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Abstract Federated learning came into being with the
increasing concern of privacy security, as people’s sensitive
information is being exposed under the era of big data. It is an
algorithm that does not collect users’ raw data, but aggregates
model parameters from each client and therefore protects user’s
privacy. Nonetheless, due to the inherent distributed nature of
federated learning, it is more vulnerable under attacks since
users may upload malicious data to break down the federated
learning server. In addition, some recent studies have shown
that attackers can recover information merely from parameters.
Hence, there is still lots of room to improve the current
federated learning frameworks. In this survey, we give a brief
review of the state-of-the-art federated learning techniques and
detailedly discuss the improvement of federated learning.
Several open issues and existing solutions in federated learning
are discussed. We also point out the future research directions
of federated learning.

Keywords federated learning, privacy protection, security

1 Introduction

In recent years, artificial intelligence has gradually entered
into every aspect of people’s life. The combination of modern
deep learning algorithms and massive data makes the deep
learning technology a promising tool to solve complicated
real-world problems. However, with the emergence of more
and more deep learning services leveraging the data, how to
protect data privacy becomes a serious challenge [1]. Since
artificial intelligence is supported by massive data, in the field
of both the industry and academia, it is an emerging trend that
large datasets are increasingly collected. Traditional deep
learning fashions inevitably collect a large amount of data
containing sensitive information for model training, and the
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training process is usually conducted in a centralized server.
These factors render that privacy and security issues are likely
to arise during the learning process.

To solve the privacy and security concerns, many resear-
chers have proposed methods such as differential privacy [2],
homomorphic encryption [3], and federated learning also
came into being. The prototype of federated learning is first
proposed by Google in 2016 [4]. According to Google,
federated learning was first used on the google keyboard,
mainly to protect users’ private data [5] and to improve the
language model quality [6]. Nevertheless, the concept of FL
has been around for a long time, and at its core idea is the
distributed deep learning, such as the privacy-protected deep
learning system proposed by [7]. For federated learning, the
key design to fulfill distributed learning is that it only requires
parameters instead of collecting raw data from the user. With
holding the data in each user’s own equipment, the sensitive
information is well protected. With this distinguished capabi-
lity compared to other deep learning algorithms, federated
learning attracts great attention from plenty of applications.
Like wake word detection [8], emoji prediction [9], persona-
lized model training [10], Internet of Things [11-13] and so
on. Lim et al. [14] introduce a range of federated learning
applications in different scenarios.

While federated learning has been used in most scenarios,
researchers have found that there are still many challenges to
be addressed. For example, a large amount of research work
has realized that federated learning, originally intended to
protect privacy, is more vulnerable to attacks by malicious
nodes in many practical scenarios than traditional deep
learning frameworks [15]. As only the parameters, which do
not reveal the client’s identity, are collected by a federated
learning server, the anonymous clients may contain attackers
that upload malicious data to the server. In this case, federated
learning may be much less effective than traditional learning
algorithms. Since these challenges limit the performance of
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federated learning, there are plenty of research works devoted
to resolving these problems [16—19]. However, there is still
room for discussion on these issues. Our research will focus
on these challenges, aimed to propose novel applications with
privacy-preserving federated learning in different scenarios.

In the remainder of this paper, we will review the develop-
ments of federated learning in Section 2. In Section 3, the
challenges mentioned above of federated learning and the
corresponding solutions will be introduced. Section 4 will
discuss the future research direction of federated learning. The
summary will be given in Section 5.

2 Secure learning algorithm: federated
learning

In this section, we will first discuss about the learning
algorithm that protects data privacy and security: federated
learning, and review some applications. Then we will give a
review about new challenges of federated learning and their
corresponding solutions.

2.1 Emergence of federated learning
The reason for the birth of federated learning is the growing
importance of data privacy. As security awareness increases,
people will be more reluctant to contribute their own private
data, which seriously impede the development of deep
learning. Meanwhile, in real life, except for a few giant
companies, most of the enterprises only have insufficient data
with limited qualities, which are not enough to support the
deployment of data-hungry Al services. From an enterprise’s
perspective, the data from commercial companies are often of
great potential value. Different companies or even different
departments within the same company usually do not share
data. Accordingly, within the same company, the data is often
in the form of isolated islands [20]. For individual users, most
of their data also contain their personal information, such as
travel trajectory, health status, etc. In this situation, it is unsafe
to upload the unprotected raw data to the deep learning server.
Federated learning is essentially a distributed framework of
the deep learning as shown in Fig 1. It can improve the
effectiveness of the model through the model aggregation of
multiple clients on the basis of ensuring the security of data
privacy [21]. Therefore, federated learning can play a
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significant role in protecting the user’s privacy since the
training data cannot be collected centrally due to their wide
distribution scope and involving sensitive privacy. Based on
different data distributions among multiple participants,
according to [20], federal learning can be divided into three
categories: horizontal federated learning, vertical federated
learning, and federated transfer learning.

The scenario of horizontal federated learning is one in
which the data distribution provided by the participants is
similar, but data providers do not overlap. In the training
process, the model of each machine training is identical and
complete, and can be independently predicted when making
predictions. Consequently, this process can be regarded as a
distributed training based on samples. Since each user’s raw
data are trained locally, and only local gradients parameters
are shared and uploaded, the user’s privacy is also protected
but with some model loss. The adoption of this framework can
be seen in [4,8—10].

The vertical federated learning scenario is opposite to the
horizontal federated learning. The user sets are all the same,
but different datasets have different kinds of data from these
users. For example, airlines and hotels have different data
from the same user, i.c., flight records and accommodation
records. As a result, vertical federated learning requires
sample alignment and model encryption [22]. During the
training process, vertical federated learning ensures that other
participants do not know the data and characteristics of the
other party. In this way, the global model can obtain data
information of all participants, and there is no loss of the
model.

The application scenario of federated transfer learning is
strict, which has a limited number of identical users, and very
small datasets with the same features. A lot of recent work has
narrowed down scenarios to very specific topics for
discussion, such as wearable healthcare [23].

2.2 Bottleneck in federated learning

Plenty of applications take advantage of federated learning,
and its concept has been deployed from many places. For
instance, some applications allow users to train models on
their mobile phones without having to upload raw data [24].
Nevertheless, though existing applications are diverse and
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Fig. 1 Traditional deep learning versus federated learning. (a) Traditional deep learning. Step A: server collects data from users. Step B: server
uses the whole dataset to train the model. Step C: server sends back the complete model to all the users; (b) Federated learning. Step I: server
sends the global model to all the users. Step II: each user uses own data to train local model. Step III: each user sends their model to the server.

Step IV: server aggregates models as a global model
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successful, federated learning techniques still needs to be
improved. The idea of distributed learning and keeping data
locally makes it easier for malicious nodes to attack the
federated learning framework. In addition, there are many
other problems, such as many heterogeneous users and data
themselves also bring more processing difficulty to the
algorithm. Some of them are the same challenges as normal
deep learning, and some are new challenges. Moreover, the
challenges that exist in other classical algorithms may even
have a more serious impact on federated learning frameworks.
For example, if the dataset has only positive labels, it can
directly break down the federated learning system [25].

In the followings, four challenges that future federated
learning systems worth to be focused on will be discussed:
high communication cost, systems heterogeneity, statistical
heterogeneity, privacy concerns [19,20,26]. Additionally,
some other vulnerabilities will be also involved in our
discussion.

3 Challenges and corresponding solutions
Although federated learning is very promising and can be
applied in most scenarios, as people continue to study, the
challenging issues of federated learning are also exposed.

According to [27], model poisoning attacks are highly
possible. Specifically, the federated learning process involves
multiple clients uploading their own parameters, the central
server receiving the local parameters, global aggregation, and
finally returning the updated parameters to each client. There-
fore, once malicious nodes are involved, they can misclassify
the input with a high degree of confidence, which lead to
model poisoning. Besides, Zhu et al. [28] pointed out the
privacy issue, and they showed that even if each client uploads
a local gradient instead of the original data, the malicious node
still has a way to recover the contents of the raw data from the
gradient. Meanwhile, in some scenarios, the data of different
clients are not independent and identically distributed (i.e.,
non-IID), and clients’ devices are also very different. The
performance of federated learning in these cases is also worth
to be explored [19].

3.1 Communication cost

Because sending raw data may cause privacy issues, the data
generated on each device must be saved locally. This makes
communication a bottleneck in federated learning. In a real
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Fig. 2 Five challenges that we mainly discussed in this paper
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world scenario, there can be millions of devices involved in
the network, and each device may spend far less time training
model locally than the network communication [29]. When
there is an overlarge number of participants, although the
model’s quality will be improved since it is trained by more
data, the communication overhead also increase. Especially,
when mobile phones are the carriers of clients’ data, the
communication efficiency becomes much more decreased.
This is because the local models are required to be uploaded to
the server periodically and for large models, this step can be a
bottleneck due to the limited bandwidth of wireless network.
Also, in respect that connection speeds are asymmetric: uplink
is usually slower than downlink, it is important to reduce the
uplink communication cost [30]. To reduce communication
cost, researchers should focus on two areas: first is to reduce
the total number of communication rounds, and second is to
reduce information size in each round of communication.

3.2 Heterogeneity in systems

Due to the variety of people’s devices, network status, storage,
and processing capability of devices, the training process of
computing and communication capabilities will be different.
The presence of this heterogeneity exacerbates delayed
mitigation and fault tolerance [31]. Bonawitz et al. [32]
proposed a solution that is to filter a subset of valid devices
from a cluster of devices. It is usually necessary to confirm
whether the device is idle, the power status of the device, and
whether it is a billing network. There may even be a situation
where the device goes offline [33]. The heterogeneous nature
of devices and networks, as well as the sudden loss of active
members, will make people consider the issues of latency and
fault tolerance. In a word, motivating user participation,
handling heterogeneous devices, and designing fault-tolerant
mechanism for the unstable network can contribute to solving
the problem of the system heterogeneity in federated learning.

3.3 Heterogeneity in statistical

In addition to the above heterogeneity of the system, there is
heterogeneity in the data itself. Due to the different generation
and collection methods, the data from different users can
easily be heterogeneous, in other words non-IID. Non-IID data
will be more difficult to the process, which increases the
complexity of modeling and evaluation. In particular, the
federated learning usually adopts the stochastic gradient
descent, which is widely used to train deep networks. The IID
training data can better ensure that the stochastic gradient is
unbiased [34]. Fortunately, there are some existed methods to
deal with heterogeneous data, such as meta-learning which
enables personalized modeling [18]. Sattler et al. [35] claimed
that top-k sparsification performs very well in non-IID
federated learning environments. In their work, they adopted
top-k sparsification, designing a caching mechanism used on
the server side and extended the compression to the
downstream. Their results show that, in the worst case, their
algorithm can still achieve an accuracy of at least 50% while
the federated averaging algorithm does not even converge. Li
et al. [36] demonstrated the convergence rate of federated
averaging without assuming constraints. They also claimed
that the learning rate will definitely decay if federated
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averaging algorithm is adopted for handling non-1ID data.
Unlike previous analysis, they did not assume that the data in
each client is IID, and it is hard to satisfy this assumption in
practice.

3.4 Privacy concerns
Privacy is a top concern of federated learning. According to
[37], most research of model attacks will assume that the
attacker can barely access the model input, because the data
for the training model remains internally confidential.
However, when we consider the real world situations, we find
that most service providers require users to upload private data
to train. Once the uploading is over, users will lose control of
their data: they can not know how the data is being used nor
can they actively delete them. Federated learning has gone a
long way toward protecting privacy by providing each user
with local gradient information instead of raw data. Never-
theless, simply maintaining the localization of data during
training does not provide sufficient privacy guarantees. Just
passing on gradient information can still give away privacy to
third parties or central servers [38]. From the service provi-
ders’ perspective, even if they do a good job of protecting the
user’s raw dataset, the models themselves can give away
private information. The model inversion attack is one of the
ways that user’s information can be implies from the model
[39], which connects with the target by manipulating the
relationship between unknown input and corresponding
output. Zhu et al. [28] proposed an algorithm to recover the
original image input from the user by obtaining the aggrega-
tion gradient returned by the central server to each client. In
their algorithm, the malicious attacker will participate in
learning process, and initialize a meaningless random graph.
The attacker will train its random input to make its own local
gradient as close to the global gradient returned by server as
possible. In this way, they can recover the original image input
of other users. Furthermore, Geiping et al. [40] proved that
even the trained federated learning network, rather than the
network during training, can faithfully be leveraged to recon-
struct a high resolution image from the gradient parameters.
Shokri et al. [7] propose a privacy-protected deep learning
system that allows multiple users to participate. Using local
data, the participants first calculate the gradient of the neural
network. Then, a partial gradient (e.g., 5%) must be sent to the
parameter cloud server. They assume that the server is honest
but curious. The system points out that the privacy can be
perfectly protected without sharing the local gradient, but the
model is completely inaccurate. On the other hand, sharing all
of the local gradients would break some privacy, but it would
give good accuracy. In order to balance the trade off, they
share part of the local gradient, which is the main solution to
maintain as little precision degradation as possible. The
distributed selective SGD is the core of their idea. There are
two methods to select parameters uploaded to the server. The
first is sorting all the gradients from the largest to the smallest
according to the absolute value, and to select the gradient of
the first k to upload. The second is to randomly select a part of
the parameter gradients whose absolute values are greater than
the threshold value to upload. Other users can then download

the gradient uploaded by user i to update their local
parameters. The order in which a user uploads and downloads
can be Round Robin, Random Order, and Asynchronous.

Aono et al. [22] further proved that in the system of [7],
even small gradients stored on cloud servers can be exploited
to infer user’s information because local data can be extracted
from these gradients, the results were unsatisfactory. Hence,
they went a step further and proposed a new learning system
that uses homomorphic encryption additionally to protect
gradients on the honest-but-curious cloud server. All the
gradients uploaded will be encrypted before stored on the
cloud server. Users participating in the learning process jointly
set public key py and key s; to realize the addition homo-
morphic encryption scheme. The key s is secret to the cloud
server, but is known to all learning participants. A separate
TLS/SSL secure channel will be established between partici-
pants to communicate and protect the integrity of homomor-
phic cipher text. The cloud server is where the encrypted
weight parameters are updated recursively, thanks to the
addition operation of homomorphic encryption. This system
can play a role of privacy protection without compromising
the accuracy in deep learning models.

However, it is undeniable that homomorphic encryption will
increase the communication cost to some extent. Naturally,
there are other cryptographic methods that can be applied
instead of homomorphic encryption. Bonawitz et al. [17]
adopted secret sharing and double-masking protocol to resolve
the challenges of federal learning. In their paper, they also
consider the possibility of network fluctuations and proposed a
mechanism to support users to quit during the training process.
Users can also verify that the cloud server is operating
correctly. In r-out-of-N' secret sharing protocol, a secret will
be divided into N disjoint pieces, and if someone gets the ¢
pieces, he/she can recover the original secret. Therefore, in
this system, a trusted authority will randomly create key pairs
(NPK NSK) and a random noise 8, for each user n. When a
user wants to upload his/her local gradients, he/she will add
some pieces of his/her secret key encrypted by other users’
public key and some pieces of the S,. All these additional
information will be recovered by secret sharing protocol, or be
canceled out as they are added up. Then, the server side
receives the messages. Server will calculate the 3, and other
information based on the secret sharing protocol, and finally
calculate the aggregation gradients.

As a classical cryptography method, differential privacy can
also be applied to federated learning. Geyer et al. [41] took
advantage of the idea of differential privacy in their study.
They suggest that customer involvement can also be hidden in
federated learning while maintaining high model performance.
Their proposed algorithm sets a threshold. If the probability
that whether a piece of data is part of the training set exceeds
the given threshold, the training will stop. The number of
participating customers has a noticeable impact on the
performance of the implemented model. Information is easier
to hide when the number of participants is large. Similarly,
Wei et al. [42] also applied differential privacy. Their pro-
posed algorithm reduces the hamming distance between the
gradient parameters calculated from two different datasets
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with the same length by adding noise. Thus, the gradient
parameters from different users cannot be traced back to their
owners since neither the server nor the malicious user can
distinguish them.

3.5 Other vulnerabilities

In addition to the above difficulties, the security of federated
learning should also be emphasized. Although security and
privacy are often considered equivalent intuitively, the differ-
ence actually exists. As mentioned above, privacy protection
generally refers to the non-public exposure of sensitive per-
sonal information. Such information may be the user’s health
information, travel trajectories, salary level, etc. Although it
may not directly expose the user’s identity, it may enable
others to indirectly identify specific individuals, thus exposing
the user’s sensitive information. The protection of security
requires consideration of confidentiality, integrity, and availa-
bility. The challenges to security are generally the lack of
access control of data and attacks from malicious nodes,
which are usually launched by hackers for the system or mo-
del itself.

For example, model poisoning is one of the most common
attacks on federated learning. Since there may be hundreds of
clients participating in a federated learning network, there is
no guarantee that there will be no malicious participants
among these participants. In addition, generally speaking,
defending against poisoning attacks require uploading data to
the server for exception detection, which can compromise user
privacy. The attacks, for examples, fake label attacks [43] and
backdoor attacks [44], may lead to serious damage if the
number of poisoned data is large.

The norm clipping techniques and differential privacy can
defend model poisoning, while the overall performance will
not be affected [45]. Since attackers generally want to have
more impact on the model, they tend to produce updates with
larger norms. Consequently, when the server selectively ign-
ores those large updates, maybe those exceeding the threshold
M, the attack of malicious nodes can be effectively defended.
Meantime, they only add a small amount of Gaussian noise to
defending against backdoor attacks. This kind of “weak”
differential privacy can limit attacks while ensuring perfor-
mance.

To enhance the privacy, Bittau et al. [46] were the first to
propose PROCHLO implementation on the basis of differ-
ential privacy. They introduced a trusted third party to run a
shuffler. The shuffler removes parts of the data that contain
user privacy, such as timestamps, IP addresses, and so on, thus
achieving the process of anonymity. However, simply deleting
some metadata does not prevent an attacker from gaining
access to the data owners. Malicious nodes may find out the
link between data and users by monitoring network traffic and
other methods. Therefore, the shuffler will do thresholding
along with the shuffling. If some item classes have too few
data, the shuffler will diacard them. Currently, the shuffle
model with differential privacy has attracted more attention
and been applied to prevent collusion attacks and poisoning
attacks [47,48].

Ma et al. [49] noted that the security of federated learning
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also requires special attention. They conduct a large series of
experiments discussing possible effective solutions on the
well-known classification dataset: MNIST. According to the
experimental results, we can draw many conclusions. If after
each aggregation, the server can adjust the aggregation weight
for each client based on the quality of the learning parameters
uploaded by the client, the client will show better convergence
rate and learning performance. In each learning epoch, the
server collects the required client parameters with a fixed
number before performing the next round of learning. That is
to mitigate network fluctuations by dropping users, which can
have a significant impact on the entire system. Once the
waiting time exceeds a threshold period and the data is not
fully collected, the current learning round will be abandoned.
In addition, there is room for improvement in the parameter
aggregation step. For example, we can add parameters tests on
the server side and personalize aggregation weights for each
parameter uploaded by the client based on different test
performance results. The better performance the certain user
brings, the higher weight factor that the user’s parameters will
get. At the same time, experimental results also have shown
that increasing the local generation of each customer can also
help improve model accuracy.

4 Future direction

4.1 Privacy and security protection

As mentioned above, although federated learning has been
widely used, it still faces many challenges. Among issues, we
believe that learning how to better protect users’ privacy will
be one of the most important points in the future development
of federated learning. With the establishment of the EU
general Data protection Regulations (GDPR) in 2018 [50],
enterprises or website operators must pay more attention to the
protection of data privacy. Hence, federated learning will have
more room for development and there will be more application
scenarios in the future. There’s a lot of work going on in the
healthcare and medical systems [23,51-54]. Recently, in the
COVID-19 outbreak, some researchers have suggested that
federated learning could better assist in the patient diagnosis
while protecting the privacy of medical data [55,56].

4.2 Incentive mechanism for federated learning

In federated learning, due to network latency and communi-
cation overhead, data owners are likely to lose interest in
participating in the learning system and no longer provide
their data [57,58]. Meanwhile, when we require all users to
frequently upload their local model parameters, the improve-
ment to the global model may not be proportional to the
communication cost. Accordingly, the incentive mechanisms
for users to upload parameters also needs to be balanced [59].
Besides, it is also necessary to motivate high-quality users to
participate in, and neglect or reject untrustworthy users at the
same time, according to the uneven quality of data provided
by users [60,61].

4.3 Personalized federated learning

Personalized service is much needed by users and has a broad
prospect. On the one hand, many users prefer federated
learning because they want to get a more personalized local
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model to better serve themselves [62]. The Google keyboard
mentioned many times before is an example of personalized
federated learning. Users can train a prediction model that is
more in line with their language habits while ensuring that the
data is kept locally. The usual approach of model aggregation
is naturally no longer applicable in this kind of problem. Many
researchers have designed various model aggregation algor-
ithms for personalized federated learning [63—65]. On the
other hand, in the context of the Internet of Things, persona-
lized federated learning can better mitigate the impact due to
the heterogeneity of users’ data. Mansour et al. [66] proposed
that similar users can be clustered and then the model can be
customized for each cluster. The idea of federated transfer
learning also helps with personalization, different users relearn
the parameters returned by the global model from their own
local data [67].

5 Summary

This review focuses on the motivation of the emergence of
federated learning models, its original concept, and its challen-
ging issues discovered in recent research work and possible
solutions. One reason for the advent of federated learning was
that people found the existing assumptions of traditional deep
learning too ideal. In the real world, the problem of data
fragmentation and isolation is quite severe, and data providers
are increasingly unwilling to expose their raw data and give
out all control over it. Similarly, individual users do not want
to fully expose their raw data because it contains a lot of
sensitive information. Federated learning is proposed to solve
these problems at first. In theory, federated learning greatly
unites data from different isolation and breaks down barriers.
At the same time, through federated learning, users can
participate in deep learning without having to expose raw data,
helping to train quality models while protecting privacy.
However, there is still room for further improvement of this
algorithm. Because of its distributed framework and very high
degree of freedom of participation, it may attract more mali-
cious attacks and other kinds of privacy leakage. Therefore,
researchers hope to maximize the advantages of federated
learning, protect the privacy of users, and train a more
accurate model as the same time. The future research will also
focus on the protection of privacy and security, incentive
mechanisms, and personalized federal learning.
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