab et al. 2021; Ma et al. 2020; Fang et al. 2020; Bagdasaryan et al. 
2020; Zhang et al. 2019; Lin et al. 2019) discussed several security breaches such as model 
invalidation, data/model poisoning, model inference, backdoor attacks, malicious clients, 
and malicious server. Adversaries use various vulnerable ways such as communication 
medium, client data manipulation, dis-honest server, and aggregation algorithm to attack 
the environment (Mothukuri et al. 2021). Hence, clients must employ defense mechanisms 
to protect themselves from adversarial attacks that can be initiated by other clients, servers, 
or external attackers. These attacks can compromise the shared goal of FL and put data at 
risk.

3.6  Fairness management

Fairness in FL entails treating every client impartially, without any bias or discrimina-
tion (Ezzeldin et al. 2021). Consider a face recognition scenario where the FL server has 
access to many mobile devices used by white users but only a few used by black users. 
Consequently, the model may exhibit better performance in recognizing the faces of 
white individuals compared to black individuals.10 However, achieving fairness among 
clients is challenging due to statistical and system heterogeneity. Defining fairness itself 
lacks consensus, with different notions representing specific interests and aspects of par-
ticipant groups. Therefore, attaining acceptable fairness in a multiparty collaboration 
environment is complex.

In the context of FL, fairness is a multifaceted concept, and different mathematical 
criteria have been proposed to capture fairness. One widely used criterion is equal-
ized odds, which aims to ensure that the probability of a positive prediction is the same 
across different groups, irrespective of their protected attributes.

A predicting algorithm satisfies equalized odds if it ensures that both the true posi-
tive rate (TPR) and the false positive rate (FPR) are equal across different groups (Garg 
et al. 2020). More formally, equalized odds requires that the group-specific TPR satisfy 
Eq. (2) and FPR satisfies Eq. (3).

In both cases, the equation is comparing the conditional probabilities of the predicted label 
y′ being 1, under different scenarios based on the values of the ground truth label y and the 
protected attribute G, which indicates different groups.

(2)P(y� = 1 ∣ y = 1,G = 0) = P(y� = 1 ∣ y = 1,G = 1)

(3)P(y� = 1 ∣ y = 0,G = 0) = P(y� = 1 ∣ y = 0,G = 1)

10 https:// tinyu rl. com/ yc4c2 wb7/.

https://tinyurl.com/yc4c2wb7/
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Other notions of fairness discussed in the literature are accuracy parity (uniform-
ity in performance across clients), good-intent fairness (minimizing loss for underlying 
protected client classes), group fairness (minimizing disparities in algorithmic decision-
making across groups), selection fairness (reducing FL model bias by increasing the 
participation of under or never-represented clients), contribution fairness (rewarding cli-
ents in proportion to the client’s contribution), regret distribution fairness (minimizing 
the regret difference among clients. Regret indicates the difference between what the 
client has received so far and what they deserve), and expectation fairness (minimizing 
inequality between clients over a period until receiving rewards) (Shi et  al. 2021). A 
considerable amount of literature (Li et al. 2021f; Garg et al. 2020; Divi et al. 2021b; 
Yu et al. 2020a) has been published on the fairness concept in the FL domain. We com-
prehensively analyzed the challenges and approaches focused on those studies from cli-
ents’ perspectives. We derived two critical issues under fairness management: measur-
ing fairness and practicing fairness in different disciplines.

3.6.1  Measuring fairness

As fairness is a variable and complex concept in FL, it is much more difficult for users 
to understand what is happening and whether they are treated fairly. Existing FL models 
primarily rely on performance evaluation metrics like accuracy and efficiency, which 
may not adequately capture fairness considerations. Adapting fairness metrics to evalu-
ate model quality in a collaborative environment is crucial, as global model accuracy 
may vary among clients and may not align with individual client contributions. How-
ever, measuring fairness using all clients’ data in a closed environment is often infea-
sible, and measuring fairness locally using only client data is inadequate due to limited 
data and the unknown distribution of other clients’ data. A user-friendly and explainable 
fairness framework that accounts for fairness among clients would be an ideal approach 
to alleviate the challenges associated with fairness management.

3.6.2  Practice of fairness in different disciplines

Fairness is a widely studied concept in various disciplines, encompassing incentives, 
resource allocation, performance evaluation, privacy, client reputation, and addressing 
group bias. Incorporating fairness into FL requires algorithmic modifications, which 
primarily rely on the support and intervention of platforms and servers. Although cli-
ents may not directly influence algorithmic changes, the issue of ensuring fairness poses 
a significant challenge for them in the context of FL. The lack of control over the imple-
mentation of fairness becomes a noteworthy obstacle that affects their participation.

4  State‑of‑art‑solutions on the client‑side challenges

In this section, we will explore the current state-of-the-art solutions for the challenges 
faced by clients in FL. The research focus on these challenges has significantly grown in 
recent years, as evidenced by the increased number of papers published between 2020 
and 2021.
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Addressing client-side challenges in FL is typically expected to rely on users’ 
involvement, as the architecture empowers them with greater control over their data. 
However, this approach can lead to unintended consequences when complex challenges 
are delegated to users with limited technical expertise. Many client-side challenges, 
such as resource management, fairness, security, and incentive management, require the 
involvement of platforms and servers for effective solutions. These challenges are inher-
ently tied to the tasks and algorithms of the system.

For instance, achieving fairness in FL requires the integration of fairness considera-
tions within server-side algorithms to ensure equal treatment of all clients. Similarly, 
platform-level changes are necessary to enhance transparency in incentive mechanisms, 
such as incorporating blockchain technology. Therefore, this section will explore solu-
tions that involve collaboration between clients, servers, and platforms to address these 
challenges.

4.1  Solutions for personalization challenges

This section reviews the existing approaches proposed in the literature to address the per-
sonalization challenge in the FL. These approaches can be categorized into two main types: 
single-client-based personalization and cluster-based personalization. The single client-
based personalization approaches focus on enhancing personalization by employing addi-
tional algorithms directly on individual clients. These algorithms aim to adapt the model to 
better suit each client’s specific characteristics and preferences, resulting in a more person-
alized model.

On the other hand, the cluster-based personalization approaches involve grouping 
together clients with similar data distributions and objectives. By forming clusters of simi-
lar clients, the FL process can generate a more tailored and personalized model that aligns 
with the common characteristics and goals of the cluster members.

By exploring these two categories of approaches, we gain insights into the diverse strat-
egies employed to address the personalization challenge in FL.

4.1.1  Single client‑based personalization

Single client-based personalization algorithms aim to enhance personalization by 
involving clients directly in the process. These algorithms introduce additional calcu-
lations or modifications on the client side, allowing clients to actively participate in 
improving their own personalization. They tune the global model based on the client’s 
data to improve the model’s accuracy. We classify these approaches as fine-tuning meth-
ods and local model-global model closeness methods.

Fine-tuning approaches try to minimize the individual loss of each client by making 
small adjustments in the global model using a few gradient steps on gradient values 
based on the client’s data (Deng et  al. 2020). Adjusted models give accurate and per-
sonalized results for the clients. It can be considered a post-processing method. Local-
model-global-model closeness approaches find the closeness between local and global 
models to achieve optimal personalization points for the client (Li et al. 2021f).

4.1.1.1 Fine‑tuning approaches Fine-tuning approaches assume a similarity in the task 
across all clients but adjust the loss function based on each client’s data distribution. These 
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methods involve applying fine-tuning algorithms to the global model on the clients’ edge, 
enabling personalization based on their individual data.

Meta-learning is a fine-tuning approach that involves training an initial model on mul-
tiple tasks, enabling it to quickly adapt and learn new tasks with limited training data on 
the client’s end (Kulkarni et  al. 2020; Jiang et  al. 2019a). One notable concept in meta-
learning is Model-Agnostic Meta-Learning (MAML), introduced by Finn et  al. (2017), 
which is compatible with various deep learning models trained using gradient descent. The 
MAML framework consists of two main steps: meta-learning, where the model is trained 
on multiple tasks, and meta-testing, where the model adapts to a new task. Researchers 
Jiang et al. (2019a) and Fallah et al. (2020) have applied the MAML concept in the context 
of FL. Another meta-learning approach is parameterized algorithms (Chen et  al. 2018), 
where clients receive algorithm parameters instead of a global model. This allows clients to 
fine-tune the algorithm based on their specific data for personalized learning. Additionally, 
studies by Khodak et al. (2019) and Balakrishnan et al. (2021) have extended meta-learning 
techniques to address dynamic environments and efficient resource allocation, respectively.

Base + Personalization layers with local parameters is a fine-tuning approach that 
involves clients sharing a common set of base layers with consistent weights while each cli-
ent maintains individual personalization layers tailored to their specific data (Arivazhagan 
et al. 2019). This approach allows clients to incorporate their unique data characteristics 
while benefiting from the shared knowledge in the base layers. The model parameters 
derived from base layers are shared with the server, while calculation from personal-
ized layers is retained in the client. Cheng et al. (2021) and Jourdan et al. (2021) further 
improved personalized layers with a stylized regression model and local adaptation.

Collins et  al. (2021) introduced an approach that combines a low-dimensional local 
model with a learned global model to address the personalization challenge. The algorithm 
utilizes gradient updates to learn a global representation, enabling clients to compute per-
sonalized low-dimensional classifiers for individual labeling (Liang et al. 2020). Similarly, 
the approach proposed by Liang et al. (2020) also adopts a similar strategy of learning fea-
tures locally and globally.

Transfer learning is learning a new task by transferring the knowledge gained from the 
other tasks (Torrey and Shavlik 2010). Wang et al. (2017) adapt this technology in FL to 
tackle the personalization challenge. FedHealth (Chen et al. 2020c) applied transfer learn-
ing in the healthcare FL domain for personalization.

Knowledge distillation is another technique where a smaller model (student) learns 
from a larger network (teacher) by mimicking its behavior (Li and Wang 2019). The stud-
ies (Li and Wang 2019; Ozkara et al. 2021; Divi et al. 2021a; Yu et al. 2020d) adapted the 
knowledge distillation technique into FL to improve personalization and communication 
efficiency.

Nadiger et  al. (2019) adapted the reinforcement learning technique as the fine-tuning 
approach to make decisions sequentially. It employs trial-and-error procedures until a solu-
tion is found for a task in the client (Kaelbling et al. 1996). Hard et al. (2018) used contex-
tual information such as logs and caches to fine-tune the character recognition task. They 
showed that adding contextual information boosted personalized performance.

Recent works (Yurochkin et al. 2019; Achituve et al. 2021; Yue and Kontar 2021; Kon-
toudis and Stilwell 2022) have integrated Bayesian and Gaussian Process (GP) techniques 
in FL to achieve personalized global models. More specifically, by incorporating prior 
information, the local data on each client can be leveraged as a personalization role in train-
ing FL algorithms. Yurochkin et al. (2019) proposed Bayesian nonparametric FL of neural 
networks, synthesizing a more expressive global network without additional supervision. 
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Achituve et al. (2021) shared a kernel function across all clients, employing a personal GP 
classifier for each client. Similarly, Yue and Kontar (2021) utilized GP in their regression 
framework (FGPR), resulting in personalized global models by jointly learning a global 
GP prior across all clients. Kontoudis and Stilwell (2022) incorporated GP in training and 
optimization using alternating direction method of multipliers, employing decentralized 
aggregation techniques for GP prediction through iterative and consensus methods.

Apart from discussed techniques, Li et  al. (2021a) proposed a heterogeneous mask-
ing technology for fine-tuning, where clients learn a personalized and structured sparse 
model without changing local model parameters. Dinh et  al. (2020) regularises the loss 
algorithm using the Moreau envelope to improve the personalized results. The works (Hu 
et al. 2020b) and (Yang et al. 2021b) applied differential privacy (DP) to achieve personali-
zation. Zhang et al. (2021d) achieved personalization by allowing users to transfer person-
alized knowledge (update prediction) to the server. The global is getting updated based on 
the clients’ predictions updates.

The fine-tuning process is efficient and rapid due to the internal representation of multi-
ple models, allowing for excellent performance on new tasks with minimal data points and 
training iterations.

4.1.1.2 Local model‑global model closeness approaches Smith et al. (2017) adapted mul-
titask learning to measure the closeness between the local model and global model. Multi-
task learning is the process of modeling naturally related tasks at a time and measuring the 
relationship among them. The studies (Mills et al. 2020; Mahara et al. 2021) extended Smith 
et  al. (2017)’s research in different domains. Yu et  al. (2020b) combined reinforcement 
learning with multitasking to achieve better results. Recently, Li et al. (2021f) proved that 
multitask learning can improve fairness and robustness along with personalization.

Model interpolation is defined as training a separate local model based on the local and 
global data and combining them for better performance in FL (Mansour et al. 2020). The 
studies (Peterson et al. 2019; Hanzely and Richtárik 2020) adapted this technology with 
experts’ opinions in the domain to build personalized models for clients. Mansour et  al. 
(2020) integrated model interpolation with clustering and data interpolation (training a 
model on combined local and global data) for better results. The studies (Deng et al. 2020; 
Zhang et al. 2020c; Luo and Wu 2021) achieved personalization by allowing the clients to 
build their local models simultaneously with global model building. They used the optimal 
mixing parameter to mix global and local models. Wu et al. (2021b) presented a hierarchi-
cal personalized FL framework in which clients initially define hierarchical information 
about their data (public and private). Only the public component will be uploaded to the 
server.

While the techniques mentioned above are commonly employed in the literature to 
achieve personalization, they rely on algorithms that clients have no control over. Moreo-
ver, the resource-constrained client environment makes it computationally challenging to 
perform the required additional calculations. Clients must allocate their limited computa-
tional power to accommodate these algorithms in order to obtain personalized models.

4.1.2  Cluster‑based personalization approaches

Single client-based personalization approaches conform when clients’ data distributions 
are similar. But, when the data distribution is naturally clustered among clients, finding an 
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optimal personalized solution for all clients is difficult. Clustering has been proposed as a 
personalization solution in the literature. By grouping similar clients together, the model 
can mitigate the impact of heterogeneous data distribution.

Various clustering techniques have been proposed in the literature to address person-
alization in FL. These techniques include hard clustering, soft clustering, hypothesis-based 
clustering, attribute-based clustering, hierarchical clustering, and user-centric clustering. 
These approaches are typically implemented on the server side, as they involve collecting 
and aggregating local models. The clustering of clients is often determined based on the 
values of model parameters (Table 3).

Hard clustering means assigning a client to only one cluster; A client cannot belong to 
two clusters. The studies (Ghosh et al. 2020; Vahidian et al. 2021; Huang et al. 2019; Duan 
et al. 2021; Xie et al. 2021; Li et al. 2020f) adapted hard clustering technique in a feder-
ated environment to iteratively assign the clients in clusters. The cluster that provides the 
least loss updates was selected as the appropriate cluster for that client. Sattler et al. (2020) 
incorporated the hard clustering technique with multi-task learning based on cosine simi-
larity between the gradient updates.

However, hard clustering in FL faces certain challenges, including unstable training, 
sub-optimal user assignment, and inefficiency when dealing with a large mix of data distri-
butions. Researchers have introduced a solution known as soft clustering to address these 
issues. Unlike hard clustering, soft clustering allows clients to be partially assigned to mul-
tiple clusters, creating overlapping clusters. The approach presented by Li et  al. (2021b) 
provides enhanced flexibility and robustness in addressing the challenges arising from cli-
ent heterogeneity in FL.

As another approach, Mansour et al. (2020) applied hypothesis-based clustering, where 
clients are partitioned according to the best hypothesis based on a stochastic expectation 
maximization algorithm. Further, a hierarchical clustering approach was adapted in (Briggs 
et al. 2020; Yoo et al. 2021) to group clients using the similarity between local updates and 
the global server. The hierarchical clustering algorithm iteratively merges the most similar 
clients in each round until a given threshold.

In addition to the ones previously discussed, a user-centric federated clustering approach 
was proposed by Mestoukirdi et al. (2021), aiming to minimize communication overhead 
in FL. Instead of relying on the generic federated averaging algorithm, they introduced 
multiple user-centric aggregation rules in the server to obtain clustering results. Unlike tra-
ditional approaches that use model parameter values for clustering, they focused on cli-
ent characteristics such as data size and distribution from the server’s perspective. Another 
recent study by Kim et al. (2021) explored dynamic clustering, which adapts the clusters 
based on the changing environments.

However, clustering approaches in FL have limitations such as limited client control, 
privacy risks during data transfer, and a fixed number of clusters, except in the case of 
dynamic clustering (Kim et al. 2021).

4.2  Solutions for privacy management challenges

This section delves into state-of-the-art solutions that target different client privacy chal-
lenges. These challenges are classified based on the precise issues we discussed in subsec-
tion 3.2 regarding privacy management.
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Table 3  Summary of personalization approaches

Approaches Technology References Solution end

 Fine tuning 
approaches

Meta-learning Jiang et al. (2019a), Fallah et al. (2020), 
Chen et al. (2018), Khodak et al. (2019), 
and Balakrishnan et al. (2021)

Clients

Base + Personalization 
layers

Arivazhagan et al. (2019), Cheng et al. 
(2021), and Jourdan et al. (2021)

Clients

Combining a low dimen-
sional local model with 
a learned global model

Collins et al. (2021) and  Liang et al. 
(2020)

Clients

Transfer Learning Chen et al. (2020c) and  Wang et al. (2017) Clients
Knowledge Distillation Li and Wang (2019), Ozkara et al. (2021), 

Divi et al. (2021a) and Yu et al. (2020d)
Clients

Reinforcement learning Nadiger et al. (2019) Clients
Contextualization Hard et al. (2018) Clients
Bayesian and Gauss-

ian FL
Yurochkin et al. (2019), Achituve et al. 

(2021), Yue and Kontar (2021) and  Kon-
toudis and Stilwell (2022)

Clients

Other Li et al. (2021a), Dinh et al. (2020), Hu 
et al. (2020b), Yang et al. (2021b) and  
Zhang et al. (2021d)

Clients

Local–global 
model closeness 
approaches

Multi-task learning Li et al. (2021f), Smith et al. (2017), Mills 
et al. (2020), Mahara et al. (2021) and  
Yu et al. (2020b)

Clients

Model interpolation Deng et al. (2020), Mansour et al. (2020), 
Peterson et al. (2019), Hanzely and Rich-
tárik (2020), Zhang et al. (2020c), Luo 
and Wu (2021), Wu et al. (2021b), Chou 
et al. (2021) and  Li et al. (2020a)

Clients

Technologies to cluster similar clients
 Clustered model 

approaches
Hard clustering Ghosh et al. (2020), Sattler et al. (2020), 

Vahidian et al. (2021), Ma et al. (2021), 
Cho et al. (2021), Huang et al. (2019), 
Duan et al. (2021) and  Xie et al. (2021)

Server, 
Clients

Soft clustering Li et al. (2021b) Server, 
Clients

Hypothesis-based clus-
tering

Mansour et al. (2020) Server, 
Clients

Hierarchical clustering Briggs et al. (2020) and  Yoo et al. (2021) Server, 
Clients, 
Platform

User-centric clustering Mestoukirdi et al. (2021) Server, 
Clients

Dynamic clustering Kim et al. (2021) Server, 
Clients
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4.2.1  Auditability in privacy management

The current state-of-the-art is on the basics of two main techniques for auditing: block-
chain and visual analytics.

4.2.1.1 Blockchain technology for auditability Researchers utilize Blockchain as a popular 
technology for auditing FL transactions due to its robustness, immutability, and auditabil-
ity (Swan 2015). These platform-based solutions involve integrating blockchain with FL’s 
architecture to address privacy challenges.

A study by Lu et  al. (2019) proposed a privacy-preserving FL data-sharing architec-
ture that leverages blockchain. The blockchain is utilized to store information related to 
client selection, data statistics, encrypted retrieval transactions, data sharing requests, and 
transactions while ensuring the privacy of raw data. Similarly, FLchain (Majeed and Hong 
2019) utilizes blockchain to store local model parameters as blocks, enabling trackability 
throughout global iterations.

The studies (Lu et  al. 2019; Zhao et  al. 2020a) also adapted blockchain in the IoT 
domain. Zhao et  al. (2020a) replaced the central server with a blockchain-based system 
to store and aggregate local models, enabling tracking of malicious activities. BlockFlow 
(Mugunthan et  al. 2020b) is another decentralized FL system that leverages blockchain 
to provide auditability, reward clients for their contributions, and offer protection against 
malicious adversaries.

Another study, VFChain (Peng et  al. 2021), is a verifiable and auditable blockchain-
based framework. A selected committee aggregates and records the local models after 
verifying them. Lo et al. (2021a) enhance FL architecture with reliability, accountability 
and fairness by integrating blockchain. Accountability is achieved by designing a smart 
contract-based data-model provenance registry.

To address the auditability challenge and comply with data privacy regulations, servers 
have implemented blockchain-based architectural changes. These changes aim to increase 
participant transparency and trust, attracting more client participation. Although users may 
not possess the technical knowledge to fully understand blockchain architecture, they can 
rely on its immutable and transparent nature. By recording all FL activities, the blockchain 
allows users to verify their transactions with the support of legal and technical expertise 
when necessary.

4.2.1.2 Visual analytics for  auditability Visual analytics approaches empower users by 
involving them directly in the FL process, providing visibility into various aspects of FL 
activities. These approaches enable users to monitor and analyze data usage, client informa-
tion, model aggregation, and accuracy distribution. By offering this level of transparency, 
users can fulfill their audit objectives and gain insights into the inner workings of FL.

Turbo Tucoon (Mike 2018) and FATE-Board (Fan 2018) are shallow-level analytical 
tools for FL. Turbo Tucoon summarises process logs and model performance for users 
to monitor and visualize the system. FATE-Board visualizes real-time log metrics, data-
set information, task workflow, model output, and evaluation metrics. Wei et  al. (2019) 
proposed a multi-agent visualization system demonstrating FL, multi-client coordination, 
input, and output through a game. However, the domain of this approach is for car racing 
games, and it is difficult to generalize to all the domains.

LEAF (Caldas et al. 2018) is a benchmark visual analysis tool with statistical and sys-
tem metrics. LEAF can be applied in FL, meta-learning, multitask learning, and on-device 



A systematic review of federated learning from clients’…

1 3

learning. But, LEAF is mainly designed for tech-savvy users, mainly software engineers; 
It can be complicated for general users. PrivacyFL (Mugunthan et al. 2020a) helps users 
ensure collaboration is feasible and improve their model accuracy.

FedEval is a comprehensive, easy-to-use benchmarking framework that comprises accu-
racy, communication, time efficiency, privacy, and robustness. Although the system is pri-
marily built for researchers to perform evaluations, users can visualize their performances.

HFLens (Li et al. 2021d) is a comparative visual interpretation system for fine-grained 
analysis of communication rounds and client instance levels. It analyses the overall client 
processes, correlation of clients’ information with communication rounds, potential anom-
alies, data quality, and client contribution.

4.2.2  Consented data sharing in privacy management

Limited research focuses on addressing the challenge of consented data sharing in the FL 
environment. These approaches typically require collaboration between clients and serv-
ers. The server is responsible for obtaining user consent before collecting and sharing their 
data, while users have the autonomy to decide whether or not to share their data with the 
server.

The policy-based privacy setting framework “PoliFL” (Katevas et al. 2020) offers users 
a feature to choose which data to share in FL. Users can opt out of certain data based on 
their privacy preferences. DS2PM (Chen et al. 2021) protects privacy, integrity, and data 
ownership using blockchain. Data sharing occurs using an on-chain data retrieval mecha-
nism with owner permission. The framework ensures the auditing and verification of trans-
actions too.

4.2.3  Granularity in privacy management

Granularity solutions primarily rely on user-driven privacy settings mechanisms, allowing 
users to control the level of granularity in data sharing. Users have the flexibility to define 
the extent and specifics of data they are willing to share.

PoliFL (Katevas et  al. 2020) offers heterogeneous privacy policies as users may have 
different privacy requirements. The server is responsible for aggregating locally processed 
models with different datasets. PoliFL considered three policies: a policy that permits all 
FL activities, a policy that permits FL with DP, and a policy that restricts specific data 
sources (varied among users) when training the FL model. The results showed that PoliFL 
performs well with heterogeneous policies within reasonable resource and time budgets.

Similarly, using an opt-out DP algorithm, the FeO2 framework (Aldaghri et al. 2021) 
protects clients’ privacy. Users may opt out of certain features of their data or additional 
privacy-enhancing mechanisms based on their privacy needs.

4.2.4  Re‑identification in privacy management

Privacy-preserving techniques in the literature for the re-identification challenge can be cat-
egorized into three main approaches: perturbation, Secure Multiparty Computation (SMC), 
and Homomorphic Encryption (HE). These approaches typically involve clients and plat-
forms in order to safeguard against re-identification and uphold privacy. They achieve this 
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by introducing an additional layer of protection in FL through techniques such as noise 
injection, secret sharing, or encryption of the model parameters.

4.2.4.1 Perturbation approaches Perturbation techniques, such as DP, involve adding 
noise to local parameters to ensure privacy in FL. DP creates anonymous data by introduc-
ing noise, allowing for statistical analysis without revealing sensitive personal information 
or individual client identities. Client-side perturbation, known as local differential privacy 
(LDP), involves data owners adding randomization or noise to their data before sharing it 
with a third party, addressing privacy concerns in FL (Dwork 2009; Tyagi 2022).

If a randomized algorithm A satisfies Eq. (4), then it provides �-LDP.

Definition 1 An algorithm A satisfies �-LDP if, for any two data values v1 and v2 , and for 
any output Q within the range of outputs of A , the following holds Eq. (4):

Here, � represents the privacy budget, quantifying the level of privacy. This definition 
ensures that the probability (P) of obtaining an output Q from A on v1 is at most e� times 
the probability of obtaining the same output Q on v2.

Geyer et al. (2017) tackled the re-identification issue from the client’s standpoint. They 
used client-side DP to preserve complete data privacy and optimize performance. The 
studies (Wei et al. 2020a; Choudhury et al. 2019) also adapted DP to prevent information 
leakage by adding noise before aggregation. They showed that different variations of artifi-
cial noise lead to different levels of protection.

Another client-side approach, LDP, was adapted in (Zhao et al. 2020b; Seif et al. 2020; 
Truex et al. 2020), where clients locally perturb their data before sharing. The local privacy 
approach reduces communication costs and privacy threats. Wei et al. (2021) derived user-
level DP algorithm extending the local privacy. Rather than guaranteeing only the privacy 
of individual samples, user-level DP protects a client’s entire contribution. As the extension 
of DP, Triastcyn and Faltings (2019) adapted Bayesian DP, which adjusts noise according 
to the data distribution instead of the random adjustment.

In their work, Marathe and Kanani (2022) focused on subject-level privacy in FL, where 
a subject’s private information is represented by multiple data items within or across fed-
eration clients. They achieved subject-level privacy by introducing noise to the data and 
training the noisy data in mini-batches. This approach aimed to protect the privacy of indi-
vidual subjects while enabling effective collaborative learning in FL.

Sherpa.ai framework (Rodríguez-Barroso et  al. 2020) was built based on FL and DP. 
This framework helps to build FL with DP without developing from scratch using the 
offered functionalities. So, clients with limited technical knowledge can use this framework 
to integrate DP technology into their data.

4.2.4.2 Secure Multiparty Computation approaches SMC is a platform-based solution that 
aims to enable the secure computation of a consensual function among clients without rely-
ing on any trusted third parties (Goldreich 1998). In SMC, input data is either masked or 
secret shared, and the computed result is typically disclosed to all parties involved. SMC 
offers the advantage of relatively low computational overhead, but it necessitates multiple 
rounds of interaction among the participating parties to achieve secure computation.

(4)P
[

A(v1) ∈ Q
]

≤ exp(�)P[A(v2 ∈ Q)]
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Figure 4 provides an overview of the SMC approach, depicting the secure sharing of 
private inputs among parties, the use of secure protocols for computations (function F), 
iterative interaction for communication and secure computations, and result in reconstruc-
tion for revealing the final result while preserving privacy.

Within the domain of FL, Truex et al. (2019) presented a privacy-preserving framework 
that combines DP and SMC. Their approach aimed to strike a balance between these two 
techniques, minimizing noise injection while preserving privacy. The framework incor-
porated a tunable trust parameter to accommodate various trust scenarios, ensuring both 
accuracy and privacy assurance in the FL process.

Another approach, HybridAlpha (Xu et al. 2019a) uses DP and functional encryption 
to employ SMC protocol. Functional encryption protocol supports mitigating inference 
attacks from curious aggregators and colluded clients.

4.2.4.3 Homomorphic Encryption approaches Homomorphic Encryption (HE) allows 
computations to be performed on encrypted data. In HE, as shown in Fig. 5, clients send 
encrypted data to a server and request the evaluation of a function on this encrypted data. 
The computation operates solely on encrypted data, with the inputs and outputs encrypted 
using the client’s secret/public key, ensuring the privacy and security of the data.

In the FL domain, local models and public and private keys are encrypted before being 
sent to the server. HE allows performing operations over encrypted models. So, clients are 
mainly involved in these solutions to protect their data.

Hao et  al. (2019) adapted HE in industrial FL, which prevents data reidentification 
even though many clients collude with each other to attack the system. Pivot (Wu et  al. 
2020b) protects clients’ data against semi-honest adversaries. It is a hybrid framework 
with Threshold Partially Homogeneous Encryption (TPHE) and Multipartite Computa-
tion (MPC). Another framework, PFMLP (Fang and Qian 2021), transfers local models’ 
encrypted gradients instead of raw gradients. However, they showed that the accuracy in 
homomorphic operation after decryption did not change much compared to plain text data.

Rather than adapting technology to reduce reidentification, Wei et al. (2020b) presented 
a framework for evaluating and comparing different forms of client privacy leakage attacks 
and methods to solve adversaries. The framework first provides experimental evidence of 
data reconstruction from model parameters. They then investigated how different hyper-
parameter configurations, serial compression ratios, and different settings of attack algo-
rithms influence attack effectiveness and cost.

Despite various attempts to address re-identification challenges, recent research (Naseri 
et al. 2022) has demonstrated that privacy attacks can still succeed even with privacy-pre-
serving mechanisms.

In response, blockchain techniques have emerged as a potential solution, offering ben-
efits in terms of auditability and consented data sharing. However, the computational 
complexity and user-friendliness of blockchain approaches remain significant drawbacks. 
Nonetheless, adopting a single blockchain approach can simplify the environment by elimi-
nating the need for multiple techniques.

In Table  4, a summary of privacy management techniques is provided, focusing on 
auditability, consented data sharing, data granularity, and re-identification. The table high-
lights the technologies utilized in state-of-the-art approaches for addressing these privacy 
concerns.
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4.3  Solutions for incentive management challenges

The literature used different techniques for incentive management in FL such as shapely 
value (Yu et  al. 2020a; Song et  al. 2019; Wang et  al. 2019a; Lim et  al. 2021), contract 
theory (Kang et al. 2019a, b; Saputra et al. 2020), auction theory (Zhang et al. 2021e; Le 
et al. 2020; Zeng et al. 2020), game theory (Tu et al. 2022; Sarikaya and Ercetin 2019; Ng 
et al. 2021), blockchain (Weng et al. 2019; Zhang et al. 2021f), and reinforcement learn-
ing (Zhan et al. 2020; Jiao et al. 2020). In this survey, we will not delve into these tech-
niques as our primary focus in incentive management is addressing the client-side chal-
lenge of “Transparency”. Blockchain technologies and visual analytics tools are leveraged 
in conjunction with the aforementioned technologies to achieve transparency in incentive 
calculation.

4.3.1  Blockchain based solutions

Blockchain, a decentralized peer-to-peer digital ledger, offers robustness. Integrating 
blockchain into FL requires platform-based modifications to enable transparency. Addi-
tionally, blockchain addresses server-side challenges such as identifying malicious clients, 
task publication, client selection, incentive calculation or allocation, and regulatory com-
pliance, making it an attractive solution for FL.

FLchain (Bao et al. 2019), DeepChain (Weng et al. 2019), and FIFL (Gao et al. 2021) 
are reputation-based incentive approaches that adapt blockchain to prevent malicious trans-
actions by storing and monitoring all transactions. The probability of receiving rewards 
on the blockchain nodes is determined based on the client’s confidential, transparent, and 
auditable previous rewards.

The studies (Zhang et  al. 2021e; Toyoda and Zhang 2019) are incentive approaches 
based on auction theory where auxiliary functions such as task request, client selection, 
incentive allocation, and logging are made transparent by blockchain. Based on the data 
in the blockchain, rewards are transparently distributed among clients. FedCoin (Liu et al. 
2020a) immutably records the incentive allocations based on proof of Shapley protocol in 
the blockchain. Fedcoin does not rely on a central server to distribute payments between 
clients with non-repudiation and tamper-resistant properties.

Refiner (Zhang et al. 2021f) handles malicious participants and incentives by auditing 
records on the blockchain using trusted validators. Participants randomly select validators 
to test local model updates with the validation data set. Incentives are distributed based on 
model quality assessed by validators.

An incentive mechanism based on Bayesian game theory, the Fedserving framework 
(Weng et  al. 2021), adapted the blockchain to regulate transparent transactions between 
participants. They incorporated a “truth-finding” algorithm to learn accurate predictions 
and made them transparent using the blockchain.

While blockchain technology has successfully addressed the transparency and confiden-
tiality issues in incentive mechanisms, it does come with certain drawbacks. The imple-
mentation of blockchain can be resource-intensive and costly. Moreover, a portion of the 
FL profits needs to be shared with blockchain miners who validate transactions on the 
network.
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4.3.2  Visual analytics‑based solutions

In addition to blockchain-based solutions, visual analytics tools play a crucial role in pro-
viding users with insights and transparency in the FL environment. These tools use graphi-
cal representations such as graphs, charts, and maps to visually present data and enable 
users to identify patterns and processes. For example, a study by Ng et al. (2021) imple-
mented a visual analytics tool inspired by multiplayer games to enhance transparency in 
client incentive schemes. This tool offers clients an overview of the FL system, federa-
tion information, client statistics, data quality and quantity, market share changes, informa-
tion about other clients, profit/loss details, and summary information. By leveraging these 
visualizations, clients can effectively assess their incentive scheme and make informed 
decisions.

Fig. 4  The overview of secure multiparty computation approach

Fig. 5  The overview of homo-
morphic encryption approach (F, )
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Table 5 summarises the research based on all technologies in terms of the technology 
used and the factors driving the incentive scheme.

4.4  Solutions for resource management challenges

This section describes solutions to efficiently manage client resources such as data, compu-
tation, and communication costs.

4.4.1  Data management

Only a few studies focused on data management issues such as data imbalance and data 
representation. The literature used augmentation and reinforcement learning techniques for 
data imbalance and scarcity challenges. The majority of these approaches involve server 
or platform-based solutions, wherein the server simulates the clients’ environments by 
requesting certain data from clients and generating solutions to be implemented on the cli-
ent side. It reduces the burden on users while trading off privacy.

4.4.1.1 Solutions for data imbalance Data augmentation is an approach to address the data 
imbalance challenge by expanding the dataset through techniques such as generating slightly 
modified copies of existing data or synthesizing new data (Van Dyk and Meng 2001).

A server-side approach to address the data imbalance challenge was proposed in a 
study by Jeong et al. (2018), where the server simulated a client environment using a few 
data samples from clients and augmented the data to build a generative model. Shin et al. 
(2020) introduced a privacy-preserving XOR-based mixup data augmentation technique 
that involved adding encoded data from other clients to balance the training data. Duan 
et al. (2020) employed Z-score-based data augmentation and used Kullback Leibler diver-
gence-based rescheduling to handle data imbalance. Wu et al. (2020a) utilized the synthetic 
minority oversampling technique (SMOTE) among trustworthy clients in a smart home 
setting, requiring platform-based changes. Apart from that, using reinforcement learning, 
Zhang et al. (2021b) addressed data imbalance without sending data to servers by optimiz-
ing client selection and global update frequency.

4.4.1.2 Solutions for data representation Blockchain technologies have been widely uti-
lized to address data storage management challenges. Martinez et  al. (2019) leveraged 
blockchain to securely store client data, enabling secure uploading, recording, and tracking. 
In a similar approach, Moon et al. (2020) proposed an AI-based data management system 
that effectively manages data between servers and clients. This system stores important 
client data characteristics, such as size and distribution, to assist clients in organizing their 
data efficiently.

4.4.2  Computation cost management

Researchers have devoted significant attention to managing computational and commu-
nication costs, as these directly impact users’ participation, especially considering the 
resource-constrained nature of clients’ devices. Various techniques have been explored to 
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address computation-related challenges, including computation reuse, edge/fog computing, 
algorithm optimization, blockchain, reinforcement learning, and clustering.

Nour et  al. (2021) proposed a computation reuse approach to store model parameters 
of previously executed tasks with a high probability of repetition, aiming to eliminate 
redundant computations. Edge-assisted FL techniques, as explored in studies by Ren et al. 
(2019), Ji et al. (2021), and Al-Abiad et al. (2021), leverage edge computing to reduce the 
computational burden on clients. These approaches allow clients to compute model param-
eters locally or offload computations to edge devices based on resource availability. Wang 
et al. (2021c) introduced the use of high-altitude balloons (HABs) as flying wireless base 
stations to offload clients’ computational burden. These HABs dynamically adjust user 
association, service sequence, and task partition schemes to cater to clients’ needs over 
time.

The studies (Xu et al. 2019b; Chen et al. 2020a; Prathiba et al. 2021; Do et al. 2021) 
optimized the FL algorithm on client devices or the global model in each training cycle to 
achieve better computational allocation. The server handles most optimization techniques, 
although they need to be executed on the client devices. The intelligent UDEC (I-UDEC) 
framework (Yu et  al. 2020c) combines reinforcement learning and blockchain to obtain 
computation offload decisions in real time with low overhead and resource allocation 
strategies.

A resource management scheme based on clustering was proposed by Balakrishnan 
et al. (2021). The authors clustered clients according to their data and learned a federated 
meta-model from a subset of clients within each cluster. This approach allowed for efficient 
model building by organizing the process based on client clusters, resulting in personalized 
results while reducing communication and computation time.

4.4.3  Communication cost management

Researchers have explored several approaches to effectively manage communication costs 
in FL. These include compression techniques, reducing communication rounds, minimiz-
ing communication distance, and optimizing client selection.

4.4.3.1 Data compression Model compression schemes such as sparsification and quan-
tization are widely used in the literature to reduce the size of local and global models dur-
ing transfer (Sattler et al. 2019a). Sparsification methods limit the changes to only a small 
subset of the model parameters to reduce the entropy of the updates. Several studies adapted 
sparsification techniques such as transferring only model gradients greater than a predefined 
threshold (Strom 2015), updating only significant gradients (Li et  al. 2020d), uploading 
the model after gradient sparsification (Li et al. 2020c, 2021c; Asad et al. 2020), optimally 
compressing parameter matrix of model convolutional layers (Zhou et  al. 2020), down-
stream and upstream model compression with an encoding of the weight updates (Sattler 
et al. 2019a), compressing model gradient to Count Sketch data structure (Rothchild et al. 
2020), gradient perturbation (Hu et al. 2020a), using the sparse binary mask technique (Li 
et al. 2021a), and dynamically adjusting sparsity budgets of the gradient compression vari-
ables (Nori et al. 2021). However, sparsification compression methods may not be suitable 
for many clients.

Quantization methods reduce the entropy of the model updates by restricting all updates 
to a reduced set of values (Sattler et  al. 2019a). The quantization compression scheme 
is adapted in many studies, such as quantizing each gradient update to its binary sign 
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(Bernstein et al. 2018), stochastically quantize the gradients during upload in an unbiased 
way (Wen et al. 2017; Chang and Tandon 2020), using vector quantization technique per 
iteration (Dai et  al. 2019; Shlezinger et  al. 2020), applying encoding-based compression 
(Chai et al. 2020b; Malekijoo et al. 2021), and using lossy compression (Amiri et al. 2020). 
Although the existing approaches for managing communication costs in FL are theoreti-
cally sound and exhibit convergence properties, their empirical performance falls short 
compared to the sparsification method (Sattler et al. 2019a).

Konečnỳ et al. (2016) introduced a combination of sparsification and probabilistic quan-
tization to effectively reduce communication delays. Their method significantly decreased 
uplink and downlink communication time, making it suitable for large-scale deployments 
involving numerous clients.

One drawback of data compression methods is the unavoidable loss of information dur-
ing the compression process.

4.4.3.2 Reducing the Communication Rounds Another approach to enhance communica-
tion efficiency is reducing communication rounds. This can be achieved by allowing clients 
to perform multiple local epochs before sending their results to the server. Instead of updat-
ing the server for every small model change, clients aggregate their updates and commu-
nicate less frequently. This approach helps reduce communication overhead and improves 
overall efficiency in FL. Federated Averaging (FedAvg) (McMahan et al. 2017) algorithm is 
commonly used to reduce the communication rounds of FL through periodic connections. 
FedMMD (Yao et  al. 2018) adapted a two-stream model with maximum mean discrep-
ancy to integrate more knowledge from the local and global models. However, this method 
increased the computational cost for the clients to reduce communication rounds.

The CMFL approach proposed by Wang et  al. (2019b) effectively reduces communi-
cation overhead by controlling irrelevant client updates. Clients evaluate whether their 
updates align with the server’s feedback and contribute to model improvement before 
uploading them to the communication network. In contrast, Guha et  al. (2019) intro-
duced one-shot federated learning, which aims to learn a global model in a single round 
of communication across a set of clients. They leverage ensemble learning and knowledge 
aggregation to capture global information using client-specific models. Another strategy, 
presented by Avdiukhin and Kasiviswanathan (2021), is the adaptation of local Stochas-
tic Gradient Descent (SGD). This approach allows clients to evolve locally on their own 
asynchronously and then average the sequences in a global server after multiple iterations.

Table 5  Summary of incentive schemes in terms of technology and incentive factor

Technology Incentive schemes and references Solution end

Blockchain Clients reputation (Bao et al. 2019; Weng et al. 2019; Gao et al. 2021) Platform, Clients
Auction theory (Zhang et al. 2021e; Toyoda and Zhang 2019) Platform, Clients
Shapley protocol (Liu et al. 2020a) Platform, Clients
Model quality (Zhang et al. 2021f) Platform, Clients
Bayesian game theory (Weng et al. 2021) Platform, Clients

Visual tool Data contribution (Data quality and quantity) (Ng et al. 2021) Clients
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However, these methods have limitations such as increased local computation cost, 
potential bias in the global model due to sampling, and the absence of consideration for 
data heterogeneity among different clients.

4.4.3.3 Reducing the communication distance Edge computing is a notable approach men-
tioned in the literature to reduce communication distance. It involves deploying edge servers 
in close proximity to clients, facilitating communication within the edge computing infra-
structure. Some studies, such as Wang et al. (2019c), Lu et al. (2020), and Liu et al. (2021a), 
have incorporated edge computing into their FL systems. Partial aggregation or partial train-
ing may also be performed on edge servers to further optimize communication.

Another technique to reduce communication distance is peer-to-peer learning, where 
clients can leverage the knowledge and expertise of other clients in the network. BrainTor-
rent (Roy et al. 2019) and Online Push-Sum (He et al. 2019) are examples of central server-
free algorithms enabling clients to communicate exclusively with trusted neighboring cli-
ents. In the LotteryFL framework (Li et al. 2020a), a subnetwork is formed based on the 
lottery ticket hypothesis, allowing clients to learn personalized models instead of a single 
global model. Similarly, RingFed (Yang et al. 2021a) employs a ring topology instead of a 
star topology, enabling clients to communicate with each other before transmitting the final 
model to the server.

4.4.3.4 Client selection Client selection serves as another mechanism to minimize the 
amount of data transmitted between clients and the server to reduce communication costs. 
These algorithms restrict the number of participating clients in a round (only a fraction of 
clients in a round). The client selection algorithms are mainly implemented on the server. 
Clients’ influence on these algorithms is limited.

The studies (Nguyen et  al. 2020; AbdulRahman et  al. 2020; Liu et  al. 2021b; Nishio 
and Yonetani 2019) chose only a subset of the clients in each round to decrease the number 
of uploading clients. They performed sampling based on device capabilities regardless of 
the heterogeneity of the data. Cho et al. (2020) reduced client selection bias and addressed 
data heterogeneity by selecting the highest-loss clients. Instead of static sampling, Ji 
et  al. (2020) and Zhuang et  al. (2020) adapted dynamic sampling to choose the fraction 
of available client models and model parameters. Ribero and Vikalo (2020) used an opti-
mal sampling strategy to select a subset of clients with significant weight updates. FedPaq 
(Reisizadeh et al. 2020) uses periodic global updates, partial participation of devices, and 
compression techniques for efficient communication.

Clients with limited resources and data often face bias in most of these approaches. 
However, recent studies have aimed to address the bias against clients with fewer resources 
and data by investigating the differentiation in local models and considering the availability 
of client resources.

Besides these main approaches, there are some other approaches such as ensemble 
(Hamer et  al. 2020), model minimization (Bouacida et  al. 2020; Kang and Ahn 2021), 
pruning (Jiang et al. 2019b), overlapping training and communication (Zhou et al. 2021), 
feature fusion (Yao et al. 2019b, a), and knowledge distillation techniques (Wu et al. 2021a) 
focused on communication efficiency (Table 6).
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4.5  Solutions for data and device security challenges

This section examines the existing defense techniques for FL, focusing on three main cat-
egories: defense mechanisms against malicious clients or external attackers, defense mech-
anisms against malicious servers, and approaches for verifying participants and models. 
These techniques aim to protect clients from adversarial attacks and mitigate potential risks 
in the FL environment.

4.5.1  Defence mechanism against malicious clients or external attackers

Data/model poisoning is a common attack in FL where malicious attackers (can be clients 
or malicious agents who take control over clients) incorporate malicious data in the training 
phase or manipulate the global model using fake data. This attack greatly affects the client 
as the global model predictions will be incorrect. The literature proposed defence mecha-
nisms such as similarity-based approach (Cao et al. 2019), generative adversarial network 
approach (Zhao et  al. 2019), validation test set-based approach (Wang et  al. 2020b; Vy 
et al. 2021), notions of stealth approaches (Bhagoji et al. 2019), model-agnostic defence 
technique (Manna et al. 2021), and anomaly detection techniques (Shen et al. 2016; Wan 
et al. 2021; Li et al. 2021g).

A backdoor attack is a method of injecting a malicious task into an existing model with-
out compromising the accuracy of the original task. This attack aims to introduce a hidden 
trigger or pattern that can be exploited by an adversary to manipulate the model’s behav-
ior. Backdoor attacks were defended using fine-tuning (Liu et  al. 2018), model pruning 
(Jiang et al. 2022), clients’ contribution similarity (Fung et al. 2018), reverse engineering 
(Zhao et al. 2021), additive feature importance strategy (Manna et al. 2021), and testing 
the clients’ data accuracy on the high-quality test set belongs to the central server (Su et al. 
2022).

In addition to the defense-oriented methods discussed earlier, there are other techniques 
such as knowledge distillation (Li and Wang 2019) (sharing only the knowledge instead of 
model parameters for security), pruning (Jiang et al. 2019b) (reducing the model size with-
out affecting the accuracy), multi-task learning (Smith et al. 2017; Sattler et al. 2020; Li 
et al. 2019a; Yu et al. 2020e) (personalized model to reduce the impact of affected global 
models) that contribute to the defense mechanism in FL. While these techniques have dif-
ferent primary objectives, they also contribute to improving the overall defense mechanism 
in FL.

4.5.2  Defence mechanism against malicious servers

In the FL environment, it is important to consider the possibility of malicious behav-
ior from the central server. If the server is compromised, the impact of the attack can be 
severe, as the server has access to clients’ sensitive data through model updates. However, 
the literature on attacks originating from malicious servers is limited, with only a few stud-
ies specifically addressing this issue.

The studies (Mo and Haddadi 2019; Chen et al. 2020b) used Trusted Execution Envi-
ronment (TEE) approach to defend against the malicious server. TEE allocates private 
memory regions to compute with hardware and software isolation. The server’s memory 
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usage patterns are monitored every time to defend against the server’s malicious attacks. 
Each participant is compelled to execute secure and privacy algorithms in this environ-
ment. However, hardware changes are needed to adapt these approaches on the clients’ 
end.

Security consortiums within trusted clients and peer-to-peer learning techniques can 
also protect against a malicious server, as clients do not need to communicate with the 
central server. The studies (Roy et al. 2019; He et al. 2019; Yang et al. 2021a) built a 
peer-to-peer network with only trusted clients. Clients only need to know about their 
neighbors rather than the global network. Because these approaches bypass the central 
server or minimize central server communication, the impact of malicious server attacks 
is less than in the traditional FL network. But the client’s responsible for identifying 
other trusted clients within a huge network.

During the FL process, inference attacks pose a threat by attempting to extract sensi-
tive information from clients. These attacks can be initiated by either the clients them-
selves or a potentially malicious centralized server involved in the FL system (Hu et al. 
2021). Inference attacks are defended using techniques such as DP (Liu et  al. 2020), 
knowledge distillation (Li and Wang 2019), secret sharing or secure boost protocol 
(Wang et al. 2020c), Generative Adversarial Networks (GAN) based algorithm (Zhang 
and Luo 2020), and fake data generation at client node (Triastcyn and Faltings 2020).

4.5.3  Verification of participants and models approaches

The verification process validates whether the model, clients, and server are trustworthy 
or attack-free. Wainakh et al. (2020) adapted the hierarchical FL to verify participants 
and models. Unlike FL, hierarchical FL is not controlled by a central server; It connects 
to multiple servers in a tree structure, leading to granular monitoring of clients.

Blockchain technology is used in many studies (Fang et  al. 2022; Liu et  al. 2020; 
Rahman et al. 2020; Yi Ming et al. 2021; Jiang et al. 2021) to verify the models and par-
ticipants. Blockchain handles verification and stores the proofs of clients in the block-
chain. Fang et al. (2022) secure the confidential properties of model gradients using a 
secure aggregation protocol. They verified the global model gradients using blockchain 
to avoid a possible tampering attack.

Table  7 provides a comprehensive summary of research works, categorizing them 
based on the malicious actor, attack types, solution techniques, and solution end. Var-
ious approaches have been developed to detect attacks, including checking accuracy, 
model similarity, client contribution, and client similarity. However, it is important to 
note that these approaches may impact resource-constrained clients, as they could be 
mistakenly identified as malicious. In recent studies, blockchain-based techniques have 
incorporated additional factors such as client model updates, user traces, and model par-
ticipation to enhance the detection of malicious activities.

4.6  Solutions for fairness management challenges

This section is divided into two parts to examine state-of-the-art solutions: fairness 
measurement and the application of fairness in various disciplines of FL.
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4.6.1  Approaches to measuring fairness in FL

With regard to measuring fairness, researchers formulated measurement metrics such as 
average variance, distance metric (such as cosine distance, euclidean distance, maximum 
difference), Pearson correlation coefficient, and Jain’s fairness index (Shi et  al. 2021). 
However, the lack of standardization among these values poses a challenge in selecting 
a single metric. Factors such as the metric’s definition, trade-offs, and compatibility with 
other metrics need to be considered. Additionally, non-technical users should easily under-
stand the chosen metric and encompass various aspects of fairness.

In the pursuit of standardization, Garg et al. (2020) introduced a mathematical frame-
work that outlines the commonly used fairness metrics and their interrelationships. The 
relational representation helps users find the most suitable metric. Chu et al. (2021) pro-
posed a new FL framework called FedFair to train models with high performance and 
fairness without violating client privacy. They propose an estimation method to estimate 
model fairness in a privacy-constrained environment that is more efficient than estimating 
fairness locally. The framework includes the fairness estimation function of the loss func-
tion as a constraint.

Rather than assessing the accuracy of the global model across all clients, Divi et  al. 
(2021b) focused on evaluating the effectiveness of individualized models for each client. 
They examined whether the accuracy of personalized models improved for each user and 
observed a fair perception overall. To evaluate the quality of the personalized models, they 
introduced five performance metrics and four fairness metrics, which assessed whether the 
personalized models provided equal improvements for all users.

These approaches encompass platform-based or client-based algorithmic solutions that 
enable users to visualize and assess their fair treatment within the system using a range of 
metrics.

4.6.2  Practice of fairness in different disciplines

The concept of fairness is practiced in various FL disciplines, including contribution eval-
uation, client selection, model optimization, incentive mechanism, and social good. This 
section discusses the existing works practicing fairness in these disciplines, techniques, and 
adapted notions of fairness.

4.6.2.1 Client selection Unfair treatment can start during the client selection process. How-
ever, many existing client selection approaches prioritize server interests, such as accuracy 
improvement and convergence rate, while disregarding the interests of individual clients. 
These approaches often prioritize clients based on factors like bandwidth, data quality, 
transmission speed, and computing power. Consequently, client selection can be unfair due 
to over-representation, under-representation, and the exclusion of certain clients (Shi et al. 
2021).

Recent studies focus on reducing bias against under-represented clients (lower computa-
tional capabilities and smaller datasets). Huang et al. (2020a) modeled the client selection 
strategy as a Lyapunov optimization problem, where client participation rates were opti-
mized through a dynamic queuing approach. The algorithm ensures that each client’s aver-
age participation rate equals the expected guarantee rate. Similarly, Yang et al. (2021c) pro-
posed a multi-arm bandit-based algorithm to encourage the selection of under-represented 
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clients. The choice depends on the class distribution of the data. Clients with minimal 
class imbalance will receive the highest rewards, while the system allows clients with a 
maximal class imbalance to participate in at least a specified number of rounds. Another 
approach Kang et al. (2020) used reputation measurement in terms of honesty and contri-
bution to choose clients. Highly reputed clients get more opportunities to be selected than 
low-reputed clients.

4.6.2.2 Contribution evaluation Contribution evaluation assesses the individual contribu-
tions of clients within the FL system without requiring access to their data. Various methods 
have been proposed to evaluate client contributions, including self-reported information, 
individual assessment, utility game, Shapley value, and empirical approaches (Shi et  al. 
2021).

The studies (Kang et al. 2019b; Sarikaya and Ercetin 2019; Zhang et al. 2020b; Le et al. 
2021) use clients’ self-reported information to evaluate client contributions. Self-reported 
information can contain data quality & quantity, data collection costs, and computational 
& communication capabilities they can commit to FL. The server uses this information to 
assign ratings for the clients. This approach assumes that clients are trustworthy and capa-
ble of assessing their data environment. Clients and server have to be involved to achieve 
this approach’s fairness goal.

Individual reputation evaluation is based on the performance of clients on specific tasks. 
Reputation mechanisms are designed to track the clients’ reliability and contribution. Cli-
ent reputation is calculated based on client validation accuracy (Lyu et al. 2020a), the simi-
larity between local model-global model (Xu and Lyu 2020), loss function values (Song 
et al. 2021), and direct or indirect reputation of clients from history with task publishers 
(Kang et al. 2019a; Zhang et al. 2021e; Kang et al. 2020). A task publisher is responsible 
for assigning tasks to clients.

Along with reputation, Zeng et al. (2020) incorporates resource quality information to 
evaluate the individual contributions of clients. Another approach proposed by Lyu et al. 
(2020c) involves a mutual evaluation process among FL clients to assess their potential 
value. These approaches take into account the involvement of clients, server, and platform 
to achieve fairness in the system.

Utility games are employed to translate clients’ utility into rewards, offering another 
avenue for fairness adoption. Wang et al. (2019a) and Nishio et al. (2020) adopted the mar-
ginal loss approach to evaluate clients’ contributions. The concept of marginal loss sug-
gests that a client’s gain is equivalent to the utility lost when the client departs from the 
system (Shi et al. 2021). Primarily, the server plays a significant role in this approach.

Shapley value evaluates contribution by calculating the weighted average of the mar-
ginal contribution from the utility perspective and the clients’ impact. The studies (Song 
et al. 2019; Wang et al. 2020a) evaluated the impact by calculating Shapley value in the 
entire training session. Wang et al. (2019a) used the Shapley value to calculate the feature 
importance in VFL instead of considering all client data. If a client has important features 
that greatly influence the model, then the client receives high Shapley values.

To reduce the computational cost of the aforementioned theoretical methods, Shyn et al. 
(2021) proposed FedCCEA, which approximates the client contribution using the sample 
data size weights in the model. The server is mainly responsible for this approach by get-
ting sample sizes from clients.
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4.6.2.3 Model optimization The process of model optimization can also introduce biases 
in global models, favoring certain groups or relying heavily on a small subset of clients. As 
a result, the performance of the global model may excel for some clients while neglecting 
others. Fairness in model optimization aims to achieve an even distribution of accuracy 
across all clients.

The agnostic FL framework (Mohri et al. 2019) and FedFa (Huang et al. 2020b) optimi-
zation algorithm were built to avoid bias towards clients while optimizing the FL model. 
Mohri et al. (2019) naturally yields fairness for any target distribution with a mixture of 
clients with a data-dependent Rademacher guarantee. The FedFa combines the double 
momentum gradient method and weighting strategy. The weights are calculated based on 
information quantity and training frequency.

Another approach, Ditto (Li et al. 2021f), focused on building personalized models for 
each client (by allowing clients to fine-tune) closer to the optimal global model. A reg-
ularization term is added to make the finely tuned model closer to the global model. It 
reduces the variation in accuracy between clients by approximately 10% and simultane-
ously improves fairness and robustness. These works are based on the accuracy parity fair-
ness notion.

Fed-ZDAC (Hao et al. 2021) applied a zero-shot data augmentation technique to under-
represented client data to achieve uniform accuracy across clients. The augmentation algo-
rithm generates pseudo-exemplars of unseen classes to avoid under-representation of the 
client. Hao et al. (2021) considered good-intent fairness notion to minimize loss of under-
lying protected client classes. Michieli and Ozay (2021) proposed a fair aggregation algo-
rithm, FairAvg, showing that the fair algorithm is useful in terms of accuracy and conver-
gence rate.

Xu and Lyu (2020) proposed RFFL framework based on contribution fairness. They 
maintained a client reputation scheme based on clients’ contributions via local model 
updates. The global model is weighted according to the client’s reputation. Another 
approach is CFFL (Lyu et al. 2020a), where each client receives a different global model 
corresponding to their reputation. Alvi et  al. (2021) also regulated global model quality 
according to the client’s contributions and costs. The server adds noise to the global model 
based on the quality of the local model. They regulated utility fairness via adaptive calcula-
tions and transmission policies.

q-FFL (Li et al. 2019b) realized accuracy parity using fair resource distribution. They 
assigned more weight in aggregation to clients with higher losses. The degree of fairness 
can be adjusted by tuning q. It is a multi-objective algorithm to optimize the loss function 
of each client individually without sacrificing performance. Their approach to attain fair-
ness in the optimization function, as defined in Eq. (5), involves reweighting the objective 
function of the traditional FL function (refer Eq. (1)). In this approach, they assign higher 
weights to devices with poor performance, thereby shifting the distribution of accuracies in 
the network towards greater uniformity. For given local non-negative cost functions fk and 
parameter q > 0 , they define the objective function as in Eq. (5).

The term f q+1
k

 represents fk raised to the power of q + 1 . The parameter q controls the 
degree of fairness we aim to achieve. When q = 0 , fairness remains at the level of the 
classical FL objective (refer Eq. (1)). A higher q places greater emphasis on devices with 
higher local empirical losses ( w ), leading to a more uniform training accuracy distribution 

(5)minwFq(w) =

m
∑

k=1

pk

q + 1
f
q+1

k
(w)
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and the potential induction of fairness. m mathematical m as represents the number of cli-
ents in the FL process.

FedFv (Wang et  al. 2021d) was proposed to resolve conflicts between local mod-
els before averaging them when constructing a global model. The algorithm can handle 
two types of conflicts: internal conflicts (between selected clients) and external conflicts 
(between selected and unselected clients).

However, it is important to note that these algorithms assume identical data distribu-
tions in all scenarios. In reality, data distributions are dynamic; therefore, it is crucial to 
consider the applicability of these algorithms in dynamic situations.

4.6.2.4 Incentive mechanism FLI (Yu et al. 2020a) dynamically and fairly allocates incen-
tives to clients in a context-aware way. A given budget is equitably divided among clients to 
maximize utility and minimize inequality among clients. The algorithm satisfies contribu-
tion fairness, regret distribution fairness, and expectation fairness.

Several studies have focused on rewarding clients based on their contribution rate 
(Zhang et al. 2021e; Zeng et al. 2020; Cong et al. 2020). Likewise, previous studies (Kang 
et al. 2019b; Fan et al. 2021; Ye et al. 2020) distributed incentives based on data quality 
using Shapley value and contract theory methods.

In addition to monetary incentive schemes, the hierarchical fair FL framework proposed 
by Zhang et al. (2020b) focuses on rewarding clients based on their contribution rate. This 
approach classifies clients into different levels based on the quality or quantity of data and 
distributes models at the client level. Similarly, Lyu et al. (2020c) divided clients into clus-
ters and trained one model for each cluster.

The achievement of fairness in incentive mechanisms requires collaboration among cli-
ents, servers, and platforms.

4.6.2.5 Social good The social good ensures that the model is not biased toward a specific 
individual or group. It is subject to the concept of group fairness. Ezzeldin et al. (2021) 
proposed a fairness-aware aggregation algorithm using debiasing strategies to provide a 
fair model across sensitive groups (such as race and gender). Likewise, Yue et al. (2021) 
obtained group and individual fairness by using a regularisation term to give more weight to 
low-performing individual clients or groups.

Rodríguez-Gálvez et  al. (2021) introduced a modified method of differential multipli-
ers to minimize empirical risks with fairness constraints, thereby enforcing group fairness 
in private FL. Padala et al. (2021) presented an ethical FL model to achieve demographic 
parity and equalized odds. Demographic parity indicates that the model’s prediction must 
be independent of a sensitive attribute. Equalized odds focus on equating false positive and 
negative rates among different groups or individuals.

Zhang et  al. (2020a) focused specifically on discriminatory bias against demographic 
groups. They addressed the challenges of fairness-performance trade-off, constrained coor-
dination, and information limitation in privacy-sensitive FL settings by adapting a deep 
multi-agent reinforcement learning framework and a secure aggregation protocol. Another 
study, Zhang et al. (2021c), solved the unified group fairness problem through an optimiza-
tion algorithm. They simultaneously investigated attribute level, client level, and agnostic 
fairness.

These solutions primarily operate at the platform level, with minimal involvement from 
clients. Table 8 provides an overview of fairness approaches, including fairness measure-
ment, its application in various disciplines, and existing research and solutions.
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5  Discussion

In this section, we examine prior studies by considering the impacts of a given solution in 
addressing a specific client-side challenge over other challenges. We classify the impacts 
between these challenges into three groups: those with a positive impact, those with 
a negative impact, and those that can have either a negative or positive impact on other 
challenges.

The positive impact category denotes that a solution targeting a specific challenge can 
also be effective for addressing multiple challenges simultaneously, resulting in time and 
effort savings. Conversely, solutions falling under the negative impact category may inad-
vertently exacerbate other challenges while attempting to resolve one. The third category 
encompasses solutions that can have either a positive or negative impact on other chal-
lenges, depending on the specific approach employed. While addressing one challenge may 
aid in resolving another, it can also inadvertently unveil or intensify other challenges in 
certain cases.

Table 9 illustrates the interrelationships among various challenges, based on the solu-
tions available in the existing literature, along with the impact of these solutions on model 
performance. Each row represents the main challenge being addressed in the research, and 
each column represents a secondary challenge. The cells indicate the impact of a solution 
for the main challenge on the secondary challenge. As an example, consider the intersec-
tion of the “personalization” row and the “privacy” column. The corresponding solution 
emphasizes personalization and investigates its implications for privacy. However, it is 
observed that this approach may have a negative effect on privacy management.

5.1  Positive impact

Personalization solutions offer the opportunity to establish incentive mechanisms based on 
the best model, incorporating individual client contributions to incentivize clients. Cluster-
ing techniques within personalization can further assist in incentive mechanisms by group-
ing similar clients, aiding in the allocation of incentives effectively.

Personalization solutions can also contribute to fairness and robustness in model per-
formance. A study by Li et  al. (2021f) found that personalization solutions can improve 
performance in all three of these disciplines. Personalization helps to improve robustness 
by allowing the global model to be customized based on individual client data. This can 
help to protect against adversaries attacking the global model, as the impact on individual 
client performance is mitigated through personalization. Personalization solutions can also 
improve fairness by reducing the accuracy parity among clients through personalized mod-
els that are based on individual client data.

In addition, fairness solutions related to client selection, model optimization, and contri-
bution evaluation can contribute to personalization as they consider the individual client’s 
contribution to model building. This allows highly contributed clients to achieve high per-
formance while also giving under-represented clients the opportunity to have their contri-
butions recognized. These solutions can also help in resource and incentive management 
by distributing resources and incentives among clients in a fair manner.

The auditability problem under privacy management is usually solved through block-
chain technology. Due to its auditing feature, blockchain technology can help with many 
other challenges, such as incentives, data, and security management.
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Privacy and security mechanisms can work together to provide mutual benefits. Imple-
menting privacy mechanisms can help to reduce information sharing and protect against 
adversarial attacks, while a secure environment can minimize the risk of privacy violations.

Incentive approaches based on client reputation can have a positive impact on both 
security and fairness. Client reputation is often determined by the performance and contri-
bution of the client to the environment. These measurements can be used to identify hon-
est (high contribution) and dishonest (low contribution) clients in the network, which can 
help security mechanisms to be more effective. Additionally, most incentive mechanisms 
are based on client contribution and data quality, which helps to ensure that fairness is 
maintained.

5.2  Negative impact

There is a trade-off between privacy and personalization challenges. For example, the clus-
tering approach for personalization may compromise privacy as it requires additional client 
information, such as data distribution, data size, and client location. Similarly, incentive 
schemes may also negatively impact privacy by requiring auxiliary information about cli-
ents in order to distribute incentives fairly, which can reveal more client data.

Privacy approaches may negatively affect resource management as privacy algo-
rithms (e.g. DP) require additional server computation and transmission power. Security 
approaches can negatively impact fairness as unique clients can be identified as malicious, 
leading to unfairness.

Except for privacy and resource management solutions, all other solutions tend to posi-
tively impact performance. Privacy approaches may reduce performance by adding noise 
to model parameters or data before building the model. On the other hand, performance-
oriented algorithms that require large amounts of data and resources may improve perfor-
mance but may also contribute to unfairness by eliminating low-performing and resource-
constrained clients from the FL process. Resource management algorithms, on the other 
hand, may reduce resource usage, which can impact performance.

5.3  Negative or positive impact

One solution for the personalization challenge is clustering, which positively impacts resource 
management, while another personalization approach, fine-tuning, negatively affects it. Cli-
ents can be grouped by clustering based on location, performance, and resource availability. 
Due to clustering, clients do not need to communicate with the server frequently, thus reduc-
ing communication costs constantly. But fine-tuning approaches require additional client com-
puting resources for tuning.

Efficient solutions addressing communication management challenges, such as data com-
pression and reducing communication rounds, can contribute to mitigating security and pri-
vacy concerns. Data compression techniques can make it more difficult for adversaries to 
access client data while reducing the number of communication rounds minimizes the amount 
of data exchanged between clients and the server, reducing the risk of data being compro-
mised. However, the use of edge-assisted FL technology, which is used to manage computa-
tion and communication costs, can increase the risk of privacy and security breaches. This is 
because it requires clients to send raw data to the edge server, which can increase the risk of 
privacy and security violations.
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Fairness measurement, accuracy parity, and good-intent/group fairness approaches can all 
contribute to privacy management. Fairness measurement can help with privacy management 
by making the FL process transparent and visible to clients, addressing the issue of auditabil-
ity. Accuracy parity and good-intent/group fairness approaches can help to mitigate the risk 
of re-identification by reducing differences between individuals or groups. However, the self-
reported information solution used in contribution evaluation may increase the privacy risk, as 
it requires clients to report data quality and quantity, data collection costs, and computational 
and communication capabilities to the server for review. This can expose sensitive information 
about the client.

Most of the fairness approaches negatively impact security because fairness approaches 
reduce disparity among clients, reducing the chance of detecting malicious clients using 
anomaly detection. From the security perspective, the disparity can help distinguish between 
malicious and honest clients. It is applicable vice-versa, too. However, on the topic of fairness, 
an approach known as “client-reputation measurement regarding honesty and contribution” 
can be employed to identify dishonest clients.

5.4  A solution applicability for many challenges

This section emphasizes the importance of considering the applicability of solutions to multi-
ple challenges and understanding the interrelationship between these challenges when design-
ing solutions. By doing so, it is possible to reduce system complexity and avoid duplicative 
efforts in the federated environment.

Blockchain technology has been used in the literature to address privacy, data computation, 
incentive, and security management challenges. This is because blockchain has many fea-
tures, such as robustness, immutability, transparency, append-only, and auditability, that make 
it suitable for addressing a wide range of challenges. Researchers can consider collaborating 
with blockchain technology to address various challenges, as it has the potential to simplify 
solutions by combining different methods in a single system.

Likewise, certain personalization approaches can also address fairness and security chal-
lenges. For instance, Ditto (Li et al. 2021f) is a personalization solution that offers both fair-
ness and security benefits. It is important to analyze other personalization approaches to iden-
tify their potential benefits in different aspects.

Table 9  The relationships between challenges and performance

*Each row indicates the primary challenge of the research and each column is a secondary challenge. Each 
cell represents the impact of primary challenge solutions on another challenge. † ✓ : Positive impact, × : 
Negative impact

Challenges Person-
alization

Privacy Incentive Resource Security Fairness Performance

Personalization – × ✓ ✓ × ✓ ✓ ✓

Privacy × – ✓ × ✓ – ×

Incentive – × – – ✓ ✓ ✓

Resource – ✓ × – – ✓ × – ×

Security – ✓ – × – × ✓

Fairness ✓ ✓ × ✓ ✓ ✓ × – ✓

Performance ✓ × ✓ × – × –
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6  Open challenges and trend of future works

In this section, we explore open challenges and future research trends by examining the 
reviewed research articles, surveys, and our own insights. As we delve into these discus-
sions, one potential avenue for future investigation involves examining the impact of solu-
tions for specific challenges on other related challenges.

• Personalization challenges:

– Impact of personalization methods on other challenges: For example, Ditto (Li et al. 
2021f) evaluated the fairness and robustness benefits of the proposed personaliza-
tion method. Therefore, future research could focus on the impact of other person-
alization solutions on different challenges.

– Context-aware personalization: Developing context-aware techniques in FL is a 
potential open problem. The consideration of sensitive contextual information in FL 
is an ongoing topic of interest. While FL does not involve data transfer to third-
party applications, the question of whether context information can be leveraged to 
enhance personalization without compromising privacy requires further investiga-
tion.

• Incentive management challenges:

– Incentive schemes based on other values (except monetary value): While we have 
discussed various incentives such as model performance, reputation, computational 
power, auxiliary information, and model fairness, there is limited research on other 
incentive schemes. Exploring and studying additional incentive approaches in the 
context of FL would be a valuable direction for future research.

– Incentive schemes with multiple servers: Almost all literature focused on the one-
to-many relationship where one server with multiple clients (monopoly market) (Shi 
et  al. 2021). Clients have no option to choose another server if they are not con-
vinced by the offer. This area needs further study to create a non-monopoly market 
with multiple server options.

• Privacy management challenges:

– Privacy and performance trade-off: Current approaches (such as DP) forfeit perfor-
mance and computation to enable privacy for clients. Though researchers are work-
ing on finding an optimal point to manage privacy and performance, the privacy-
utility trade-off is still open to researchers.

– Dynamic settings with context: Privacy approaches in the literature are static, con-
sistently using the same noise level and settings. However, clients’ preferences may 
vary depending on the context.

– Explainable AI: Explainable AI refers to building tools or frameworks to describe 
ML models in a human-understandable format. Applying explainable AI concepts 
in FL is still an open problem.

– Granular privacy management and consented data sharing: Very little literature 
focuses on granular privacy management to meet the diverse privacy needs of cli-
ents.

– Sharing less sensitive model (Lo et al. 2021b): Since data can be inferred even after 
DP mechanisms are applied, it is useful to have mechanisms to understand the mod-
el’s sensitivity before it is shared.
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– Compliance with regulatory (Lo et al. 2021b): The application of regulatory com-
pliance for FL (model exposure, model retention) is still underexplored.

• Resource management challenges: While significant research has been conducted on 
computational and communication management in the context of FL, relatively less 
attention has been given to data management aspects. The focus has primarily been on 
improving performance through computational and communication strategies, leaving 
room for further exploration and investigation of data management techniques in FL.

– Handling unlabelled data (Lo et al. 2021b): Labelled data may not always be avail-
able to clients, and labeling is also expensive. Some potential approaches, such as 
semi-supervised learning (Lo et al. 2021b) to label data based on other clients’ data, 
can be expected in the future.

• Security: Current literature mainly focuses on attacks from malicious clients rather than 
from malicious servers.

– Security approaches for malicious servers: In literature, only a few studies (Mo and 
Haddadi 2019; Chen et al. 2020b) focused on solutions for malicious servers. More 
theoretical and empirical studies are needed to address malicious server problems.

– Consortium among clients: To avoid malicious attacks from clients or servers, cli-
ents can cluster within themselves and form a consortium among themselves with-
out concern of malicious server. The grouping may be based on the reputation of 
clients.

• Fairness: The concept of fairness has recently received extensive attention in ML. 
However, applying these methods in FL is not straightforward due to the data distribu-
tion. Thus, new techniques should be introduced in FL.

– Fairness approaches in FL life cycle: FL consists of different stages of data process-
ing, such as pre-processing (collecting clients’ data, feature selection/modification, 
data synthesis), in-process (building local models, adding global models), and post-
processing (result prediction). Introducing fairness at each stage can enable fairness-
aware FL.

– User interactive fairness system: A framework for setting the boundaries of clients’ 
expected fairness is appreciable. Clients can visualize and define their own fairness 
expectations in the framework.

7  Conclusion

To the best of our knowledge, this study is the first survey of client-side challenges in FL. 
We conducted this systematic survey by analyzing the literature and categorized the client-
side challenges into six broad categories: personalization, privacy management, incentive 
management, resource management, data and device security, and fairness. We also pre-
sented the available state-of-art solutions for the identified challenges. In addition, we con-
ducted an analysis of the relationships between challenges, trade-offs in addressing them, 
and the applicability of solutions. Based on this analysis, a potential future research direc-
tion would be to explore the impact of addressing one challenge on others. By applying a 
solution to multiple challenges, it is possible to reduce system complexity and eliminate 
redundant efforts.
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