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ABSTRACT Federated learning (FL) is a new technology that has been a hot research topic. It enables the
training of an algorithm across multiple decentralized edge devices or servers holding local data samples
without exchanging them. There are many application domains in which considerable properly labeled
and complete data are not available in a centralized location (e.g., doctors’ diagnoses from medical image
analysis). There are also growing concerns over data and user privacy, as artificial intelligence is becoming
ubiquitous in new application domains. As such, much research has recently been conducted in several
areas within the nascent field of FL. Various surveys on different subtopics exist in the current literature,
focusing on specific challenges, design aspects, and application domains. In this paper, we review existing
contemporary works in related areas to understand the challenges and topics emphasized by each type of
FL survey. Furthermore, we categorize FL research in terms of challenges, design factors, and applications,
conducting a holistic review of each and outlining promising research directions.

INDEX TERMS Data privacy, data security, decentralized data, distributed processing, federated learning,
machine learning.

I. INTRODUCTION
Recently, machine learning (ML) and deep learning
(DL)-based methods have seen tremendous growth, which
is attributable to the availability of considerable data.
However, not all application domains have considerable
properly labeled and complete data available in a central-
ized location (e.g., doctors’ diagnoses from medical image
analysis). Curating such large, high-quality datasets can
be time-consuming and tedious and often requires domain
experts. Efforts from individual organizations result in data
silos, with each containing high-quality but small datasets.
In these application domains, very few organizations man-
age to gather high-quality, complete, fully labeled, and suf-
ficiently large datasets, which are required for these DL
applications to be effective. Traditionally, data were gathered
in a centralized location to build ML models. However,
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due to concerns related to data ownership and confidential-
ity, user privacy, and new laws over data management and
data usage, such as the General Data Protection Regulation,
private, secure, efficient, and fair distributed model training
is required.

Thus, instead of training on centralized data, separate
models can be trained locally where the data reside in a
distributed manner. Then, the respective local model updates
can be communicated to obtain a global model. This is the
concept behind federated learning (FL), in which the com-
munication process is carefully designed such that the data of
an individual organization or device remain private. FL was
first introduced by researchers at Google to update language
models [1], [2] in Google’s keyboard system for word auto-
completion. FL builds a joint model using the data located
at different sites, where each party contributes some data to
train the model. Note that the data belonging to each party
do not leave their premises. The model is then encrypted
and shared among the participants so that no participant
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can reverse-engineer others’ data. This resulting joint model
performance is an approximation of the ideal model trained
with centralized data. In practice, this added security and
privacy results in certain accuracy loss, but it is often worth
for specific application domains. In addition to the privacy
and security benefits, collaborative training in FL can yield
better models than those trained by individual organizations
or devices.

The FL architecture follows the client–server model
(Fig. 1) or peer-to-peer model (Fig. 2) at the fundamental
level. In the client–server model, a coordinator is responsible
for centrally aggregating the model parameters using feder-
ated averaging (FedAvg).

First, the coordinator sends an initial model to each par-
ticipating client. Each client then locally trains individual
learning models using their own local datasets and sends the
model updates back to the coordinator for aggregation. After
aggregation, the combined model updates are sent back to the
local participating client. This process is repeated until the
model converges or a preset number of iterations is reached.
The client–server architecture incurs less communication
overhead. The peer-to-peer architecture is even more secure,
as the participating clients communicate directly without a
third-party coordinator. The trade-off, however, is that the
peer-to-peer architecture requires more computation for mes-
sage encryption and decryption.

Based on data partitioning among participants in feature
and sample spaces, there are three fundamental categories of

FIGURE 1. Client-server FL architecture.

FIGURE 2. Peer-to-peer FL architecture.

FL: horizontal FL (HFL) (Fig. 3), vertical FL (VFL) (Fig. 4),
and federated transfer learning (FTL) (Fig. 5). For HFL, there
is alignment in data features across participants, not in data
samples. In contrast, for vertical FL, there is alignment in
data samples, not in data features. Both HFL and VFL can be
ineffective when the data are highly heterogeneous. In such
cases, FTL is an effective approach that transfers the learned
knowledge from the source domain to the target domain. FTL
is inspired by transfer learning, where ML models that are
trained on a dataset belonging to one domain are re-used and
fine-tuned to solve a problem in a related domain.

The aforementioned architecture and FL categories only
form the tip of the iceberg in the field of FL. There are
numerous research thrusts, such as novel architectures, data
partitioning schemes, and aggregation techniques. Moreover,
the current research efforts aim tomitigate the core challenges
in FL, such as privacy and security, communication costs,

FIGURE 3. Horizontal FL architecture.

FIGURE 4. Vertical FL architecture.

FIGURE 5. Federated Transfer Learning (FTL) architecture.
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system and statistical heterogeneity, and personalization tech-
niques. Depending on the application area in which the FL
method is applied, unique application and domain-specific
challenges and considerations arise.

Much research has already been conducted in the field of
FL in recent years. Consequently, numerous survey papers
have summarized different focus areas. In this study, we first
reviewed existing surveys, which cover various domains and
focus areas in FL research.

Several core challenges, such as privacy, security,
communication cost, system and statistical heterogeneity,
architecture, and aggregation algorithm designs, vary by
domain and specific use cases. The motivation for this paper
lies in reviewing the current body of literature and sum-
marizing the state-of-the-art approaches that have recently
been developed to deal with these challenges. In addition,
we identify the gaps in the reviewed FL surveys and fill them
by surveying the latest developments in all aforementioned
FL areas of research.We conduct a holistic review of the chal-
lenges, applications, and design factors and outline promising
future research directions.

We study papers in related areas and review, in depth,
most of the contemporary survey papers in these areas.
We classify the topics in the FL survey papers according
to the following categories: communication cost, statistical
heterogeneity, systems heterogeneity, and privacy/security
as the core challenges; data partitioning, FL architectures,
algorithms/aggregation techniques, and personalization tech-
niques as the implementation details; and FL applications in
different industries and domains.

This paper makes the following contributions to the
literature:

1) It thoroughly investigates and analyzes contemporary
FL survey papers.

2) It classifies FL research into broad categories of design
aspects, challenges, and application areas.

3) It conducts a holistic survey of the design aspects—data
partitioning, FL architectures, aggregation techniques,
and personalization techniques; the core challenges—
communication cost, systems heterogeneity, statistical

FIGURE 6. Organization of the paper.

heterogeneity, and privacy/security; and different appli-
cation areas.

4) It discusses open issues and challenges in FL research.
The remainder of this paper is organized as shown in Fig. 6.

In Section II, we discuss the related studies. Section III
illustrates the taxonomy of the survey papers and discusses
them in detail. A discussion and analysis of all topics under
each category are covered in Section IV. Section V discusses
the open issues and challenges in FL. Section VI concludes
the paper.

II. RELATED WORKS
In this section, we investigate and analyze the most contem-
porary survey papers. The reviewed papers, along with their
summaries and focuses, are listed in Table 1.

Li, Sahu et al. [3] discussed how FL differs from stan-
dard distributed ML. In addition, they discussed FL’s unique
characteristics and challenges, along with its current methods
and future scope. However, the paper did not focus on any
specific domain and discussed approaches that dealt with
four core challenges: expensive communication, systems
heterogeneity, statistical heterogeneity, and privacy/security.
Local updating [1], [4] is an approach for reducing the num-
ber of communication rounds. Compression schemes [5], in
contrast, reduce the message size in each round of communi-
cation. In addition, decentralized training [6], [7] decreases
the burden on the central server in terms of communica-
tion. For systems heterogeneity challenges, asynchronous
communication [8]–[10] reduces stragglers and active sam-
pling selects or influences the participating devices based
on system resources and overheads incurred, and fault
tolerance [11]–[16] ignores failed devices using algorith-
mic redundancy. Statistical heterogeneity issues are dealt
with by modeling heterogeneous data using methods such
as meta-learning and multitask learning, adapting selection
between global and device-specific models, and transfer-
ring learning for personalization. Some studies have also
focused on convergence guarantees for non-independent and
identically distributed (non-IID) data [4], [10], [17], [18].
Finally, this survey covers secure multiparty computation
(SMC) [19], [20] and differential privacy (DP) [21]–[24]
approaches.

The authors in [25] focused on mobile edge networks. The
core challenges in their survey included expensive commu-
nication, systems heterogeneity, and privacy/security. Under
communication cost challenges, the discussed approaches
include compression schemes, such as model compres-
sion [26], [27], importance-based updating for selective
gradients [28] or local model updates [29], and local updat-
ing [1], [30]–[32] focused on edge and end computation.
The works mitigating systems heterogeneity include active
sampling based on computation capabilities [33], data char-
acteristics [34], and resource consumption [35] and allocation
[36], [37]; joint radio and computation resource manage-
ment by using superposition property of multiple-access
channel [38]–[40]; asynchronous communication [41] for
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TABLE 1. Summary table of survey papers and main focus.

model aggregation; adaptive aggregation based on resource
constraints [42]; incentive mechanisms such as Stackelberg
game [43]–[46]; contract theoretic approach [47], [48];
reputation mechanism [49] to encourage source contribu-
tion; and effective worker selection. For privacy/security
challenges, information-exploiting attacks are countered by
DP [23], [50], selective participants [50], selective param-
eter sharing [51], secret sharing schemes [52], and GAN
model training [53]. Data poisoning attacks are countered
by distinguishing honest participants based on their gradi-
ent updates [54], model poisoning attacks are countered by

comparing updated models [55], and free-riding attacks are
countered by verifying local model updates [56].

The primary focus of the authors in [57] was privacy/
security for Internet-of-Things (IoT). The approaches dis-
cussed in their survey limited the effects of individual client
updates [57], [67], distinguishing honest participants [54],
DP [23], [50], [51], SMC [19], [54], and homomorphic
encryption (HE) [68].

Privacy/security was the focus area in [58]; in particular,
approaches such as HE [69], [70], SMC [19], [71], and
DP [72], [73] were covered in their survey. Data partitioning

FIGURE 7. Classification of the reviewed survey papers.
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schemes, namely HFL [74], VFL [75]–[78], and hybrid
FL [79], [80], as well as centralized [11], [81] and decen-
tralized [82] designs for communication architecture and
cross-silo [83] versus cross-device [84], [85] FL for the
federation scale, are the other challenges and approaches
discussed here.

Li et al. [59] focused on applications in the domains
of mobile devices, industrial engineering, and healthcare.
Applications of FL in mobile devices included predicting
user input [74], [86], [87], emoji [88], human trajec-
tory [89], and human behavior [90]; reducing network
congestion [91]; detecting physical hazards (smart-home
IoT) [92]; performing industrial engineering—environmental
monitoring [93]; performing visual inspection [94]; detect-
ing malicious attacks (unmanned aerial vehicles); prevent-
ing energy congestion (charging stations); detecting credit
card frauds; and predict future hospitalizations, hospital stay
time, mortality over drug utilization data, and similar patient
matching.

Another privacy/security-focused survey [60] elaborated
on current approaches, such as SMC, DP, HE, and private
information retrieval. The authors in [61] covered privacy/
security approaches, namely SMC [95], DP [23], and
HE [96]. Moreover, the paper discussed data partitioning
approaches—HFL [97], VFL, and FTL.

The challenges and approaches discussed in [62] were
centered around the healthcare domain. Consensus [37], [98]
and pluralistic [99] solutions were mentioned to tackle sta-
tistical heterogeneity; client selection [33], compression
schemes, update reduction, and peer-to-peer learning for
expensive communication challenges; and SMC and DP

for privacy/security challenges. The focus of [63] was
on personalization techniques, which included adding user
context [100], transfer learning [101], multitask learn-
ing [102], meta-learning [103], knowledge distillation,
base + personalization layers, and combination of global and
local models. Article [64] is also based on privacy/security
challenges. In particular, it includes studies on threat models,
various poisoning attacks, and inference attacks.

Aledhari et al. [65] focused on architecture options for
FL-based models—HFL [61], VFL [61], multi-participant
multi-class VFL (MMVFL) [104], FTL [79], FEDF: a
distributed DL framework for parallel training while pre-
serving privacy [105], PerFit: a cloud-edge framework
for personalized FL [106], FedHealth: an FTL framework
for wearable healthcare [107], federated-autonomous DL
(FADL) [108], and Blockchain-FL [109], and the authors
in [66] focused on aggregation techniques—FedAvg [1],
SMC-avg [19], FedProx [4], Federated Matched Averaging
(FedMA) [110], Scaffold: stochastic controlled averaging
for FL [67], tensor factorization [111], federated stochastic
block coordinate descent (FedBCD) [31], federated distilla-
tion (FD), federated augmentation (FAug) [18], loss-based
AdaBoost (LoAdaBoost) [17], HybridFL [34], FL with client
selection (FedCS) [112], PrivFL [113], and VerifyNet [114].

The reviewed survey papers did not cover all subtopics,
as highlighted in Table 2. In particular, less than half of the
surveys thoroughly reviewed FL architectures and personal-
ization techniques. We classify the topics as design aspects,
core challenges, and application areas, as shown in Fig. 7,
and provide an in-depth discussion and analysis on all the
subtopics.

TABLE 2. Comparison of topics covered by survey papers.
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III. TAXONOMY
The taxonomy of FL research, in terms of design aspects, core
challenges, and application areas, is presented in Fig. 7. The
design aspects include data partitioning, FL architectures,
aggregation techniques, and personalization techniques.
Communication cost, systems heterogeneity, statistical het-
erogeneity, and privacy/security are among the core chal-
lenges. In addition, the reviewed survey papers focused on the
application areas of industrial engineering, mobile devices,
healthcare, and IoT and edge devices. Table 2 compares the
topics covered by the survey papers.

Data partitioning classifies FL as HFL, VFL, or FTL,
as explained in the Introduction. Beyond these variants,
several specialized FL architectures have been developed
to improve features such as accuracy, training speed, effi-
ciency, generalization, and applicability for different areas,
such as IoT, healthcare, electronic health records (EHRs),
and privacy/security. Depending on the FL architecture used,
aggregation techniques/algorithms are employed to integrate
the local model updates obtained from all participating clients
during training to obtain the global model. Different aggre-
gation techniques/algorithms have different priorities, such
as increased privacy, optimal communication bandwidth, and
support of asynchronous updates. Personalization is another
design aspect that needs to be considered for certain scenar-
ios, namely device heterogeneity (storage, computation, and
communication), data heterogeneity (i.e., non-IID data), and
model heterogeneity (customized models depending on the
client’s environment).

Expensive communication is a major challenge in FL sys-
tems. A federated network can comprise many devices, which
means that network communication is much slower than
local computation. Therefore, several studies have addressed
communication efficiency. Moreover, there can be varying
communication capabilities of devices in federated networks
due to systems heterogeneity. The different devices may also
exhibit varying computing and storage capacities. Due to sys-
tem and network constraints under numerous settings, only
a few selected devices can participate in a training iteration,
and some devices may even drop out during an iteration
due to connectivity or power issues. Thus, FL techniques
need to overcome such systems heterogeneity challenges.
In contrast, statistical heterogeneity issues arise due to the
violation of IID assumptions in distributed optimization. The
violation occurs because different devices across the network
often comprise non-identically distributed data. The number
of data points across the devices also varies. Therefore, FL
approaches must handle the statistical heterogeneity of data.
Finally, privacy/security issues are at the core of FL applica-
tions. Increased privacy/security achieved using novel meth-
ods often comes at the cost of decreased system efficiency or
model performance.

All these trade-offs among the various application-specific
challenges and design aspects need to be carefully considered
and well-balanced to obtain effective privacy-preserving FL
systems. These topics are detailed in the following section.

IV. DISCUSSION AND ANALYSIS
In this section, we review and discuss the design aspects,
core challenges, and application areas to provide a com-
prehensive summary of the subtopics—data partitioning,
FL architectures, aggregation techniques, personalization
techniques, communication cost, systems heterogeneity,
statistical heterogeneity, privacy/security, and application
areas.

A. DESIGN ASPECTS
1) DATA PARTITIONING
The data used for training FL are non-identical, as they are
available on various devices. The sample space of a dataset
comprises all dataset instances, whereas the feature space
comprises different dataset attributes. For instance, two hos-
pitals may have records of different sets of patients (sample
space) and different types of information stored about each
patient in their EHR (feature space). Based on how the data
are allocated over the sample and feature spaces across multi-
ple participating devices in the FL process, FLSs can typically
be categorized as HFL, VFL, and hybrid FL [61].

1) HFL is used in scenarios in which the feature space of
the datasets is the same but the sample space differs.
In HFL, the datasets belonging to different organiza-
tions have the same featured space, but the sample
space is not related. Such data partitioning is suit-
able for the cross-device mode, where individual users
use FL to enhance their model’s performance on a
task. In FL, horizontal partitioning is more common.
As the local data overlap the feature space, each user
can train their local models using the duplicate model
architecture. For example, two regional branches of
an organization have different groups of users but
the same feature spaces as the business. At present,
the focus of FLSs is on smart and IoT devices. Work
by McMahan et al. [1] falls into the horizontal parti-
tioning paradigm. In this framework, an individual user
on the Android platform changes the model parame-
ters locally and sends the updated parameters to the
cloud server. This enables the training of the centralized
model along with other users. Furthermore, to address
the issue of finite labeled entities, a hierarchical het-
erogeneous HFL framework was proposed in [115],
which can address the shortage of labels by adapting
each user multiple times as the target domain. The
authors in [51] suggested a collaborative deep-learning
framework in which each user trains independently and
only shares a subset of parameters for updating, and
classified FL research into broad categories of design
aspects, challenges, and application areas.

2) In VFL, the datasets across institutions share the same
or similar sample spaces, but their feature spaces do
not have much in common. In this setting, all partici-
pants have homogeneous data, which implies that they
differ in feature space but have a partial match with
the sample space. For example, two organizations in
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a certain area want to train an ML model in collabora-
tion. They have identical clients, but the data of each
organization are of distinct types. Due to privacy and
security concerns, they cannot interchange their data.
In such a scenario, VFL is suitable to train the model.
VFL models aggregate these distinct features and cal-
culate the model parameters in a privacy-preserving
manner. Finally, it constructs a model by combining
data from both parties. An approach using linear regres-
sion was proposed by the authors in [116], [117] for
data having vertical partitioning. For such data, several
securemodels, including k-means [78], association rule
mining [75], decision tree [77], and naive Bayesian
classifier [76], were proposed by Vaidya et al. Usually,
VFL systems perform entity alignment [118], [119]
to combine common samples of different institutions.
Then, employing encryption, the combined data are
used for training the model. Cheng et al. [120] pro-
posed a lossless VFL system to enable the joint
training of gradient-boosting decision trees. To rec-
ognize common users between two distinct parties,
they used privacy-preserving entity alignment. Finally,
the selected samples were used to train the decision
trees collaboratively.

3) FTL is used in situations where two datasets differ in
terms of sample as well as feature space. FTL was first
proposed in [79]. It enhances existing FL systems and
can deal beyond the scope of existing FL algorithms.
FTL has gained enormous attention in various indus-
tries, especially in the healthcare sector [121]. Using
FTL, different types of information related to treatment
and diagnosis can be shared between hospitals to diag-
nose different diseases. In general, transfer learning
comprehends a common representation of the features
of two different parties. Both parties still need to cal-
culate the prediction results at the time of prediction.
Hence, transfer learning [80] techniques can be adopted
for the entire feature and sample space in a federated
environment. To avoid the possibility of exposing the
client data, FTL takes advantage of encryption and
approximation to ensure that privacy is safeguarded.
Hence, both the actual sensitive data and the models are
preserved locally [122]. Sharma et al.work on improv-
ing FTL by integrating secret sharing technology [123].
The authors in [124], [125] build a FedHealth model
that collects data from different institutions through
FL and provides customized services for healthcare by
using transfer learning.

Each of the aforementioned data partitioning paradigms
has its own advantages and disadvantages. For example, two
different clinics or hospitals can benefit from securely sharing
data with each other based on the number of instances or
features they need. One clinic can own millions of patient
records, but it might only have very specific information
about these patients based on their specialty (e.g., oncology).
In contrast, another clinic can be relatively new, possessing

much lesser patient records. However, if this is a general
clinic without a specialty, then it is likely to have different
types of patient information. The first clinic can benefit
from VFL, whereas the second one can benefit from HFL.
Finally, through FTL, healthcare providers can provide more
personalized care if they are given access to data from users’
wearable devices for personal fitness.

FL architectures represent how different components are
integrated to form an FL environment. Two common architec-
tures of FL are client–server and peer-to-peer architectures.

1) In client-server architecture, as illustrated previously
in Fig. 1, a central server initiates a global model that
it shares with clients to train on their local dataset.
After local training, the trained models from the clients
involved in the FL environment are collected by the
server. The server then aggregates the models’ param-
eters to build a global model and shares it with all
clients. The client–server architecture is also known
as a centralized architecture for FL. Here, the server
coordinates the learning process, which is continu-
ous. In the conventional client–server architecture,
the server hosts a model and trains it on shared data.
However, the server in the FL setting operates only
on local models received from clients synchronously
or asynchronously. The main advantage of this archi-
tecture is that it incurs less communication overhead.
Google used this architecture to develop a virtual key-
board called Gboard for Android. Currently, almost all
implementations of FL use client–server architecture.

2) As illustrated in Fig. 2, there is no concept of a
central server in peer-to-peer architecture, as in the
client–server architecture for model aggregations. The
role of the central server is replaced with algorithms
to ensure security and reliability. Each participant in
the FL environment has its own model. A participant
improves its model by using information obtained from
its neighbors [126]. In the adopted peer-to-peer topol-
ogy, a protocol is established using a central authority.
During training rounds, the network follows this proto-
col. Such architecture is more secure, as the participat-
ing clients communicate directly without a third-party
coordinator [127]. However, it requires more computa-
tion for message encryption and decryption.

The aggregation algorithm describes how the global
model is formed by combining local model updates from all
clients who participate in the training round. It plays a sig-
nificant role in HFL, based on a centralized architecture. The
most popular aggregation algorithms are compared in Table 3
and summarized below.

1) The FedAvg algorithm [1] proposed by Google is
based on a stochastic gradient descent SGD) optimiza-
tion algorithm, which is the best fit for HFL with a
client–server architecture. In this algorithm, the server
starts the training process by sharing the global model
parameters with a group of clients selected randomly
from a pool of clients. The clients then perform
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multiple epochs of SGD on their local dataset to train
the global model and share the locally trained model
with the server. Next, the server next computes the
weighted average of all local models to generate a
new global model. This process is repeated for several
rounds and is robust to unbalanced and non-IID data
distribution. Although FedAvg has achieved great suc-
cess, it has some convergence issues in some settings
due to factors such as client drifting [67] and lack of an
adaptive learning rate [128].

2) Scaffold [67] solves the problem of client drifting
by using the variance reduction technique in its local
update. It estimates the update direction of the server
model and that of each client. Using the difference,
it measures client drifting, which is then used for the
local update. This strategy helps overcome the problem
of client heterogeneity and reduces the communication
round in model convergence.

3) Adaptive federated optimization [128], proposed by
Google’s research team, introduces adaptability in
server optimization. Server optimization is more
informed, as the adaptive learning rates allow knowl-
edge to be incorporated from previous iterations. In this
optimization framework, a client optimizer minimizes
loss using local data over multiple training epochs.
Then, to update the global model, the server per-
forms gradient-based optimization on the average of
the model updates of clients. FedAvg is a special case
in which SGD is used as both a client and a server
optimizer with a server learning rate of 1. Although it
incorporates adaptive learning rates in server optimiza-
tion, it does not increase client storage or communica-
tion costs. Moreover, it is compatible with cross-device
FL. However, it does not completely remove the effect
of client heterogeneity. However, for moderate, natu-
rally arising heterogeneity, the adaptive optimizer is
quite effective, especially in cross-device settings.

4) FedBoost [129] is a communication-efficient algorithm
for FL based on ensemble learning technique. In this
approach, an ensemble of pretrained base predictors
is trained through FL. It reduces the cost of both
server–client and client–server communications with-
out gradient compression and the model compression
approach. In addition to communication efficiency,
other advantages of this method include computational
speedups, convergence guarantees, privacy, and the
optimality of the solution for density estimation, for
which language modeling is a special case.

5) FedProx [4] addresses the two inherent challenges of
FL. First one is system heterogeneity, which refers
to the significant variable characteristics of the sys-
tem or device participating in FL. Second one is
statistical heterogeneity, which implies non-IID data
across the network. It is a reparametrized and gener-
alized version of FedAvg. Specifically, FedProx can
be modified in two ways. First, it enables partial
work to be tolerated. Based on the availability of
resources, a device can perform variable amounts of
work locally; for example, each device can run a varied
number of local epochs. The partial solutions from
resource-constrained devices are accepted for aggre-
gation. Second, a proximal term is introduced in a
device’s local solver objective to control for the impact
of the variable amounts of local updates.

6) The FedMA [110] algorithm is proposed for intro-
ducing FL in modern network architectures for DL.
Matching and averaging, based on similarity of fea-
tures, is performed layer-wise across the channels of
convolutional layers, hidden states of long short-term
memory networks, and fully connected layer neurons to
construct the shared global model at the server. FedMA
can also handle client heterogeneity. Within a few
rounds of training, it performs better than FedProx and
FedAvg.

TABLE 3. Comparison of aggregation algorithms.
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7) The secure aggregation [19] algorithm is developed
based on the principle of the SMC algorithm. It does
not share private information of the mutually distrustful
parties, except for the learnable parameters derived
from aggregation and thus defends the privacy of each
client model. It is fault-tolerant up to 1/3rd of users;
that is, it works well even if 1/3rd of the clients fails to
engage in the aggregation.

2) PERSONALIZATION TECHNIQUES
In FL, the goal is to train models with a central repository
without changing their data samples. Personalization needs to
adapt a global model for individual clients and permit users
to acquire a richer model so that users’ models are trained
over a larger set of data samples. Wu et al. [106] mentioned
three major challenges handled by the FL process during
personalization: 1) device heterogeneity for communication
capabilities, storage, and computation; 2) data heterogeneity
because of non-IID; and 3) model heterogeneity for different
models in personalized situations.

Adding contextual features to datasets in a privacy-
preserving manner can lead to more personalized predictions.
Moreover, based on the similarity of client data, different
groups can be formed, and a different model can be trained
for each similar cluster [100]. Transfer learning can also be
used in a federated setting for model personalization [130].
In transfer learning, knowledge from a global model is trans-
ferred to local models, and then the local model parame-
ters are fine-tuned using local data. Other approaches such
as multitask learning and meta-learning are used to solve
multiple tasks simultaneously. The joint learning in multi-
task learning enables the model to use the differences and
similarities across the tasks. Meta-learning produces models
that are quite adaptive and can solve new tasks with much
less training data. Both meta-learning [102] and multitask
learning [103], [131], [132] algorithms have been proposed
in a federated setting to achieve greater personalization.
Knowledge distillation is another method in which a student
network mimics a larger teacher network. Using transfer
learning and knowledge distillation, Li et al. [133] proposed
an FL framework that allows clients to design their own
networks independently. Arivazhagan et al. [134] proposed a
neural network architecture in which global data are used to
train only the base layers, whereas the personalization layers
are trained on local data. A new gradient descent variant,
developed by Hanzely et al. [135], called loopless gradient
descent, allows each device to learn a mixture of its own local
model and the global model. The different personalization
techniques are summarized in Table 4.

B. CORE CHALLENGES
Communication is a basic bottleneck in federated networks,
which, coupled with security concerns over sending crude
information, requires that the information produced on each
device stay local. To overcome this issue, researchers have
proposed several strategies, some of which involve local

TABLE 4. Summary of personalization techniques.

updating, compression schemes, decentralized training, and
importance-based updating.

Local updating schemes address communication costs by
performing additional work on the client that generates
and consumes the ML model. As an extension of classical
stochastic methods, mini-batch optimization methods have
proven to be successful in many cases [142]. For both convex
and non-convex objectives, distributed local-updating primal
methods have also been successfully applied [143]. As the
pivotal FedAvg algorithm proposed in [1], many directions
have been taken, including quantizing uploads from edge
devices [140].

Sketched and structured updates are among the compres-
sion schemes that enable the reduction of the model update
size communicated to the FL server from the participating
clients during each round [26], [141]. In addition, subsam-
pling, probabilistic quantization, and sparsification were con-
sidered in [144]. The authors in [27] further extended the
work of [26] to reduce the communication cost from the
server to participant, employing approaches such as federated
dropout and lossy compression. The accumulation of error
and momentum is handled by the central aggregator instead
of the clients [139].

Recent studies, such as [6], have carried out decentralized
training over heterogeneous data. Hierarchical communica-
tion patterns [145] is another approach that reduces depen-
dency on the central server. First, updates from edge devices
are aggregated on the edge servers. Then, from the edge
servers, the updates are aggregated on the cloud servers.

Importance-based updating is based on the fact that most
parameter values of a deep neural network model are sparsely
distributed. The edge stochastic gradient descent algorithm
was proposed in [28], in which only selected important
gradients are sent to the server for updating parameters in
each round of communication. The authors in [29] proposed
a communication-mitigated federated learning algorithm,
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TABLE 5. Strategies and approaches to reduce communication costs.

which reduces the communication cost by uploading only the
relevant updates of the local model. However, global conver-
gence is still guaranteed. A comparison is first made between
the local update of a participant and the global update during
each iteration to assign a relevant score to the update. Strate-
gies and approaches for reducing communication costs are
summarized in Table 5.

1) SYSTEMS HETEROGENEITY
Due to differences in factors such as network connectiv-
ity, memory, CPU, and battery power level, the participants
in a federated network often exhibit varying capacities in
terms of communication, computation, and storage. Strag-
gler mitigation and other challenges are further compounded
due to these system-level characteristics. Popular approaches
include asynchronous communication, client participation,
and fault tolerance.

Straggler mitigation in heterogeneous environments using
asynchronous communication schemes [10] is a promis-
ing approach. When there is device variability, syn-
chronous approaches are more susceptible to stragglers.
However, asynchronous communication also suffers from
bounded-delay assumptions made to control the measure of
staleness.

Client participation schemes involve actively selecting par-
ticipating devices based on system resources such as FedCS
[33] and data quality [47] in each round. The FedCS protocol
was extended by the authors in [34]. Their hybrid-FL protocol
addresses the differences that exist in the data distributions
of participating clients. Deep Q-learning [35] is also used
to optimize the allocation of resources required for training
models. Client participation is controlled by the number of
clients in [136] and the amount of data contributed or con-
sumed by clients in [27], [137], [138].

TABLE 6. Strategies and approaches for managing systems heterogeneity.
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Fault tolerance [102] is used because learning over remote
devices becomes more critical, as some devices in the
network often drop out, even before an iteration is com-
pleted. Introducing algorithmic redundancy to tolerate device
failures is another option known as coded computation. The
authors in [15] explored the use of codes to increase the speed
of distributed training. The strategies and approaches for
managing system heterogeneity are summarized in Table 6.

Statistical heterogeneity refers to the existence of non-IID
data across the network. The data generated and collected
by network devices are usually non-identically distributed.
This generates complexity in terms of analysis, modeling,
and evaluation. The usage patterns of different users are
distinct. For some clients, the globally shared model does not
perform as well as models that are trained locally. Thus, they
are disincentivized to participate in the federated network.
Moreover, there can be significant variance in terms of the
amount of data per device. Also, the possible presence of
underlying structures can capture the relationship between
the devices and their distributions.

In general, an FL system focuses on learning a single global
model. There also exist other approaches, such as learning
distinct local parameters simultaneously through multitask
learning frameworks [102]. The authors of [155] developed
tools to measure statistical heterogeneity using metrics such
as local dissimilarity. However, calculating these metrics is
quite difficult for a federated network before the training
begins. These metrics influence future directions for the

development of efficient algorithms to quickly quantify the
heterogeneity in an FL system.

To tackle statistical heterogeneity, the authors in [134]
utilized the concept of multitask learning. In the FEDPER
approach, the participants use a set of base layers pretrained
with the FedAvg [1] algorithm. Then, each participant indi-
vidually trains another set of layers using their local data.
The authors empirically showed that the FEDPER approach
outperforms a pure FedAvg approach using the Flickr-AES
dataset [134], considering that the personalization layers can
represent the personal predilection of an FL user.

2) FL THREAT MODELS
FL offers an emerging paradigm for facilitatingmultiple orga-
nization data collaborations without revealing their private
data to each other. However, recent research has demonstrated
that FL may not always provide sufficient privacy guarantees
during model update; it may face several vulnerabilities from
both the server and participants. As summarized in Table 7,
according to the threat models, the following are two promi-
nent forms of attacks that occur:

1) Poisoning Attacks, which can be executed either in the
training phase of the model or on the data. Two types
of poisoning occur:
a) Data poisoning occurs during local data collec-

tion. Data poisoning attacks can occur in two
forms: clean-label attacks (adversaries can poison
the correct class of data samples) and dirty-label

TABLE 7. Summary of FL threat models.
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attacks (adversaries try to misclassify the target
label of the FL training dataset) [146], [147].

b) Model poisoning occurs during model training.
According to Bhagoji et al. [55], model poison-
ing is accomplished by an adversary controlling
a few malicious representatives with the aim of
misclassifying specific inputs with high confi-
dence. Bagdasaryan et al. [149] introduced a new
scope of FL vulnerability by inserting the back-
door into the joint model. FL models are more
vulnerable to model poisoning attacks than data
poisoning attacks. This form of attack can be
used to create misclassification in image and
next-word prediction problems.

2) Inference Attacks: Serious privacy leakage may occur
in FL during updates of the model. When exchanging
gradients, the private information of participants can
be exposed to the adversary [70], [150], [152], [156].
Pyrgelis et al. [151] conducted membership inference
attacks to identify vulnerability at the aggregate loca-
tion. According to the threat model surveyed by
Lyu et al. [64], the inference attack falls into two
categories—white-box attack and black-box attack.
Deep leakage from gradients (DLG) [152] obtains
private training data in the inference phase. Another
algorithm, iDLG, also exposes the labels of training
inputs [153]. Hitaj et al. [154] applied a GAN attack,
which allows the adversarial party in the training pro-
cess to fabricate an inferring class representative.

Privacy is one of the most critical parts of FL. This
section briefly reviews various privacy and security tech-
niques for FL:

1) Secure Multiparty Computation (SMC) is a privacy
mechanism used in FL. An SMCmodel comprises mul-
tiple parties and provides proper security. This model
ensures that each party knows only its inputs and out-
puts and nothing about the other parties. Bonawitz et al.
designed a communication-efficient SMC protocol for
high-dimensional data to protect the privacy of users’
model gradients [19].

2) DP is a privacy-preserving mechanism that protects
individual privacy by adding noise in the data. There
are various types of DP:
a) Local DP: Each data point is distorted with noise.
b) Global DP: To protect individuals’ privacy,

the output of the dataset query is distorted with
noise.

c) Hybrid DP: Multiple trust models are combined
by partitioning users according to their trust
model preferences.

Geyer et al. [23] developed a method for obtaining DP
at the client level for FL. Wei et al. [157] proposed an
aggregation algorithm called NbAFL, in which noise
was added to client-side parameters before aggregation.
The authors in [158] used both SMC and DP mecha-
nisms to avoid differential attacks.

3) HE is another security mechanism in FL that pro-
tects user data by changing parameters under the
encryption method. HE is a cryptographic technique
that performs mathematical operations on data as
if they were unencrypted. Many researchers have
worked with homomorphic encryption to preserve pri-
vacy [159], [160]. To guarantee the privacy of users’
local gradients during FL, Xu et al. [114] proposed a
double-masking protocol.

3) APPLICATIONS
Although FL faces some limitations and severe challenges,
it has been successfully implemented in several real-life
applications:

1) Applications in NLP: FL has become a hot research
topic since the concept was first introduced by
Google to predict the next word in a virtual key-
board for smartphones [161]. Further improvements
in predicting the next word using pretrained word
embeddings were achieved by other researchers [87].
Wake word detection was another contribution made
by Leroy et al. [74]. Emoji prediction from text
typed on a mobile keyboard was introduced by
Ramaswamy et al. [88]. In addition, some researchers
have worked on learning out of vocabulary words
on virtual keyboards for smartphones [86], and some
have tried to improve the virtual keyboard’s search
suggestion quality [162].

2) Applications in healthcare:Huang et al. [17] predicted
the mortality rate of patients suffering from heart dis-
ease by using electronic medical records from multiple
hospitals. Brisimi et al. [82] used an EHR to determine
whether a heart disease patient needs to be hospitalized.
Li et al. [163] also studied mortality and hospital stay
time. Using health records, Lee et al. [164] proposed
a method to determine similar patients from different
hospitals while preserving the patients’ privacy. They
used a federated patient hashing framework.

3) Applications in computer vision: Another impor-
tant application area of FL is computer vision.
Shao et al. [165] proposed a federated face presenta-
tion attack detection method. Liu et al. [166] worked
on smart city safety monitoring solutions based on
computer vision.

4) Applications in transportation: The development
of intelligent transportation systems using FL
was explored by Elbir et al. [167]. Lim et al. [168]
proposed an FL-based approach in UAV-enabled Inter-
net of Vehicles for developing applications such as
the management of car parking occupancy and traffic
prediction.

V. OPEN ISSUES AND CHALLENGES
There are several open issues and challenges in FL [169].
Trade-offs among accuracy, privacy, communication cost,
and personalization level must be carefully considered when
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designing an FL system. Such considerations often depend
on the specific use case or application area. In this section,
we discuss some open issues related to design aspects, core
challenges, and application areas.

A. DESIGN ASPECTS
1) DATA PARTITIONING AND FL ARCHITECTURES
In addition to the primary forms of data partitioning schemes
and FL architectures discussed in this study, other varia-
tions in FL architectures have recently been developed. For
instance, PerFit [106] is cloud-based and enables person-
alized FL approaches to be selected flexibly, thus making
it suitable for IoT applications. Another architecture is
FedHealth [107], which uses the FTL framework for wear-
able healthcare to build personalized models, thus enabling
personalized healthcare services. Future studies can focus on
developing FL architecture schemes that facilitate the specific
requirements of different industries and application areas to
be met.

2) AGGREGATION TECHNIQUES
Developers who wish to implement FL solutions can benefit
from toolkits that offer standardized and preconfigured aggre-
gation algorithms that are suitable for their specific applica-
tion areas and use cases. Similar to AutoML solutions, such a
toolkit for FL can lower the barrier of entry for nonspecialist
developers.

3) PERSONALIZATION TECHNIQUES
Adding suitable user and context features to the shared global
model is a possible alternative to having device-specific per-
sonalization. For example, the filter order in applications
such as Snapchat can be arranged according to certain user
features, such as browsing history, age, sex, likes and dislikes,
and usage patterns. Thus, developing architectures that can
accommodate such user and context features effectively for
different tasks is another open problem.

Moreover, as observed in [170], a gap exists between the
accuracy of personalized and global models, making the case
of personalization techniques an important research area in
FL. Nevertheless, no clear metrics have yet been formulated
to evaluate the performance of personalization techniques.
Wang et al. [130] evaluated the conditions under which per-
sonalization yields desirable models. Further research is
required to develop comprehensive metrics to assess the
effectiveness of personalized approaches.

B. CORE CHALLENGES
1) COMMUNICATION
There is a trade-off between communication costs and
accuracy in FL. The benchmarks in ML do not usually
set any restriction criterion. It is worth considering set-
ting the communication budget as a restriction criterion
in communication-focused FL benchmarks. For example,
the authors in [171], [172] explored one-shot or few-shot

communication schemes in FL, and those in [172] attempted
to maximize the performance for fixed rounds of communica-
tion (i.e., single or few rounds). Additionally, these methods
need to be thoroughly evaluated and analyzed in the FL
setting, where the networks can be highly heterogeneous.

In cross-device FL, only a few devices are often active
during an iteration. There is scope for an in-depth analysis
of the consequences of this asynchronous communication
scheme where the devices become active based on certain
events.

2) SYSTEMS HETEROGENEITY
Various algorithms [33], [35] have been proposed to address
systems heterogeneity. However, wireless connectivity might
not be available consistently. Many participating devices may
drop from the FL system during training. Future studies can
design new FL algorithms that are more robust, even when
a larger number of devices drop out of the network due to
connectivity issues.

Li et al. [4] recently introduced a proximal term in the opti-
mization objective to allow partial solutions obtained from
stragglers to be carefully incorporated and aggregated instead
of totally dropping them. The authors in [173] took a differ-
ent approach and implemented an FL system that addressed
device heterogeneity by selecting different levels of quantized
models following a device-specific analysis conducted by the
FL server.

3) STATISTICAL HETEROGENEITY
Eichner et al. [99] developed a pluralistic solution to allevi-
ate a form of data heterogeneity in which devices exhibited
different characteristics during the day versus those at night.
Further research can be conducted to explore similar methods
to address diurnal variations at more granular times of day
(instead of only day versus night) or at different times of the
week. For example, let us consider a federated network over a
commercial neighborhood. The data characteristics obtained
from devices available over the weekdays would likely be
very different from those available over the weekends. The
effectiveness of a pluralistic solution in such a scenario can
be investigated.

As noted by the authors in [99], where they only worked
with convex objectives and sequential SGD, further analysis
can be conducted to explore block-cyclic data in a nonconvex
setting and employ methods such as parallel SGD.

4) PRIVACY/SECURITY
While device-specific local or global level privacy has been
well-studied and understood, finer privacy requirements at
the sample level form a promising, ongoing research topic.
The sample-specific privacy guarantee technique developed
by Li et al. [174] trades off privacy for higher accuracy.
Hybrid methods deal with both sample- and device-level

privacy requirements. One approach can be to use
sample-specific privacy for a subset of data based on specific
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levels of a category or date range while using device-specific
privacy for the remaining data.

5) ABLATION ANALYSIS
The evaluation performed by an FL system is often more
complex than that performed by traditional ML and DL
systems. While different research efforts deal with spe-
cific focus areas, a holistic industrial system would need to
consider several aspects while building FL solutions, such
as privacy, accuracy/loss, communication rounds, and het-
erogeneity. A standard platform needs to be developed to
facilitate a holistic ablation analysis of the different parts of
an FL system.

C. APPLICATION AREAS
FL has mainly been applied to supervised learning problems.
Future research can attempt to tackle the challenges that
may arise when using FL in applications that call for data
exploration, unsupervised, semi-supervised, and reinforce-
ment learning.

The challenges faced in implementing FL solutions for dif-
ferent application areas have not yet been thoroughly studied,
with the current studies primarily focusing on training FL
models. In addition to the core challenges discussed in this
paper, issues that are specific to the industry domain or appli-
cation area also need to be considered. For instance, there are
application areas such as mobile edge networks that require
energy-efficient communication to be greatly emphasized.

VI. CONCLUSION
FL allows participating organizations to collaboratively
train prediction models without having to share their data.
Recently, there has been growing interest in FL research in
both industry and academia. FL enables certain industries,
such as healthcare, to overcome challenges related to data
collection and privacy.

This growing interest in FL hasmotivated us to reviewmost
of the contemporary survey papers on FL and to classify FL
into several topics under the design aspects, core challenges,
and application domains. In this study, we thoroughly inves-
tigated and analyzed the FL survey papers and conducted a
holistic review of each FL topic. Finally, we outline promis-
ing future research directions. This study is expected to help
future researchers in FL and related areas to scope their work.
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