o.)

Check for
updates

Decentralised Learning in Federated Deployment
Environments: A System-Level Survey

PAOLO BELLAVISTA, LUCA FOSCHINI, and ALESSIO MORA, University of Bologna

Decentralised learning is attracting more and more interest because it embodies the principles of data min-
imisation and focused data collection, while favouring the transparency of purpose specification (i.e., the
objective for which a model is built). Cloud-centric-only processing and deep learning are no longer strict
necessities to train high-fidelity models; edge devices can actively participate in the decentralised learning
process by exchanging meta-level information in place of raw data, thus paving the way for better privacy
guarantees. In addition, these new possibilities can relieve the network backbone from unnecessary data
transfer and allow it to meet strict low-latency requirements by leveraging on-device model inference. This
survey provides a detailed and up-to-date overview of the most recent contributions available in the state-of-
the-art decentralised learning literature. In particular, it originally provides the reader audience with a clear
presentation of the peculiarities of federated settings, with a novel taxonomy of decentralised learning ap-
proaches, and with a detailed description of the most relevant and specific system-level contributions of the
surveyed solutions for privacy, communication efficiency, non-IIDness, device heterogeneity, and poisoning
defense.

CCS Concepts: « Computing methodologies — Distributed computing methodologies; Distributed
algorithms; Distributed artificial intelligence; Learning settings;

Additional Key Words and Phrases: Decentralised learning, federated deployment, privacy, communication
efficiency, poisoning defense

ACM Reference format:

Paolo Bellavista, Luca Foschini, and Alessio Mora. 2021. Decentralised Learning in Federated Deployment
Environments: A System-Level Survey. ACM Comput. Surv. 54, 1, Article 15 (February 2021), 38 pages.
https://doi.org/10.1145/3429252

1 INTRODUCTION

The unprecedented amount of data being generated at the edge of the network—Cisco estimates
that nearly 850 ZB will be produced by all, namely, people, machines, and things by 2021, up
from 220 ZB generated in 2016 [21]—represents the ideal ingredient for training accurate Machine
Learning (ML). In particular, Deep Learning (DL) models [63] allow to enhance and support a
wide range of more intelligent applications, services, and infrastructures, such as powering rec-
ommender systems [139], developing data-driven machine health monitoring [143], enabling new

Authors’ address: P. Bellavista, L. Foschini, and A. Mora, Dept. of Computer Science and Engineering (DISI), Alma Mater
Studiorum - University of Bologna, Viale Risorgimento 2, Bologna, Italy, 40136; emails: {paolo.bellavista, luca.foschini,
alessio.mora}@unibo.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0360-0300/2021/02-ART15 $15.00

https://doi.org/10.1145/3429252

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15

https://doi.org/10.1145/3429252
mailto:permissions@acm.org
https://doi.org/10.1145/3429252
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3429252&domain=pdf&date_stamp=2021-02-11

15:2 P. Bellavista et al.

ways for clinical diagnoses [86], or driving the design of new generation mobile networks [137].
However, the potentially sensitive or confidential nature of gathered data poses privacy concerns
when managing, storing, and processing those data in centralised locations. At the same time, the
capacity of the network infrastructure risks to be saturated by such continuous data collection,
such as from distributed sources at the network edge to centralised cloud resources.

To this purpose, decentralised learning has recently gained momentum exactly to decouple
model training from the need of directly accessing raw data, by becoming a promising alterna-
tive solution to the more traditional cloud-based ML. In fact, decentralised learning leaves the
training data distributed and supports the learning of joint models via local computation and pe-
riodic communication: data no longer need to leave the data owner. For example, data remain on
the premises of organisations or institutions that may want to collaborate, but without sharing
their private data. Other significant use cases embrace intelligent applications for end-users of
smartphones or IoT devices, where the private preferences or habits sensed through user-device
interaction do not leave the source devices.

The literature includes several differently designed approaches to enable decentralised learning.
The common key idea is to be able to just transmit ephemeral locally computed updates (e.g., model
parameters or gradients) and/or meta-level information (e.g., activations in neural-networks): that
leverages on the fact that they are meaningful only with respect to the current global model and
typically bring significantly lower informative content compared to the raw data (data processing
inequality). This design paves the way to upgrading the user’s privacy so to meet the rising leg-
islative requirements about it (e.g., the California Consumer Privacy Act [93] and the European
General Data Protection Regulation (GDPR) [30]). Similarly, in the case of federated deployment
environments participated by different institutions, the use of decentralised learning techniques
can ensure privacy guarantees, especially in sensitive domains such as healthcare where data shar-
ing is impeded by regulation (e.g., the Health Insurance Portability and Accountability Act - HIPAA
[94]).

Besides the above privacy concerns, decentralised learning techniques are strongly motivated
from the infrastructural perspective. The huge amount of raw data coming from the edge of the
network and headed to data-centers risks to overwhelm the network backbone, hence a part of
these data should, instead, be consumed locally, as suggested in [21]. Note that, even with decen-
tralised learning, the periodic exchange of uncompressed updates in place of the upload of all the
raw data may not necessarily reduce the total communication cost needed to train a model in a
satisfying way [76].

As for the organisation of this article, this survey first presents the motivations that led to the
development of decentralised learning and provides a practical overview about its real-world ap-
plications (in Section 2). Then, it defines the peculiarities of federated deployment environments
(or federated settings in Section 3.1), introduces our original taxonomy to classify decentralised
learning approaches, and presents the main baselines for enabling decentralised learning (in Sec-
tion 3). In Section 4, it points out the main issues that have been addressed by the related literature
in the last four years. Indeed, that represents the core of our work providing an accurate, but
largely accessible, overview of the major works in the current literature about decentralised learn-
ing. The referred works are readily characterised in the first place by the federated setting they
refer to (i.e., Cross-silo or Cross-device), second, by a simple modular description of the baseline
framework on which the particular work is based (using our taxonomy from Section 3.2), and third
by the specific issues addressed in the surveyed solutions (i.e., privacy, communication efficiency,
non-IIDness, device heterogeneity, poisoning defense). The last part of this survey (in Section 5)
looks at present and future research directions for the advancement of decentralised learning, by
discussing open technical challenges and cutting edge lines of work.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:3

We are aware of the rich existing survey literature in the field and in particular of the valuable
articles [68], [129], [73], and [147]. However, we claim that we are providing the readers with a
valuable and differentiated contribution if compared with those surveys primarily because of the
following aspects:

(1) We provide a more in-depth and more extensive technical description of the surveyed
works, describing their motivations, bringing out their most significant technical insights,
and providing the readers with the references to fully comprehend the associated solution
guidelines, as well as commenting their differential strengths and weaknesses.

(2) We provide a readily and intuitive characterisation of the surveyed works by means of a
tabular road map to approach the core of our survey, and we claim that it may be useful
to help non-expert readers to navigate the very differentiated literature that is emerging
in the field.

(3) Our survey includes several very recent research papers (published in the last few months)
that are relevant for the community and not covered yet by [68] and [129].

(4) We enlarge the discussion to cover decentralised learning approaches in a broader sense,
not focusing exclusively on federated learning related works.

(5) Finally, differently from [73] and [147], we do not specifically focus only on the advances
of decentralised learning that can be achieved via Multi-access Edge Computing (MEC).

2 THE RISING OF DECENTRALISED LEARNING

The public opinion is becoming increasingly sensitive to individual privacy rights, especially after
the notorious Facebook-Cambridge Analitica scandal [126] has made no longer ignorable the Or-
wellian levels of data held by such companies about us and has exposed the weakness (or even the
non-existence) of privacy regulation and data protection. Anyway, even without thinking about
striking episodes such the one cited above, individuals’ privacy is threatened whenever personal
raw data are disclosed. For example, elementary data anonymisation (i.e., removing all explicit
identifiers such as name, address, and phone number) has demonstrated to be almost ineffective in
protecting privacy, since combinations of simple non-unique attributes often allow to re-identify
individuals by matching “anonymised” records with non-anonymised ones in a different public
dataset (e.g., [88]).

The actual legislative vacuum about data harvesting, data holding, and data processing has
been—and still is—the subject of regulation efforts around the world. About that, it is worth men-
tioning the CCPA and the GDPR, respectively from California and from European Union, that
both leverage the principles of purpose specification and data minimisation. In concrete terms, for
example, the GDPR’s Article 5 states that personal data shall be “collected for specified, explicit
and legitimate purposes and not further processed in a manner that is incompatible with those
purposes” and “kept in a form which permits identification of data subjects for no longer than is
necessary for the purposes for which the personal data are processed”. Such guidelines are often
incompatible with more traditional cloud-based ML solutions, where potential privacy-sensitive
raw data flow towards datacenters to train ML/DL models. In particular, (i) companies harvest-
ing data tend to keep them forever and users cannot delete them;! hence, the same data can be
used several times for different learning purposes (for extracting different kinds of insights); (ii)
users from whom the data were collected are unaware of the associated learning objectives; (iii)
models learnt from collective data typically remain property of the companies that built them; and

1At least until the time this survey has been written.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:4 P. Bellavista et al.

(iv) users disclose their raw data, in a more or less informed way, to infer centralised models, such
as for training,.

It could seem that an inevitable dichotomy between the protection of individual’s privacy and
the distillation of useful knowledge from a population exists (i.e., not disclosing private data to
preserve privacy, by merely performing local learning, versus sharing private raw data to produce
more accurate models at the cost of exposing data owners to privacy violation risks). On the oppo-
site, decentralised learning tries to alleviate the privacy concerns of traditional cloud-centric train-
ing by design and is data-minimisation-prone. In fact, (i) companies do not need to collect possible
privacy-sensitive raw data to build ML/DL models anymore; (ii) users could likewise be unaware
of the learning objective for which their data are used, but data processing happens locally, hence
facilitating the shift to full transparency; (iii) models (or fractions of models, i.e., portions of their
parameters) reside locally at the user’s device or inside the organisation’s premises (or in very
proximity of it). This could be seen as a first step to give back to the community the knowledge
acquired from joint contributions?; and (iv) users do not need to upload their raw data to query
centralised models, in fact on-device inference is typically enabled if the entire model is replicated
locally—if only a portion of the model parameters is locally held instead, distributed inference is
performed by just communicating meta-level information in place of raw data.

In addition, shifting model training from the cloud towards the network edge recalls a trend that
was already in act with the rising of mobile edge computing during the last decade. Besides the urge
of privacy guarantee, several aspects are similar and seem to overlap. A primary one is the need
to relief the burden on the backbone of the network infrastructure, which risks to collapse under
the tsunami of data if not partially consumed locally or in proximity of the associated sources. In-
tuitively, actively involving the ecosystem of edge devices in the learning process and exchanging
model updates in a communication-efficient way (e.g., employing stream compression) in place of
centralizing raw data can substantially reduce network traffic while leading to limited degrada-
tion (or in some cases to no degradation) of model accuracy. Second, the low-latency requirements
of real-time applications often cannot be met by only leveraging the cloud (for instance, when
monitoring a shared industrial workspace, during human robot collaboration, to enforce policies
for worker protection [108]). Enabling on-device inference of the learned or in-learning models,
which naturally comes with most decentralised learning approaches as we will discuss in the con-
tinuation of the survey, benefits such delicate aspect. Let us finally note that decentralised training,
with its potential reduction of ML-related energy consumption because of reduced network traffic
and decreased transmission distance, also contributes to the overall sustainability of the approach:
it is considered as one of the key enabling technologies towards green networking via distributed
and federated data centers.

Decentralised learning finds natural applications in smart apps for mobile devices which learn
by user interaction, and where low-latency responses are required. In this context, gathering user-
labeled or automatically annotated data points for feeding supervised learning algorithms is a
common practice. Related examples include on-device intelligent keyboards that power content
suggestions [130], or that predict the most suitable next words [38] or the most fitting Emojis
[100] given the chat history; or again vocabularies that evolve to follow the ongoing trending
expressions by learning out-of-vocabulary words [18], and all of this without exporting sensitive
text to servers. Other examples deal with human activity recognition (e.g., [113]) and keyword
spotting for voice assistants in smart homes (e.g., [64]).

2However, it is worth noting that restricting or preventing access to model’s parameters, even if the model itself is locally
available, makes it harder for an attacker to undermine it, e.g., via backdooring. Therefore, companies or organisations that
adopt Decentralised Learning techniques may be motivated to hamper model inspection anyway.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:5

Surveyed Works
5 6B B 8 W

o wn

2017 2018 2019
Year

Fig. 1. The histogram reports the number of papers about decentralised learning per year, covered by this
survey, by showing the increasing relevance of decentralised learning in the literature.

Decentralised learning has been used also to conjugate user privacy and prediction ability of
the infrastructure in the 5G multi-access edge computing architecture [24, 57, 80], for example for
proactive content caching [135] or for optimal allocation of virtual machine replicas copies [31],
and it is considered a key enabling tool for next generation wireless networks [90] as well, e.g., for
spectrum management.

Confirming its versatility, decentralised learning has been also applied to network traffic clas-
sification, anomaly detection, and VPN traffic recognition tasks, while preserving appropriate pri-
vacy levels [8, 144]. Similar considerations apply to vision-based safety monitoring systems in
smart cities [78].

In the relevant healthcare domain, the popularity of decentralised training approaches shown
in Figure 1 has been also pushed by the need to enable collaboration among healthcare institu-
tions. In fact, the disclosure of patients’ raw data is often impeded or limited by regulations such
as the HIPAA Privacy Rule, or the patient herself might not want her clinical data to be released to
other entities, or again the institutions might not want to sell out their valuable datasets. There-
fore, plain old centralised training results to be not feasible for predictive clinical models in many
cases. Furthermore, manual labeling of data is often very time-consuming in medical contexts and
typically requires qualified personnel. Datasets held by single institutions tend to be small and
may lack in diversity [95], and this is exacerbated when considering rare diseases. Hence, from
the perspective of isolated local learning, sample scarcity may lead to models with poor predictive
ability, especially when considering deep learning models that notoriously need abundant data
points to reach high fidelity. As practical use cases in smart healthcare, we report the training of a
detector for abnormal retinal fundus and a classifier for common chest radiography observations
(from visual datasets) [99]. Other clinical learning tasks include prediction of prolonged length of
stay and in-hospital mortality [96], prediction of hospitalisations for cardiac events [15], or gaining
insights about brain diseases [104].

3 FUNDAMENTALS, TAXONOMY AND BASELINES FOR DECENTRALISED
LEARNING

This section gives some concise background to make highly accessible the following presentation
of the surveyed decentralised learning solutions, by defining the targeted deployment settings and
the modular building blocks that are emerging in the related literature. These building blocks are at
the cornerstones of our original taxonomy (see Figure 2), which we will introduce in this section
and use in the remainder of the survey to better highlight the features, the pros, and the cons
of the surveyed contributions. We also present the most interesting baseline solutions to enable
decentralised learning.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:6 P. Bellavista et al.

| Decentralized Learning Systems |

[
I I 1

I I
l Data Processing ‘ | Network Topolog ‘ | On-device Model | | d i | l MEC-aware ‘
— —
Model params |

Fig. 2. Our taxonomy for decentralised learning systems.

| Cross-silo || Cross-device | | Sequential | | Parallel | |Star—shaped | | Peer-to-peer | Full | Split |

Update Mode

[Synchronous | | Asynchronous |

3.1 Cross-Silo and Cross-Device Federated Settings

Here we provide an informal and qualitative characterisation of the two most common settings
for decentralised learning, by highlighting their specific elements with respect to traditional dis-
tributed settings [22]. As anticipated in the previous sections, decentralised learning techniques
are strongly motivated when data sharing is impeded by law or by privacy concerns, hence they
apply to several real-world contexts. For the sake of simplicity, let us consider two extreme scenar-
ios: (i) the federation of entities participating in collaborative learning tasks consists of compute
nodes from different organisations or companies (e.g., hospitals, banks)—that typically store their
private data in on-premise silos—; (ii) the federation comprises a massive amount of edge devices
(such as smartphones, IoT devices, or IIoT devices). Such primary distinction leads to the identifi-
cation of two very general settings, which we name Cross-silo federated settings and Cross-device
federated settings [53], respectively.

Those two federated scenarios are substantially different from more traditional distributed set-
tings, where raw data are centralised in data centers to perform learning. In fact, in cloud-centric
training, the participants of the learning task are compute nodes (generally up to 1,000) intercon-
nected through very fast networks, making the computation cost the major bottleneck. Data can
be balanced across compute nodes; moreover, they can be partitioned and re-partitioned according
to the need. Importantly, any participant can access any part of the dataset. Worker machines are
reliable and low rate of failure or drop out (i.e., abandoning the learning task without notice) are
expected.

The Cross-silo federated setting refers to a scenario in which the entities involved in the learn-
ing process are limited in number (up to 100 participants), and typically they are trusted and reli-
able. In addition, they are likely to participate in the entire training task. Data can be unbalanced,
but in general not as much as in Cross-device settings. No assumptions about communication or
computation bottlenecks are made a priori. Furthermore, while training data are assumed to be
independently and identically distributed (IID) in typical data center settings, such an assumption
does not hold for federated settings (neither for Cross-silo nor for Cross-device): the training data
on a given device or on a given machine are likely not to be representative of the full population
distribution.

In the Cross-device federated settings, participants are very numerous instead (up to 10%°),
data are massively distributed and unbalanced (e.g., the number of training examples held by
participants can differ by one or two orders of magnitude) [60]. Learners are highly unreliable;
failure and drop out must be addressed, and each client is likely not to take part in the entire train-
ing process (actually they may contribute only once per task). Furthermore, since edge devices
have limited bandwidth, communication efficient solutions are preferable in the Cross-device
setting; the federation may comprise computationally constrained devices as well, making more
delicate the computation/communication trade-off. Another peculiarity is that participants may

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:7

be malicious in this scenario, e.g. trying to infer sensitive information about other learners or
voluntarily hampering the global learning.

For the sake of clarity, we use this characterisation® to readily approximate the setting to which
the surveyed works in Section 4 refer—we will show that the targeted federated setting relevantly
influences the design choices of a solution. We indeed use such characterisation of the setting as
a primary dimension of our taxonomy.

3.2 A Taxonomy for Decentralised Learning Systems

To favour the readability of the remainder of the survey, we propose a taxonomy for decentralised
learning systems that highlights the main alternative options in designing such frameworks.

3.2.1 Data Processing: Data-Sequential vs Data-Parallel. The common thread when designing
decentralised learning algorithm is leveraging data-parallel variants of iterative optimisation al-
gorithms that are inherently sequential, e.g., Stochastic Gradient Descent (SGD) and its optimisa-
tions. Typically, the federation of learners collaborates to minimise a global objective function that
is unknown to the participants since no single node has direct access to all the data. The global
objective can be thought as a linear combination of the local empirical losses, available locally to
the participants [60].

We further divide data-parallel approaches into systems that leverage synchronous or asynchro-
nous update mode. In fact, as traditional distributed training algorithms, also data-parallel decen-
tralised learning approaches can exploit asynchronous updates to optimise on speed by using
potentially stale parameters for local training or wait for local computation of the slowest par-
ticipant to synchronously aggregate updates without risking to use outdated parameters. With
synchronous update mode, it is usual to talk about rounds of communication, i.e., all the triggered
participants retrieve the global model state, produce their locally computed updates and communi-
cate such updates, from which the new generation model will be derived. Communication-efficient
algorithms have their principal goal in minimizing the rounds of communication. Relaxing the syn-
chronicity can instead spread the communications over time, particularly helpful when handling
a large number of learners. However, examples of data-sequential systems exist, i.e., systems in
which each participant uses as starting model state the result of the computation of another par-
ticipant, and thus produces as output the input model state for the next participant. Anyway, let
us note that these solutions are usually limited to the Cross-silo setting.

3.2.2 Network Topology: Star-Shaped vs Peer-to-Peer. The coordination among learners can be
facilitated by a star-shaped network topology that leverages a central entity to distribute the cur-
rent state of the global model at the beginning of each local iteration, and maintain the state up-
dated during the training task. Participants can directly exchange their locally computed updates
as well, in a peer-to-peer fashion, hence not requiring any infrastructure at the price of increased
coordination complexity. In literature, decentralised learning frameworks that exploit peer-to-peer
networks of participants are often referred to as fully decentralised, i.e., decentralised in both data
and coordination.

3.2.3 On-Device Model: Full Model vs Split Model. Besides the full local replication of the (cur-
rent) global model during the training process, it can be possible to have participants that are only
responsible for a fixed subset of model parameters (in this case, typically, the parameters belong-
ing to n shallower layers in a deep neural network, i.e., Split models). The full replica of the global

3We use the terminology found in [53]. However, the existence of a central orchestrator (i.e., an entity orchestrating the
collaborative training) in federated settings, either Cross-silo or Cross-device, is further supposed in [53]. To embrace all
the decentralised learning work from the literature, we relax this last trait in our terminology usage in this article.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:8 P. Bellavista et al.

model enables on-device inference by design, while in the case of Split model, without retrieving
the entire model at the end of the training, distributed inference is required. Note that, anyway,
the primary privacy concerns have been bypassed by having feature extraction locally.*

3.24 Exchanged Parameters: Model Parameters, Gradients, Activations, and Others. We also em-
phasise that the degrees of freedom in designing decentralised learning frameworks also involve
the kind of exchanged information during the distributed learning. Supposing gradient-descent-
based methods for optimisation, the usual practice is to have participants exchanging gradients
or model updates, with the latter option valuable in case of participant-specific local solver. In
star-shaped topology, a common practice is to have participants downloading the current model
parameters and communicating back to the aggregator either the gradients or the locally updated
model parameters typically generated through SGD iteration(s). Hence, with such topology, it is
usual to talk about parameters in upload and in download. There are examples of star-shaped
frameworks where the communication in both directions only involves gradient information (e.g.,
[9] and [118]) as well, i.e., the server aggregates gradients and the back-propagation is performed
on-device. We emphasise that the exchanged information may be not limited to gradients and
model parameters; in fact, other kinds of parameters may be transmitted for diverse optimisa-
tion purposes. For instance, the exchange of moment estimations may be required to implement
an ADAM [59]-inspired optimisation algorithm [85], as well as the exchange of information for
gradient correction terms [70] or of control variates [56] to tackle non-IIDness, or of other local
estimations to meet given budget resources [125] (more details about their motivations and imple-
mentations are in Section 4). Or again, in presence of Split models (e.g., in Split Learning), besides
model parameters and gradients, also activations (and labels) have to be communicated by design.

3.25 MEC-Awareness: Yes/No. It is also worth mentioning that, considering the MEC architec-
ture and therefore the existence of a middle layer of edge servers between the edge devices and
the cloud, two levels of topology organisation can be identified. On the one hand, decentralised
learning systems may leverage edge servers as intermediate aggregators for updates produced by
the edge devices in their locality (i.e., matching a star-shaped topology) and then edge servers
may directly exchange intermediate-level updates among them in a peer-to-peer fashion, to col-
laboratively build the global model. On the other hand, the cloud may be involved as “master
aggregator” collecting intermediate aggregations from the federation of edge servers (the latter
solution is referred as hierarchical). An in-depth discussion about edge-cloud continuum roles in
edge intelligence can be found in [147].

3.3 Baselines for Decentralised Learning Systems

In this subsection, we propose some baseline frameworks to enable decentralised learning. We
introduce the most significant baselines for star-shaped systems, followed by instances of fully
decentralised (server-less) alternatives, i.e., peer-to-peer.

3.3.1 Star-Shaped Baselines. Federated Averaging (FedAvg) is a widely accepted heuristic algo-
rithm used as baseline for star-shaped Federated Learning (FL), given its simplicity and its empiri-
cal effectiveness [81] also in non-convex setting. Its skeleton is presented in Algorithm 1. The learn-
ing process proceeds in synchronous rounds of communication; the (full) current global model is
broadcasted at the beginning of the round to the (selected) participants, that use their private
dataset to produce an update (e.g., gradients or model weights) for the received model, and upload
such contributions. The aggregator, i.e., a sort of parameter server, collects and aggregates (e.g.,

41t is important to remind that information leakage is still possible. This will be faced in Section 4.2.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:9

by averaging) the updates from participants and computes the new-generation global model. The
process typically ends when a certain accuracy for the global model is reached, or when a certain
number of rounds has been executed. SGD is typically chosen as local solver. Three hyperparam-
eters have to be tuned in FedAvg; C controls the fraction of participants to be selected in a certain
round ¢ (with C = 0.0 indicating only one participant involved per round, and C = 1.0 meaning
the totality of participants), E defines the number of local epochs to be performed in each round,
and B denotes the mini-batch size. It is worth noting that the contributions in the aggregation are
weighed accordingly to the number of local data points held by each participant.

When the full local dataset is treated as a single mini-batch (i.e., B = o), and the local itera-
tions at each participant are limited to one epoch (i.e., E = 1), FedAvg is also known as FedSGD.
An equivalent variant of FedSGD can be formulated by uploading gradients in place of model
parameters.

An accurate convergence analysis, in strongly convex and smooth problems, of FedAvg in pres-
ence of data heterogeneity and partial device participation—peculiar of Cross-device settings—can
be found in [71]. The authors theoretically showed that, in such circumstances, model conver-
gence is slowed down with respect to the ideal case of IIDness and full participation. They also
pointed out that a decaying learning rate is fundamental for the convergence of FedAvg under
non-IIDness: gradually diminishing the learning rate can neutralise biased local updates. Consid-
ering FL-suitable participant sampling and related averaging schemes, Li et al. [71] establish a
convergence rate of O(%), where T represents the total number of SGD iterations performed by
every participant.

FedAvg is considered a communication efficient algorithm mainly thanks to two aspects: (i) it
selects a (random) subset of participants per round (i.e., if only a portion of participants is selected,
the per-round communication cost is reduced with respect to full participation); (ii) it allows for
additional iterations of local solver (i.e., SGD) to reduce the total number of synchronisations
needed for model convergence - it has been empirically showed that FedAvg significantly reduces
the total communication rounds (under the same C-fraction of per-round selected clients) with
respect to FedSGD, while reaching the same (or higher) model accuracy [81]. A plethora of works
in literature propose improvements for FedAvg (see Section 4 for further details).

A baseline alternative to FedAvg, Federated Distillation (FD), is presented in [49], and it is ex-
plicitly designed to be extremely communication efficient; it is inspired by an online version of
knowledge distillation, namely co-distillation [4, 44]. In a nutshell, each device (the student) stores
its model outputs, i.e., a set of logit values normalised via softmax function, from which it derives
per-label mean logit vectors, and periodically uploads such local-average logit vectors to the aggre-
gator. The server produces the per-label global-average logit vector by averaging the contributions
of all the participants in that round, and broadcasts such aggregation to the federation; each device
treats the received per-label global-average logit vector as the teacher’s output, and locally calcu-
lates the distillation regulariser. It is straightforward to note that exchanging logit-vector (local or
global averaged, whether they are upload or download parameters), in place of model parameters
or gradients, reduces the per-round communication cost with respect to FedAvg: the dimension of
logit-vectors depends on the number of labels, and not on the number of model parameters.

A differently designed method to enable collaborative training of neural networks without shar-
ing raw private data is the so-called Split Learning (SL), also referred as SplitNN [36] to empha-
sise the suitability for DL architectures. This technique employs Split models instead of full model
replication. In fact, the training participants hold replications of the shallower layers up to a cer-
tain layer (i.e., the cut layer), and a central entity holds the deeper layers. Inter-layer values, i.e.,
activations and gradients exchange occurs between a certain participant and the central entity,
instead of centralizing the raw data.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:10 P. Bellavista et al.

ALGORITHM 1: FedAvg algorithm

The K participants are indexed by k, Dy is the local dataset at participant k, ny = |Dy| and n = Zle n, B
is the local mini-batch size, E represents the number of local epochs, 7 is the learning rate. Note the common
initialisation of model parameters wy.

Server executes:

initialize wy

for eachroundt = 1,2,3, ..
m < max(C X K, 1)
S; < (random set of m clients)
for each client k € S; in parallel

wfﬂ « ClientUpdate(k, w;)

Wil < ZIk(:l ek

n Ui+l
ClientUpdate(k, w)
B « (split Dy into batches of size B)
for each local epoch e from 1 to E
for batchb € 8
w — w—nVLl(w;b)
return w to server

The training process as formulated in [36] is data-sequential, albeit distributed. Each participant
retrieves the current state of the shallower layers of the neural network either in a peer-to-peer
mode, downloading it from the last training participant, or in a centralised mode, downloading it
from the central entity itself, and runs the local gradient descent based local solver (e.g., SGD), us-
ing its private dataset.’ The participant computes the forward propagation up to the cut layer, and
the outputs of this layer, together with label associated to the data examples, are communicated
to the central entity that concludes the forward pass on the deeper layers. The back propagation
of gradients takes place in a similar fashion, flowing from the deepest layer to the cut layer, where
they are sent from the central entity to the participant that has initially triggered the forward
propagation (only the gradients that refers to the cut layer). Then, the process repeats with a dif-
ferent participant, collectively learning a joint model without sharing private raw data. In [111],
the position of the cut layer is empirically discussed.

Gupta and Raskar [36] also proposed a variant of the SplitNN algorithm, namely U-shaped Split
Learning, in which the labels related to the locally available training examples are not centralised
but remain private at the participant side.

A data-parallel variant of SplitNN is proposed in [119], namely SplitFed learning (SFL), to com-
bine the advantages of FL and SL, that are, respectively, the parallel processing among distributed
learners and the model partitioning among participants and central entity.

Although splitNN has demonstrated to reduce computation burden and bandwidth utilisation
with respect to baseline FedAvg [111] in presence of “big” models and high number of clients, star-
shaped FL and fully decentralised FL allow on-device inference of the model by design, while this
is not true for splitNN, which requires a distributed inference unless the complete trained model
is provided to the participants.

3.3.2 Peer-to-Peer Baselines. In star-shaped FL, the coordination server orchestrates the com-
munication rounds; it iteratively broadcasts the current model state to the participants and gath-
ers the locally computed updates to produce the next-generation model by aggregation. Although

SRegardless of the strategy to retrieve the current state of the participant-side model, either peer-to-peer or centralised, in
SplitNN a server exists by design; this is why we consider it as star-shaped.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:11

leveraging a client-server architecture permits ignoring topology-related issues, FL presents two
downsides: (i) the central entity can be seen as a single point of failure; (ii) the central entity may
represent a bottleneck considering a significant number of training participants (as demonstrated
in [72] though not explicitly targeting federated settings). Furthermore, the learners should trust
such central aggregator, and, even though techniques such as multi-party computation can ensure
the inscrutability of updates (see Section 4.2), the participants may prefer to coordinate each other
directly (as could be the case of health institutions).

In fully decentralised learning, the topology of star-shaped FL becomes a peer-to-peer topol-
ogy, represented as a connected graph (generally assumed to be sparse). Such graph can be a
directed graph or an undirected graph, i.e., unidirectional or bidirectional channels of commu-
nication among the nodes. The topology can be assumed to be fixed or dynamic, i.e., in which
interconnections between nodes may change over time.

In each round, participants perform local computation and then communicate with (a subset
of) the other nodes in the graph—note that not leveraging the server-client architecture (as well
as relaxing the synchronous update mode) redefines the semantic of rounds. Straightforward op-
timisation algorithms, similarly to FedAvg, employ fully decentralised variants of SGD (e.g., peers
directly exchanging and merging gradients or model updates). It is also worth highlighting that,
while in star-shaped FL the FedAvg algorithm has been widely accepted as baseline, in peer-to-
peer (server-less) FL there is no algorithm that has distinctly emerged among others; solutions
in literature, in fact, make different assumptions on the connectivity of the graph, in particular
considering each node connected to all the other nodes in the network or considering only a set
of nodes (i.e., the neighbours) reachable by each one, considering a fixed topology or a dynamic
topology, assuming directed (e.g., [42]) or undirected graphs, and employing different strategies
for model fusions.

In the continuation of this subsection, we present examples of baseline algorithms that consider
fixed-topology and undirected graphs—most common assumptions. The first work, BrainTorrent
[104], targets Cross-silo federated settings, while the subsequently presented ones also embrace
the Cross-device setting [43, 50, 108].

BrainTorrent considers the graph as fully connected and from this consideration comes our
labeling as Cross-silo framework—it explicitly targets the collaboration of medical institutions,
where it is reasonable to further suppose full connectivity besides fixed topology and undirected
network graph. In a nutshell, a random participant k in the network starts the learning process by
pinging all the other nodes, requesting model updates; the ones that have a fresher version of the
model respond with their model parameters; the learner that has initiated the process gathers the
updates from the subset of participants that have responded, referred to as Ny, and aggregates them

with its own local model by using this strategy: /¥ = "Tkwk + Die Ny “!. Next, the participant

k fine tunes the aggregated model /¥ using its own private dataset, it updates the version of its
model and it is ready to respond to ping requests from other nodes by providing its new-generation
fine-tuned wg. Then, the process repeats.

Gossip-based protocol for distributed learning has been explored in the data center setting as al-
ternative to the parameter-server approach (e.g., [10] and [39]). Inspired from them, Gossip Learn-
ing (GL) has been proposed in [43] for Cross-device federated settings. In the baseline GL algo-
rithm, starting from a common initialisation, each node sends its local model to a randomly selected
peer, which first merges (e.g., by averaging and weighing the average according to an age param-
eter associated with the freshness of the models) the received model with its current parameters,
then updates the resulting model by exploiting its private dataset, and the process repeats. In a
nutshell, there could be different models scattered across the network of peers, with each one of

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:12 P. Bellavista et al.

ALGORITHM 2: Consensus FedAvg algorithm
Ny represents the set of neighbors of the participant k, hence k excluded, Dy is the local dataset at participant
k, B is the local mini-batch size, 7 is the learning rate.

Participant k executes:

k
0

for eachroundt =1,2,3, ..
receive{w, }ien

k k .

wt — wy
for all devices i € N?

UF < YF + Gari(wh = wF)

wk | = ModelUpdate(y[)
k

send(wy

ModelUpdate(lﬁtk)
B« (split Dy, into batches of size B)
for batch b € B
Y£ < Yf - nVEWLiD)
wi < Uf
mturn(wic)

initialize w

) to neighbors

these models taking random walks (in the network) and being updated when visiting a new node.
Typically, the local update is implemented through mini-batch SGD algorithm. It is worth noting
that due to the push-only nature of the considered protocol, the merge-update-push cycles are not
synchronised among participants: a node may merge its fresher model with an outdated one. The
GL strategy, in [43], is not evaluated on DL architectures. Furthermore, this seminal work does not
thoroughly discuss some aspects related to different kinds of heterogeneity that arise in real-world
Cross-device setting; in particular, the data held by peers, the neighbors reachable by each peer
in the network, and the processing and communication speeds of devices are unrealistically sup-
posed to be homogeneous. Such aspects are considered and discussed in [35], where it is claimed
that gossip learning shows poor performance on restricted communication topologies and it is
highlighted that GL fails to converge when communication speeds of the nodes and heterogeneity
of data are correlated. Giaretta and Girdzijauskas [35] propose some strategies to improve GL in
such realistic scenarios.

InBACombo [50], Jiang et al. consider a fixed topology of neighbors for each learner, not limiting
the spreading of the updates to one peer per round, and propose a neural-network specific solu-
tion. The local model held by each peer is split into a set of S not-overlapped segments, and each
participant does not pull all the segments (i.e., the entire model) from the same peer but collects S
segment from S different links in the network of neighbours. In this way, each peer reconstructs
a model update by building a mixed model composed by such S segments that have been pulled
from different peers. They extend the solution by allowing each peer to pull S X R segments in
each round of communication, with R being an hyper-parameter, to be carefully tuned, that repre-
sents the number of mixed models that can be reconstructed, thus impacting the communication
efficiency while accelerating the propagation of fresh model. The mixing strategy is similar to Fe-
dAvg, weighing contributions (i.e., segments) according to the cardinality of the dataset held by
participants.

In [108], Savazzi et al. propose a consensus-based FedAvg-inspired algorithm (referred to as
CFA), supposing sparse connectivity. The algorithm is formalised in Algorithm 2. In each round,
the participant k receives models from its neighbors and produces an aggregated model, /*. Next,

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:13

local iterations of mini-batch SGD are performed to produce the new-generation model, that will
be sent to the neighbors, before the process repeats. The peculiarity of the algorithm stands in
how the aggregated model is obtained, at round ¢, from the neighbor contributions, that is: /¥ =
wf +4 Y ieNg ak’i(wi - wf), where {; is the “consensus step size” and the mixing weights ay ;

are chosen, similarly to FedAvg, as ay ; = Z"ﬁ with n; being the cardinality of data samples at
ie F 1

participant i.

We conclude this overview about instances of baseline algorithms for server-less federated
learning by mentioning the fact that blockchain-based implementations of peer-to-peer learning
frameworks have been—and are—explored in literature (e.g., [58]), though not being explored in
this survey.

4 DECENTRALISED LEARNING SOLUTIONS: A SYSTEM-LEVEL ANALYSIS

Decentralised learning decouples by design the ability to learn a predictive ML/DL model from
the direct access to raw data and meets the rising urge of ensuring privacy guarantees to the data
owners while still being able to distill useful information for the community. However, as already
pointed out in this survey, diverse challenges emerge. Chief among them, privacy is not com-
pletely secured by means of just disclosing ephemeral updates (e.g., gradients, model parameters)
or meta-level information, as well as the communication efficiency is of paramount importance in
Cross-device federated settings. Furthermore, having the raw data (massively) distributed and/or
unbalanced among participants naturally implies dealing with non-IIDness. An additional fac-
tor to be addressed is the heterogeneity of devices’ resources in Cross-device settings. Moreover,
the design of decentralised learning approaches opens up to new possibilities for attackers, since
learners actively participate in the training process, e.g. forcing information leakage from other
participants or trying to influence the behaviour of the system. These are the most investigated is-
sues in literature so far, but other less crucial aspects and challenges are rising and taking the scene
while effective solutions for the urgent aspects allow us to already apply decentralised learning in
real scenarios. In this section, we discuss the systems in the literature that aim at solving the above
mentioned issues, i.e., communication efficiency, privacy, non-IIDness, device heterogeneity, and
poisoning defense, classifying them by our taxonomy (see Table 1).

Let us note that, in the following sub-sections, we will use the taxonomy definitions and terms
introduced previously in this survey; where not possible or convenient, we explain in-line the
specific meaning of the employed definitions/terms/symbols.

4.1 Improving Communication Efficiency

The communication efficiency in decentralised learning can be addressed from different perspec-
tives. In the first place, decentralised optimisation algorithms are usually designed to allow for
multiple local training iteration between communication rounds to reduce the total communica-
tion cost of the training process (e.g., [54] and [81]); in synchronous star-shaped federated learning,
the number of participants selected per round is typically limited (e.g., [81]), as well as in peer-
to-peer topology the number of neighbours to scatter the updates to is bounded (e.g. bounded
to 1 such as in GL [43] or in [117]). Stream compression (e.g., by encoding, quantisation and/or
sparsification of updates) is typically employed to reduce the per-round communication cost [16,
51, 61, 67, 85, 103, 106, 117, 118]. Furthermore, specific strategies can be crafted accordingly to the
peculiarities of the model to train (e.g., by introducing asynchrony between the updating of the
neural-network parameters belonging to shallower/deeper layers [20]). Stream compression has
been mostly explored in star-shaped federated learning, but similar solutions may be easily adapted

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:14 P. Bellavista et al.

Table 1. This Tabular Classification is Used to Guide the Readers; the Referred Works are Characterised
by the Federated Setting They Refer to, by Our Taxonomy from Section 3.2, and by the Most Relevant
Issues Addressed, i.e., Communication Efficiency (CE), Privacy (P), Non-1IDness (non-IID), Device
Heterogeneity (DH), Poisoning Defense (PD). We Flatten the Update Mode Ramification of the
Taxonomy, Related to Data-parallel Approaches, for Better Visualisation

Our Taxonomy Characterisation
On-dev. Data Update Topology Exch. Info MEC

Work Year Setting Model S P Async Sync Star P2P Up Down aware
FedAvg [81] 2016 both Full v v v w w X
o FD[49] 2018 device Full v v v lv lv X
£ CFA[108] 2019 device Full v v v w X
‘é’ GL [43] 2019 device Full v v v w X
BrainTorrent [104] 2019 silo Full Vv - - v w X
SplitNN [36] 2018 silo Split v - -V AY, wg ¢g,wg X
SFL [119] 2020 device Split v v v AY,wg g, wy X
Kamp et al. [54] 2018 device Full v v v w w X
Kone¢ny et al. [61] 2016 device Full v v v w w X
2 Caldas et al. [16] 2018 device Full v v ooV w w X
5 STC[106] 2019 device Full v VS w w x
*E eSGD [118] 2018 device Full v Vv g g v
g HierFAVG [75] 2019 device Full v v v w w v
g Chen et al.* [20] 2019 device Full v v v w w X
© CE-FedAvg [85] 2019 device Full v v v w,mv w,muv X
CFA-GE [85] 2019 device Full v v v w, g X
SAPS-PSGD [117] 2020 silo Full v v v w X
Momentum FL [77] 2020 device Full v v v w, d w, d X
Geyer et al. [34] 2017 device Full v v v w w X
DP-FedAvg [82] 2017 device Full v v v w w X
Triastcyn et al. [120] 2019 device Full v v v w w X
SECAGG [13] 2017 both Full v v v w w X
> Turbo-Agg [112] 2020 device Full v v v w w X
E Hao et al. [37] 2019 device Full v v oV g g X
& SecGD* [40] 2019 silo Full v S v g w x
Truex et al. [122] 2019 both Full v v v w w X
SecProbe [142] 2019 silo Full v v v w w X
MCL* [32] 2019 silo Full v v v w w X
NoPeekNN [123] 2019 silo Split v - - v AY, wg g, wy X
Yu et al. [132] 2019 silo Split v - - v AY,wg g, wg X
5 DiffSketch* [67] 2019 device Full v v v g g X
& Jinetal [51] 2020 device Full v v v g g X
A~ cpSGD* [2] 2018 device Full v v v g w X
Bonawitz et al. [14] 2019 device Full v v v w w X
(Continued)

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:15

Table 1. Continued

Our Taxonomy Characterisation

On-dev. Data Update Topology Exch. Info MEC
Work Year Setting Model S P Async Sync Star P2P Up Down aware
Y. Zhao et al. [145] 2018 silo Full v v v w w X
FedAug [49] 2018 silo Full v v v w w X
a FedMeta, UGA [131] 2019 device Full v v v g w X
= FedAvgM* [47] 2019 device Full v v v w w X
é FedProx [69] 2019 device Full v v v w w X
SCAFFOLD [56] 2019 device Full v v v w, ¢ w, ¢ X
FedDANE [70] 2020 device Full v v v w, g w, g X
FedOpt [101] 2020 device Full v v v w w X
FAVOR* [124] 2020 device Full v v v w w X
FedAsync [127] 2019 device Full v v v w, t w X
TiFL [17] 2020 device Full v v v w w X
T FedCS [91] 2019 device Full v v v w, res_info w v
A LoAdaBoost* [48] 2018 silo Full v v w, L w, L X
Wang et al. [125] 2019 device Full v v Ve w,g,p, B, w, " X
L, res_info
BACombo [50] 2020 device Full v v v w X
SLSGD [128] 2019 device Full v v v w w X
a FoolsGold [33] 2018 device Full v v v g w X
L. Zhao et al. [141] 2019 device Full v v v w w X
Li et al. [66] 2019 device Full v v v w w X

Notation: w (full) model parameters, w; on-device layer-partitioned model parameters (e.g., in SL), g gradients, v logit
vectors, A activations (i.e., output of NN’s cut layer), Y labels associated with data points, m 1st moments, v 2nd ADAM
moments, ¢ control variates, d GD momentum, ¢ time stamps, res_info resource information, L loss function value, p
the Lipschitz parameter of the loss function, the smoothness parameter of the loss function, 7* the optimal number of
local updates between synchronisations.

*indicates that the work is not thoroughly discussed throughout the section.

in peer-to-peer topology. An orthogonal approach is to improve the communication efficiency by
reducing the total communication rounds needed for the model convergence (e.g., implementing
distributed variants of SGD optimisers [77, 85, 108]). Or again, communication-efficiency can be
architecturally favoured by leveraging MEC [75]. Obviously, combinations of the previous strate-
gies are common.

FedAvg can be seen as a periodic averaging protocol that involves in each round of communica-
tion only a random subset of the participants. However, FedAvg (and periodic averaging protocol
in general) maintains the same frequency of communication independently from the utility of the
specific synchronisation, e.g., when all models are approximately equal or they have already con-
verged to an optimum then synchronisation may be omitted. Leveraging this observation, Kamp
et al. [54] propose a dynamic averaging protocol to invest the communication efficiently by avoid-
ing to synchronise models when the impact of such aggregation on the resulting model is negligi-
ble. To this end, authors leverage a simple measure, ||w§ — r||%, for model divergence to quantify the
effect of synchronisations; specifically, they measure the divergence of the locally trained model,
wi, for the round ¢ at participant i, with respect to a reference model r that is common among
all participants, e.g., the last received global model, and compare such divergence with an a priori
chosen threshold to decide whether perform a synchronisation.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:16 P. Bellavista et al.

In [61], two strategies have been proposed to reduce the uplink cost in star-shaped FL (explic-
itly considering FedAvg as baseline) by means of compression, and they are structured updates and
sketched updates. Such strategies can be combined to further compress the data to be sent from
clients to server. The peculiarity of structured updates is that the updates are restricted to have a
pre-defined structure, and they are directly trained to fit such structure. Two types of structures are
considered by Konecny et al. [61]: (i) updates are enforced to be a low-rank matrix of rank k, with
k being a fixed parameter (low-rank updates); (ii) updates are restricted to be a sparse matrix fol-
lowing a pre-defined random sparsity pattern (i.e., a random mask), thus only the non-zero values
along with the seed to generate the pattern have to be communicated. Regarding sketched updates,
the full (or structured) update resulting from the local training is approximated, i.e., sketched, in a
lossy compressed form. To this end, two (compatible and jointly usable) tools are proposed: sub-
sampling, i.e, only a random subset of the (scaled) values of the updates are communicated, and
probabilistic quantisation. As the reader can note in the continuation, several successive works
addressing communication efficiency in decentralised training combine subsampling or sparsifica-
tion and quantisation. Furthermore, supported by empirical evidence, Konecny et al. [61] highlight
the usefulness of applying structured random rotations before quantizing to reduce the quantisa-
tion error.

Similarly to [61], Caldas et al. [16] use a combination of basis transform, subsampling and prob-
abilistic quantisation to reduce the server-to-client communication cost® of FedAvg. Furthermore,
inspired by the well-known dropout technique [114], clients train their updates by considering
a smaller sub-model with respect to the global model. This further reduces the server-to-client
traffic, reduces the local computational cost, and obviously, reduces the client-to-server traffic.
Differently from the traditional dropout, a fixed number of activations are zeroed out at each fully
connected layer, thus all the possible sub-models have the same reduced architecture, while a fixed
percentage of filters are zeroed out for convolutional layers. Caldas et al. [16] call this strategy Fed-
erated Dropout. The client-to-server communication cost can be ultimately reduced by combining
the solution of [61] and Federated Dropout. To summarise, the process works as follows: At the
beginning of each round, the selected clients receive a compressed sub-model from the server; they
decompress it, locally compute an update, and compress the update to send it back to the server;
the server decompresses the received sub-models updates and maps them to the global (full) model
either by exchanging a random seed or via state on server-side. In the end, the hyperparameters
to be tuned are (i) the type of basis transform, (ii) the fraction of weights that are not zeroed out
during the sub-sampling, (iii) the number of quantisation bits, (iv) the federated dropout rate, i.e.,
the percentage of neurons remaining active. (i), (i), and (iii) can be different for the uplink and the
downlink.

Building on their previous Sparse Binary Compression (SBC) [107] technique that targets the
traditional distributed setting, Sattler et al. [106] specifically design a compression framework for
Cross-device federated settings. The proposed Sparse Ternary Compression (STC) compresses
both the upstream and the downstream communication with respect to the baseline FedAvg while
improving the robustness to non-IID data as well as to partial client participation. In addition
to experimentally confirming the already known weakness of vanilla FedAvg in presence of
heterogeneous data, Sattler et al. [106] also show poor model accuracy with aggressive quan-
tisation schemes, such as SignSGD7 [9], in non-IID scenarios. Conversely, top,s sparsification,

®Note that in [61], the objective is to reduce the client-to-server communication cost.

7In SignSGD [9], gradient updates are locally quantised to their binary sign from clients. The parameter server gathers
such binary updates and broadcasts the belief about the sign of the true gradient. The server uses majority vote on the
gathered gradient updates (see Algorithm 3 in [9]).

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:17

i.e., dropping all but the p fraction of updates with the highest magnitude, suffers least from
heterogeneous data. This observation leads the design of the proposed compression scheme for
the upstream communication in FL. As happens in SBC, STC exploits (i) top,s sparsification of
weight deltas (i.e., the difference between the global model and the local model), (ii) local residual
accumulation,® (iii) binary quantisation of the top,s elements,” and (iv) encoding (to losslessly
compress the distance between the non-zero elements of the sparse weight-update) to reduce the
amount of data to be sent from participants to the server. It is worthwhile to highlight once more
that this strategy alone does not affect the downstream communication. In this regard, Sattler
et al. [106] observe that, although clients-to-server updates are sparse, the server-to-clients update
essentially becomes dense as the participation rate, i.e., the fraction of participants involved
in each round, exceeds the inverse sparsity, i.e., the inverse of the hyperparameter that rules
the sparsification. In fact, in the worst case, the number of non-zero elements in the aggregate
(the sum) of clients-to-server updates grows linearly with the number of participating clients.
The dense nature of server-to-clients updates prevent an effective compression. Therefore, they
propose to apply their STC algorithm also to the aggregated updates at server side; hence, the
server maintains a residual as well. However, the partial client participation in each round of
FL prevents a straightforward application of STC at server-side: STC sparsifies and compresses
weight deltas and, considering that not all the participants are involved in every round, some
participants could not recover the updated weights from the received (compressed) delta, since
they may not have participated to the previous round(s). The solution adopted is to cache the
last 7 updates at server-side, and to require a prior synchronisation step for those outdated
participants before initiating the local training. Thanks to this shrewd protocol addition, the
downstream communication can be effectively reduced regardless the partial client participation.

In Edge Stochastic Gradient Descent (eSGD) [118], besides tacking advantage of edge servers
to scale the collaborative training process, Tao and Li [118] propose an algorithm to reduce the
uplink communication cost when exchanging gradients in a star-shaped synchronous learning
framework. The solution builds on the observation that gradients, produced by iterations of mini-
batch SGD optimisation, are very sparse [115]; in eSGD, participants upload only a fraction (i.e., a
fixed percentage) of the gradient coordinates, only the ones that are considered important, while
accumulating a residual to account for ignored coordinates'’—merely dropping these portions of
gradients, even if they are small values, can hamper the model convergence [3].

To reduce the network traffic headed to the cloud, a MEC-aware extension of FL is proposed in
[75], namely Hierarchical Federated Averaging (HierFAVG). Liu et al. [75] exploit the hierarchical
architecture of such brand-new paradigm to have middle-level aggregator entities; each 7; local
updates, edge servers gather the updates of the participants in their proximity to produce the
aggregated models of their locality; each 7, edge-level aggregations, the cloud updates the global
model (hence, each 7;7; local iterations). It is worth noting that if 7, is equal to 1, the HierFAVG

8Note that, differently from [118] (presented later on), in STC (and SBC), the residual accounts for ignored weights and not
for gradients.

The result of the sparse weight-update binarisation is a ternary tensor containing values —, 0, u with y1 being the mean
of the topys weight-updates in absolute value. STC sets all the positive non-zeroed elements to u and all the negative
non-zeroed elements to —. Note that, in SBC, the resulting sparse tensor is binary instead, and the algorithm is slightly
different; they independently compute the mean of all non-zeroed positive and all non-zeroed negative weight-updates; if
the positive mean is bigger than the absolute negative mean, they set all negative values to zero and all positive values to
the positive mean and vice-versa.

1Gradient sparsification and local gradient accumulation is a well-known technique in the traditional distributed setting to
reduce the communication cost by speeding up the training process (i.e., less communication rounds) without significantly
degrading the resulting model accuracy [3, 74, 115]. Error accumulation (in this case, weight accumulation) does not allow
us to waste gradient information, although it may suffer from staleness.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:18 P. Bellavista et al.

corresponds to the traditional FedAvg, while, intuitively, with 7, greater than 1, HierFAVG reduces
the communication cost with respect to FedAvg.

From another perspective, the communication cost of decentralised training can be reduced if
fewer rounds are needed to reach a certain target accuracy. To this end, Mills et al. [85] empir-
ically demonstrate the suitability of an ADAM [59]-inspired variant of FedAvg. As well known,
the ADAM optimiser leverages per-parameter learning rates, 1st moment, and 2nd raw moment
estimates to converge faster in traditional mini-batch SGD. In the proposed CE-FedAvg, partic-
ipants locally compute their update by exploiting ADAM, and they send back to the server the
1st and the 2nd moment estimates as well as the locally trained model (specifically, their deltas).
Thus, beyond the global model parameters, the server also aggregates the 1st and the 2nd moment
estimates, which are broadcasted at the beginning of every round to the learners. Since moment
estimates have the same size of model parameters, it is straightforward to note that the communi-
cation cost per round is tripled with respect to FedAvg in absence of compression. However, Mills
et al. [85] highlight that this is compensated by the faster convergence of CE-FedAvg. Further-
more, they employ compression techniques to reduce the amount of data to be sent; sparsification,
quantisation, and encoding are used. Mills et al. [85] also emphasise an additional advantage of
CE-FedAvg over FedAvg: in absence of a central test/validation set of data, it is difficult to tune
the learning rate for FedAvg, while the default ADAM’s hyperparameters seem to be suitable for
general use.

Similarly, Liu et al. [77] implement a federated version of momentum gradient descent, namely
Momentum FL, where momentum terms and model updates are exchanged between participants
and the server, round by round, doubling the communication cost of each round with respect to
FedAvg, while taking advantage of faster convergence rate.

The same purpose, i.e., reducing the total communication rounds to reach model convergence,
motivates an improvement of the CFA algorithm [108] (already presented in 3.3.2) in peer-to-peer
topology of learners. Savazzi et al. [108] propose to introduce a “negotiation” phase where, before
using the aggregated model ¢/¥ to run local training, the participant k feeds back ¢/* to the same
neighbours. Neighbours compute gradients with respect to /¥, and send them back to the partic-
ipant that has forwarded the request. Next, gradients are aggregated, leveraging a tunable mixing

parameter, to produce lﬁ[k that is then used as a starting point for the local learning iteration. This
strategy should make the learning faster.!! However, this algorithm requires four communication
rounds, and moreover the negotiation is synchronous. Therefore, the algorithm is transformed
into a two-stage algorithm, referred as Consensus FedAvg Gradient Exchange (CFA-GE) [108]: the
negotiation phase is performed without the need of sending l//tk and receiving back the neighbours’
gradients, permitting them to save communications and avoid the synchronisation intermediate
step (i.e., waiting for the neighbours to send back the gradients with respect to /¥). The insight
is to exploit past (and outdated) models received from a certain neighbour during the previous
rounds to produce, in advance, a gradient prediction for that neighbour, and this is done for all
the neighbours. In this way, it is possible to scatter such gradients predictions together with the
next-generation model parameters; each participant hence receives such information, produces
¥ by aggregating the neighbours’ model as we have seen for the baseline CFA algorithm, uses

the received gradient predictions to adjust the model to obtain (Fﬁ;’; , and finally applies the local

training to /¥ that will generate the updated model.
Tang et al. [117] propose an efficient peer-to-peer framework for Cross-silo communica-
tion, namely SAPS-PSGD, where aggressive model sparsification is coupled with single-peer

The negotiation phase, from an high-level perspective, can be thought to be similar to the approach of [70].

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:19

communication scheme. They leverage a coordinator entity—not a parameter server—that, in
extreme synthesis, broadcasts to the participants a gossip matrix and other some necessary infor-
mation (i.e., the current global step, a random seed to generate the mask for applying the desired
sparsification) and synchronises the rounds of communication among such node pairs. The gossip
matrix is built by taking into account the peers’ bandwidth to favour faster links; it dynamically
determines the couples of peers that will exchange highly sparse model updates during that round.

4.2 Protecting Privacy

It may be believed that sharing gradients, model updates, or meta-level information (such as out-
puts of layers in neural networks) in place of raw data ensures privacy protection. However, it has
been demonstrated that gradients exchanged during the distributed training process do leak in-
formation about the training data [40, 45, 89, 97, 140, 148] as well as model updates [84, 89]—even
though it may be preferable to exchange model weights instead of gradients under a privacy-
preserving perspective [98]—and activations [25, 132].

The literature about protecting privacy in decentralised learning comprises diverse approaches;
differentially private mechanisms [34, 82] can be employed during the distributed training process
to mask updates at the cost of reduced model accuracy [7], and relaxations of traditional Differ-
ential Privacy (DP) can be leveraged to inject less noise [120], limiting the incurred performance
degradation. Data-augmentation [32] and obfuscation [46] techniques can be used in visual appli-
cation to prevent reconstruction of images in the training set. Multi-party secure aggregation [13,
112] and similar techniques [40] can hide the individual contributions to the aggregator, finding its
main utility in star-shaped federated learning, but producing non-negligible overheads. Additively
homomorphic encryption also allows the aggregator to sum updates, thus ensuring the inscrutabil-
ity of single contributions [97] while not degrading model accuracy but increasing communication
cost. Combinations of DP-mechanisms with secure aggregation and additively homomorphic en-
cryption are also explored [37, 122] to balance the weaknesses of such techniques. Minimizing
distance correlation between raw data and activations (at cut layer) [123] and step-wise activa-
tion functions [132] are used to prevent the invertibility from intermediary representations in the
context of privacy-preserving Split Learning.

The first works enforcing participant-level (e, §)-DP [29] in federated settings are most notably
[34] and [82]. The aim, common to both the works, is to ensure that a model trained with FedAvg
does not reveal whether a certain participant has been involved during the decentralised training
process, balancing the tradeoff between privacy loss and model performance. It is worth high-
lighting that the proposed solutions protect the whole client’s dataset differently from [1] where
a single data point’s contribution in the trained model is protected.

Geyer et al. [34] use two randomised mechanisms to guarantee client-level DP: (i) random sub-
sampling of participants for a certain round of communication and (ii) Gaussian mechanism. In
FedAvg, the central aggregator averages the participants’ updates, which here are considered to
be weight deltas (i.e., the difference between the received parameter weights and the locally com-
puted parameter weights). The key idea of [34] is to perturb and approximate such averaging (i.e.,
perturbing the sum of updates) by employing a Gaussian mechanism. As usual, the Gaussian-
distributed noise has to be calibrated according to a certain sensitivity; such sensitivity is calcu-
lated as the median norm of all the gathered updates'? and the updates are scaled according to such
sensitivity, i.e., clipped updates. To keep track of the privacy loss within subsequent communica-
tion rounds, Geyer et al. [34] use the moments account of [1] instead of the privacy amplification
lemma and the standard composition theorem [29] to obtain tighter bounds. In particular, Geyer

12The sensitivity is calculated by the server in each communication round.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:20 P. Bellavista et al.

et al. [34] stop the collaborative training once the (cumulative) §, that represents the likelihood
that a participant’s contribution is disclosed, becomes greater than a threshold.

The approach of McMahan et al. [82] is slightly different from Geyer et al. [34]. McMahan
et al. [82], in fact, randomly sample participants by selecting each independently with probabil-
ity g, hence producing variable-sized samples of participants and influencing the sensitivity of
(weighted) average queries—in [34], a fixed number of clients is randomly selected. Two different
bounded-sensitivity estimators are proposed to account for such a participant-sampling process.
Furthermore, two clipping strategies are evaluated for multi-layers models: (i) flat clipping, i.e.,
using an overall clipping parameter, or (ii) per-layer clipping, i.e., treating the parameters of each
layer as separate vector and using per-layer clipping parameters, motivated by the observation
that such vectors may have vastly different L, norms—anyway the clipping parameter is fixed
throughout the training process, while in [34] the clipping parameter is dynamically calculated as
the median norm of all the unclipped contributions.

Triastcyn and Faltings [120] allocate a tighter privacy budget for guaranteeing client-level DP
and instance-level DP, i.e., less noise to reach the same privacy guarantee, also improving the ac-
curacy of the trained model. They employ a relaxation of traditional DP, in this case Bayesian
DP (BDP) [121], by making two assumptions (i) stationary data distribution and (ii) datasets with
unchangeable samples. Triastcyn and Faltings [121] also use a Bayesian accounting method in-
stead of state-of-the-art moments accountant [1] thanks to the assumption that data come from a
particular distribution and not all the data are equally likely; this observation can lead to sharper
privacy loss bounds with BDP in a federated setting. Besides the proposed use of BDP, to limit
the noise added to guarantee both instance-level and client-level DP, the noise to be added by
the server for client-level DP is “re-counted”, considering the injected noise during the on-device
gradient descent. They call this approach joint accounting. However, a limitation emerges: joint
accounting is only usable for the FedSGD algorithm, not for FedAvg (because the possible multi-
ple local iterations in FedAvg, hence multiple noisy steps, may influence the point at which the
gradient is computed: a different gradient distribution can arise or the total noise variance can be
underestimated).

To prevent the server from peeking in individual updates during the aggregation phase, a prac-
tical protocol for secure aggregation, namely SECAGG, has been proposed in [13] for federated
settings—reminding us that the communication bottleneck and the dropping of users are peculiar
of such scenarios. In a nutshell, star-shaped FL systems leverage a central server that computes
sums of updates from which the new-generation global model is derived round by round. The
scope of SECAGG is to hide the individual contributions of participants and release only the sum
of such updates to the server, preventing privacy violations from the aggregator entity. The essence
of the approach is similar to differential privacy: updates are locally perturbed, but, while in DP-
mechanisms such perturbations become part of the updates (they are never removed, in fact noise
calibration is fundamental to not compromise the training), in SECAGG such perturbations are
neutralised during the aggregation phase. The insight is to have pairs of participants—hereinafter
referred as participant u and participant v—that share randomly sampled 0-sum pairs of mask
vectors, py,.» and p,, ,; before uploading their model updates, participants u and v add such masks
to their contributions, with p,, o + po,u = 0 Yu # v; each participant u computes a random mask
vector and perturbs (i.e., adding p,, ., if u > v or subtracting p, . otherwise) its local update for
each other user v; mask-pairs are cancelled out during the sum of all contributions. Every pair of
participants share a common random seed s, ., of some fixed length that can be fed to a secure
Pseudorandom Generator (PRG) [11] to generate the mask pairs, hence the seed can be transmit-
ted in place of the entire mask (that has the same size of updates), reducing the communication
burden. These shared seeds are established through Diffie-Hellman [23] key exchange, composed

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:21

with a hash function. It is worth noting that (i) SECAGG requires the elements of the input vectors,
i.e., the participant’s updates, to be integers modK, while (ii) the elements of the vector updates are
typically real-valued instead, and that (iii) the employed PRG’s output space is the same as the in-
put space. Therefore, the real-valued elements of the updates are typically clipped to a fixed range
of real numbers, and then quantised among such range using k bins, and the SECAGG modulus is
chosen to be K = kn, with n being the number of participants.

A practical protocol for collaborative training in federated settings must be able to tolerate a
fraction of dropping users. To this end, SECAGG leverages Shamir’s t-of-n Secret Sharing [109] to
permit recovering the pairwise seeds of a limited numbers of dropping participants; in practice,
each participant sends encrypted shares of its Diffie-Hellman secret to all other participants via
server. SECAGG also accounts for the critical case in which a certain participant belatedly responds
to the server with its contribution by using a double masking for the updates. In addition to p, ., a
private mask vector p, (generated from a seed b, as well) is further added to the update, and also
its shares are distributed during the secret sharing round for the pairwise masks.

SECAGG has been employed in the FL system designed in [12] but highlighting that the quadrat-
ically grow (with respect to the number of participants) of the computational cost for the server
limits the maximum size of an instance of SECAGG to hundreds of learners. They indeed leverage
intermediate secure aggregators for subsets of participants, and the intermediate sums are further
aggregated without SECAGG by a master aggregator.

A recent work [112], namely Turbo-Aggregate, addresses the quadratic growth of the computa-
tional cost and of the communication overhead by slightly changing the approach, and still being
resilient to user dropouts (up to 50% of participants). The key idea is to partition the federation
of learners in groups that actively participate in the aggregation and dropout-recovery phases
instead of just leveraging the central server, and to add redundancy directly in the model up-
dates to reconstruct the missing contributions of dropout participants instead of Shamir’s t-of-n
Secret Sharing such as in SECAGG. In a nutshell, recalling that the scope is to securely com-
pute a sum (i.e., the sum of locally computed updates) and assuming that all communications
take place via the central server employing the Diffie-Hellman key exchange protocol, Turbo-
Agg works as follows: First, participants are randomly divided in L groups, with each group be-
ing composed of Nj participants. The set of participants in group [is referred as U;. The pro-
cess involves L stages, and Turbo-Agg adopts a circular and sequential strategy in its simplest
version: in each stage only one group is involved; the output produced from a group in a cer-
tain stage is the input for the next group.!® Ignoring for a moment the possibility of dropout,
in each stage, the participant i in group [masks its update x(l) with a random vector ul(.l) being
known (and communicated) only by the honest server, 51m11arly to what happens in SECAGG.
To be secure against server-participants collusion, learner i additionally masks its update with
(]), and the resulting masked update x(lj) (l) + u(l) + r(l?

each participant j of the group !+ 1, with X ;cin,,,17 l(lj) =0, ie, random vectors r cancel out

during aggregation. The secure sum is cooperatively computed, group by group, and can be

) _ 1 (1 _(1-1)
= N XjelNia) St Zjelui) X i

that is a variable locally held by each participant i in group I > 1, and that represents the ag-

gregated masked updates from the previous group.!* It is important to highlight that each par-
<D

another random vector r is sent to

summarised thanks to the recursive relation s; with EEI)

ticipant i of group I sends §;”” and x(l]) to each learner j of the group [+ 1. A final aggrega-
tion step is necessary to preserve the privacy of the participants in group L at the stage L; an

13Since only one group is active per stage, for ease of notation, group and stage are referred both with the index I.

4The initial aggregation at group I = 1 is set as 551) =1

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:22 P. Bellavista et al.

additional group (referred to as final), in fact, is randomly composed (for example, among the
survived learners) with each participant aggregating the contributions coming from the group
L, and sending the results to the server. Specifically, participants j in the final group produces

§}final) _ NLL ie[Ny] EEL) + Yie[UL] il(L]) and send it to the server, that can recover the sum of un-
. ~(final .
perturbed updates by applying m ZjE[meaz] s}fma) _ Yime[L] 2je[Upn] uj(.m). However, in case

of participant dropouts, the protocol will fail, since, for example, the random vectors r cannot be
cancelled out. To this end, So et al. [112] propose to employ Lagrange coding [134] to allow par-
ticipants of group [to recover the missing contributions from group [/ — 1, and to compute the
partial aggregation anyway. Being concrete and redirecting to the full paper of So et al. [112] and
to Yu et al. [134] for theoretical detail, each participant has to send to each participant j in group
I + 1 two additional (coded) vectors in each stage, namely s'gl) and J?E,l}, in addition to 551) and J?l(lj)

The employed coding strategy allow each learner in group [+ 1 to reconstruct the vector { 551) Jien,

starting from at least N; evaluations (i.e., §§l) and J?l(l])) from the previous stage. Therefore, since
each participant sends two evaluations to the learners in the next group, this redundancy permits
each participant to tolerate up to half of the learners dropping. It is worth noting that, although
SECAGG and its variant Turbo-Aggregate explicitly targets star-shaped networks of learners, they
are suitable for fully decentralised networks, i.e., peer-to-peer topologies, with one peer (or more)
working as aggregator.

An alternative to SECAGG for star-shaped FL frameworks is represented by Additively Homo-
morphic Encryption; since such a technique guarantees the additivity of multiple ciphertexts, the
server can perform the aggregation without the need of seeing the updates clearly. Hao et al. [37]
propose to use a symmetric additively homomorphic encryption called PPDM [146] for its effi-
ciency, combining it with Laplacian mechanism for DP in order to neutralise collusion between
compromised users and the malicious server. They show a drastically reduced communication
overhead with a similar solution [97], which employs the Paillier encryption scheme instead.

Truex et al. [122], combine multi-party computation (MPC) via Threshold Homomorphic En-
cryption and Differential Privacy to balance their respective weaknesses; in fact, applying DP to
provide the required level of privacy may degrade accuracy while MPC alone is vulnerable to infer-
ence attacks over the output, i.e., the intermediate models during the collaborative training process
and the final predictive model. Leveraging only on one of those two techniques may compromise
the effectiveness of the system (in terms of prediction accuracy of the resulting model or in terms
of privacy guarantee). The key intuition in [122] is to reduce the traditional amount of locally-
injected noise to ensure e-DP by exploiting the MPC framework building on the assumption that ¢
participants are trusted (i.e., non-colluding parties), with ¢ being a customizable parameter; thanks
to this assumption, the Gaussian noise to be added to each local query is reduced by a factor of
t — 1. In the worst scenario, the performance (in terms of model accuracy) of the proposed system
converges with existing local DP approaches.

Considering the scenario in which the data quality of certain participants, namely unreliable
participants, may be poor (meaning that a portion of their data is not always accurate as the data
held by others), Zhao et al. [142] focus on guaranteeing two levels of privacy: (i) preserving privacy
of the participant’s data and (ii) hiding the eventual participation in the training process of unreli-
able participants. At the same time, they focus on limiting the impact on the global model of such
participants. The proposed solution, SecProbe [142], ensures participants’ privacy by perturbing,
during the local training process, the objective function of the neural network using the functional
mechanism (FM) [138] to achieve e-DP, and obtaining the sanitised parameters by minimizing the
perturbed objective function.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey ~ 15:23

To make the metadata exchanged in Split Learning irreversible, Yu et al. [132] propose to modify
the conventional activation functions to be stepwise, i.e., the activation function is discretised by
having the input domain divided into intervals and the output constant for each interval; in this
way, it is not possible to exactly recover the activations’ input from their outputs.'® In this context,
another approach to reduce invertibility of intermediate representations consists in minimizing the
distance correlation between raw data and the communication payload, i.e., having a low distance
correlation while maintaining the accuracy in predicting the output labels. Vepakomma et al. [123]
hence train the neural network by using a weighted combination of two losses as loss function,
and such losses are the log distance correlation [116] and the categorical cross-entropy. The former
is used as a measure of statistical dependence between the input data and the estimated cut layer
activations, while the latter traditionally considers the true labels for the inputs and the predicted
labels. Intuitively, the distance correlation is minimised to ensure privacy and the cross-entropy is
minimised for classification accuracy. The solution is evaluated on visual datasets.

4.3 Combining Privacy and Communication Efficiency

Lossy compression techniques inherently lead to a privacy improvement, however it is not
straightforward to measure the effective privacy guarantees, for example under DP formalism. The
works surveyed in 4.1 do not explicitly measure privacy, and the ones in 4.2 do not address the
communication cost as primary concern, while examples of combined approaches can be found in
[67] and in [51]. Furthermore, other aspects in conjugating privacy and communication efficiency
emerge; the secure aggregation protocol [13] can be redesigned to account from the beginning for
communication efficiency [14], while tailored DP-mechanisms can be more amenable to privacy
analysis when quantisation of noisy DP-updates is employed [2].

Jin et al. [51] combine communication efficiency, privacy guarantees, and resilience to malicious
participants under non-IID data distribution. They consider a star-shaped synchronous collabo-
rative learning framework in which participants and server exchange (aggressively compressed)
gradients instead of model parameters. The proposed algorithms use as baseline the SignSGD [9]
algorithm with majority vote, that, however, does not explicitly and formally address privacy pro-
tection of participants and that has been shown to fail to converge when the data on different
learners are heterogeneous [19, 106]. In particular, to deal with non-IID data, Jin et al. [51] first
propose a variation of SignSGD, namely sto-sign, that applies a two-level stochastic quantisation
on locally computed gradients, and then only transmits the signs of such quantised values. Addi-
tionally, dp-sign, a differentially private version of sto-sign, is designed to ensure formal privacy
guarantees for participants involved in the training. Jin et al. [51] theoretically relate the Byzan-
tine!® resilience, i.e., the number of Byzantine workers that can be tolerated without harming the
convergence guarantees, of their proposed algorithms to the heterogeneity of local datasets. Jin
et al. [51] also propose an extension of their algorithms which takes account for residual error on
server side and uses it to correct the majority vote. The convergence of the proposed algorithms
is established theoretically.

With respect to just sending the quantised updates in clear, the SECAGG [13] protocol leads to
a bandwidth expansion!’ that is less than 2x while ensuring reliability of the secure aggregation

15Yu et al. [132] consider three activation functions: sigmoid, hyperbolic tangent, and ReLU [87]. While sigmoid and hy-
perbolic tangent are bijective functions, ReLU is a surjective function, and the output of ReLU can be reversed only if the
input is positive. The proposed solution “masks” the output of such positive inputs by using a stepwise variant of ReLU.
16 A Byzantine participant may transmit arbitrary information. Jin et al. [51] assume that such Byzantine participants
upload the opposite signs (the opposite sign of each entry) of the true gradients, with the true gradients being the average
gradients of all the normal workers (hence, it is supposed that the attackers know such quantities).

171.73x bandwidth expansion considering 2'° participants (i.e., n = 2!%) and 16 bit fixed point representation (i.e., k = 2'°).

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:24 P. Bellavista et al.

to dropping or collusion of a fraction of users. However, Bonawitz et al. [14] critically observe
some limitations of a straightforward combination of SECAGG and compression techniques; chief
among them (i) quantising to a fixed-point representation requires selecting the clipping range
[—c, c] a priori, which may be difficult to establish or may lead to poor approximations if the clip-
ping range is not large enough and (ii) the SECAGG modulus is chosen to be K = nk to represent
all possible aggregated vectors without overflow (for example, if clients are 21°, the SECAGG mod-
ulus are 10 bits wider than they would be without accounting for secure aggregation) dominating
the communication cost introduced by SECAGG—the bandwidth expansion determined by secret
sharing and cryptography is much less influential. The scope of [14] is to propose a recipe for an
auto-tuning (observation (i)) communication-efficient (observation (ii)) secure aggregation. The
key idea is to avoid clipping at client-side but instead quantizing over an unbounded range ac-
cording to a quantisation bin size b that is dynamically and tightly adjusted by the server (and
communicated round by round) according to the distribution of the entries of the sum relative to
the previous round, and then locally applying the mod k operation instead of clipping; the server
can compute a tight bin size b exploiting the assumption that the entries of the sum fit a nor-
mal distribution thanks to a random rotation that is locally performed by the participants (before
quantizing) to their updates.

4.4 Addressing Non-1IDness

As empirically shown by [81], carefully tuning the number of local epochs is crucial in
FedAvg since during additional on-device iterations—less frequent synchronisation among
participants—local models can significantly drift apart from the global model potentially pre-
venting convergence. Such an issue is exacerbated when considering statistically heterogeneous
data from different participants [47, 81, 107, 145]—realistic assumption especially in Cross-device
federated settings. Data sharing and data augmentation techniques have been demonstrated to
effectively alleviate the impact of non-IIDness at the cost of less decentralisation [49, 131, 145].
Another major line of works tackles the problem by directly limiting the drift of the model’s
objective function by means of proximal terms or/and gradient correction terms at the (possible)
cost of communication overhead [56, 69, 70, 127]. Or again, employing SGD optimisers, such as
server-side momentum [47], and, more in general, adaptive gradient-based optimisers [101], i.e.,
incorporating adaptive learning rates, have been shown to mitigate the effect of heterogeneous
data as well as reducing the total communication rounds to reach model convergence. Also
experience-driven solutions have lately emerged to counterbalance non-IIDness and speed-up
convergence; a deep reinforcement-learning-based mechanism that intelligently selects the
participants for each FL round has been proposed in [124].

Zhao et al. [145] experimentally show that test accuracy of FedAvg can be significantly increased
in non-IID scenarios by providing a small subset of globally shared data (e.g., 5%); participants use
their private dataset augmented with such data examples, provided by the server, to train their
updates. Despite the effectiveness of the proposed solution, it has the cost of less decentralisation
and requires communicating the globally shared data to the participants. Authors also propose an
alternative initialisation of the global model; instead of a random initialisation, the server trains
a warm-up model using the shared data before broadcasting the model at the beginning of the
learning task.

Yao etal. [131] observe two critical aspects of FedAvg, especially when dealing with non-IIDness.
In fact, they argue that the additional on-device iterations between global synchronisations pro-
duce gradient biases, and that selecting a fraction of participants in each round results in an in-
consistency between the optimisation objectives and the real target distribution (the global model
is trained by minimising the empirical loss on data distributions that are, in general, different in

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:25

each round of FedAvg). Since allowing multiple local iterations and selecting a part of clients are
fundamental for the communication efficiency of FedAvg and its suitability in federated settings,
Yao et al. [131] propose two (distinct but jointly usable) strategies to alleviate such issues. They
propose an Unbiased Gradient Aggregation (UGA) that performs what they call keep-trace gradient
descent optimisation for the first E — 1 epochs, and then uses the whole dataset to evaluate gradi-
ents during the last epoch. The key idea of keep-trace gradient descent optimisation is preserving
the functional relation, between wf(i) and wf(i_l) in round ¢ for subsequent on-device iterations i
on client k (as usual, w indicates local/global model parameters) instead of passing for numerical
values of gradients gf(i), such that, in the last epoch, they can calculate the gradient, g*, against w,
directly (considering the entire participant’s data set). It is worth noting that, in UGA, the server
gathers and aggregates thus calculated gradients g~ to produce the global model for the next iter-
ation. On the other hand, to address the lack of a clear objective among subsequent rounds with
different participants, authors propose FedMeta. The optimisation process becomes a two-stage
optimisation: after each global aggregation (either performed following the baseline FedAvg or
UGA), the server runs an additional gradient descent step using a special dataset, Dyerq. The ra-
tionale is that using such meta training set at server-side provides a clear and consistent objective
in the learning process. Obviously, the composition of Dy, is critical.

Li et al. [69], authors of FedProx, tackle the potential model drift caused by non-IIDness by
adding a proximal term to the local objective function instead of just heuristically tuning the
number of local epochs; intuitively, the impact of local data is limited by restricting the locally
computed updates to be close to the current global model. Furthermore, FedProx allows for local
solvers of choice, not limiting them to be SGD as happen for the traditional FedAvg. It is worth
noting that FedProx is a generalisation of FedAvg; if the multiplicative (hyper)parameter, p, that
rules the proximal term in FedProx is set to 0 and the local solver of participants is restricted to be
SGD, FedProx exactly matches FedAvg.

Karimirereddy et al. [56], authors of SCAFFOLD, address the issue of drifting clients using con-
trol variates in FedAvg. The idea is to align client updates by applying a correction term to the
local gradients on each local step. Each client computes its local control variate that represents the
expected direction of the local update while a global control variate that represents the aggregated
direction in which the server updates the global model is defined to be the uniform average of local
control variates. Each participant corrects its update by adding to the locally computed stochastic
gradient the difference between the global and the local control variate. The hypothetical case that
motivates this strategy is to have all clients computing the same update for the global model hence
eliminating the model drift. However, to achieve this, clients should communicate with each other
every (either directly or via parameter server) local gradient step, e.g., each client communicating
its locally computed gradient, that is unfeasible. Therefore, the local control variates and conse-
quently the global control variates are estimated throughout the process, and the global control
variate is broadcasted to the participants together with the model parameters at the beginning of
every round by the server.

FedDANE [70], inspired by DANE [110] and its inexact variant [102], combines the use of the
proximal term exploited in FedProx with a gradient correction term similarly to SCAFFOLD. The
update phase is a two-step process: to compute the gradient correction term and to inexactly solve
the Newton-type subproblem, the locally computed gradients of the local objective functions
should be first collected and then averaged to approximate the full gradients. However, given
the realistic connection bottleneck in Cross-device federated settings, it is unfeasible to gather
all the locally computed gradients; in FedDANE, the full gradients are approximated, aggregat-
ing the gradients of a randomly sub-sampled set of participants. It is worth noting that each
update requires two rounds of communication differently from the baseline FedAvg, FedProx,

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:26 P. Bellavista et al.

and SCAFFOLD—even though SCAFFOLD has to communicate in each round both the model
parameters and the control variates. Despite the theoretical convergence guarantee, FedDANE
shows “disappointing performance” in experimental evaluation compared to FedAvg and FedProx
leaving doubts on the robustness of theoretical assumptions.

Reddi et al. [101] propose an approach to decouple the server- and client-learning rate and to
exploit adaptive learning rates on both client and server, with the primary objective of tackling
client drift. The idea is to have clients that leverage some client optimiser to minimise the loss
on their local dataset, while the server exploits a gradient-based server optimiser to minimise the
loss across participants. Building upon such general framework, namely FedOpt, they introduce
and evaluate some per-coordinate adaptive methods as server optimisers with SGD as client op-
timiser. In practice, they implement three adaptive server optimisers, i.e., FedAdaGrad, FedYogi,
and FedAdam, respectively, being the federated versions of the well-known AdaGrad [27, 83], Yogi
[136], and ADAM. In their comparison with FedAvg,'8 they also include FedAvgM [47]. They show
that such approaches are effective, in some circumstances “dramatically” effective with respect to
FedAvg, in mitigating client drift and, as a natural consequence, in reducing the total number of
communication rounds required for model convergence. Reddi et al. [101] also provide theoretical
convergence analysis, and observe the need for a decaying learning rate at client-side.

4.5 Handling Device Heterogeneity

Device heterogeneity, i.e., device with diverse hardware characteristics or/and with different con-
nectivity (in general, referred to as resources), is common in Cross-device federated settings. Such
heterogeneity negatively influences the training process; for example, in federated learning frame-
works that leverage synchronous rounds, the slower participants dictate the pace if any counter-
action is taken.

Xie et al. [127] claim that the synchronous nature of FedAvg can limit the scalability, the
efficiency and the flexibility of the FL framework. In fact, (i) only few hundreds of participants are
selected per round in order to avoid server-side congestion (the server broadcasts the global model
at the beginning of every rounds to all the selected participants); (ii) given the heterogeneity of
training devices (e.g., there could be significant diversity in terms of computational power), the
server usually sets a timeout for receiving back the updates and then synchronising the model.
It could happen that the selected participants are able to complete the round within such timeout
are not enough to produce a reliable update (i.e., less than the minimum participant goal count)
[12]. By leveraging asynchronous updates, FedAsync avoids server-side timeouts and abandoned
rounds as well as not requiring to broadcast the model to all the selected participants at the
same time. Moreover, to limit the effect of staleness, a well-known drawback of asynchronous
SGD approaches, FedAsync uses a weighted average to generate the new global model after
aggregation as happens in SLSGD, relying on a mixing hyperparameter that weighs the freshness
of the aggregated model. Furthermore, to deal with drifting clients and non-IIDness, a proximal
term in the local objective functions is employed as it happens in FedProx. Different alternatives
are proposed to account for staleness, and to adaptatively decrease the mixing hyperparameter
that rules the average in function of staleness, i.e., less weight associated with larger staleness.
Under the same communication overhead, Xie et al. [127] show that FedAsync converges fester
than FedAvg when staleness is small while the two approaches have similar performances

181t is worth noting that, under the proposed framework, FedAvg and FedAvgM [47], i.e., FedAvg with server-side momen-
tum, become specialisations of the FedOpt family; the former uses SGD as both client and server optimiser with server
learning rate equal to 1, while the latter employs SGD with momentum as server optimiser.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:27

considering large staleness for FedAsync. Authors state that, in general, the convergence rate of
FedAsync is between single-thread SGD and FedAvg.

Asynchronous approaches, such as FedAsync [127], limit the influence of resource-constrained
devices on the collaborative training process—synchronisation among participants requires us to
wait for the slowest. In TiFL [17], Chai et al. design a system to alleviate the stragglers problem
without relaxing the synchronisation of FedAvg, but by clustering participants in tiers with similar
response latency per round, while in LoAdaBoost [48], Huang et al. propose to use the cross-
entropy loss information to early stopping the local training.

Besides asynchronism and the tier of participants with similar response latency, a natural so-
lution to address straggler clients in FL frameworks (resource constrained devices and/or devices
under poor network conditions) was previously proposed in [91], in their FedCS. The goal is to
maximise the number of updates to be aggregated within a specific deadline, since involving a
larger fraction of participants in each round typically reduces the time needed to achieve a certain
model accuracy [81]. Taking advantage of the MEC infrastructure, Nishio et al. [91] propose to
extend the FL algorithm by replacing the random selection of clients with a two-step client selec-
tion; the MEC operator asks random clients to provide their resource information (computational
capacities, wireless channel states, size of the dataset relevant to the current training task) from
which deciding whether to include them in the current training round according to an estimation
of the time necessary for such participants to complete the download-train-upload process.

Wang et al. [125] address the problem of dynamically adapting the global aggregation frequency
(in real time) to optimise the learning process with a given resource!’ budget targeting a star-
shaped FL framework in edge-computing environments. They consider M types of resources that
can be taken into account, and define that all the participants consume c,, units of type-m resource
at each local update step, and each global aggregation consumes b, units of type-m resource (with
¢m > 0,b, > 0). Being T, the number of total local update steps for the training process, and being
7, the number of local updates between two global synchronisations, and considering the resulting
number of global synchronisations K i.e., K = T/, the total amount of consumed type-m resources
is (T +1)cy, + (K + 1)by,, noting that the additional “+1” accounts for computing the last loss value
after the last synchronisation K. The objective is to minimise the global loss function by tuning
7 and K (and, consequently, T) such that the total amount of consumed type-m resource is not
greater than the resource budget R, (each type-m resource has a certain budget associated). Such
a minimisation problem is approximately solved by leveraging a theoretical convergence upper
bound of the canonical distributed gradient descent after T iterations, although assuming that the
loss function is (i) convex, (ii) p-Lipschitz, and (iii) f-smooth. In the convergence analysis, Wang et
al. [125] also define an upper bound for gradient divergence, i.e., an upper bound of the divergence
between the gradient of the local loss function and the gradient of the global loss function, that
depends on how the data is distributed among different participants, hence taking into account
the non-IDness of data. We redirect to the full paper [125] for the complete theoretical analysis.
In a nutshell, the proposed control algorithm recomputes the optimal®® z, hereinafter referred
as 7%, during each aggregation step via linear search on integer values of 7 accordingly to the
most updated parameter estimations needed to approximately solve the minimisation problem
mentioned above.

19Wang et al. [125] consider a general definition of “resources” including, e.g., bandwidth, energy, time, and monetary cost.
201t is worth noting that, intuitively, if the resource budget is unlimited, 7* is equal to 1, i.e., global synchronisation after
each local update, while in presence of budget constraints it may be convenient investing the resource for local computa-
tions rarefying the global synchronisations, i.e., 7* > 1.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:28 P. Bellavista et al.

In regards to peer-to-peer frameworks, BACombo (already presented in 3.3.2) interestingly
leverages a bandwidth-aware worker selection, i.e., the peers to be requested for model segments
are not chosen randomly. To reduce transmission time, the peers with faster network connections
should be preferred. However, it is not easy to know the network condition of a certain peer a
priori. The proposed solution exploits a multi-armed bandit algorithm [5]; each participant, with
probability e, either explores the network conditions of peers by selecting them randomly or ex-
ploits its already acquired knowledge—each participant maintains a table, that is updated each
time a peer is picked for communication, that contains historical indications about the network
state of that peer—by greedily selecting the peers with best network conditions.

4.6 Defending against Poisoning

From being passive data providers, in cloud-based ML, participants become active entities in the
learning process of decentralised training: they locally compute updates and observe intermedi-
ate model states. Although this design is the cornerstone to improve several aspects of traditional
ML/DL, it exposes the system to a larger variety of attacks from malicious learners, since partici-
pants, in theory, can contribute with arbitrary updates, and could try to manipulate the learning
process for diverse scopes (e.g., merely hampering the convergence, forcing other participants to
over-expose their contribution or backdooring the system), while making their detection harder
since the raw data are not accessible. This is known as model poisoning, besides the more traditional
data poisoning. We redirect the reader to [79] for a complete understanding of the threat model
and of the attack variety. We present here some strategies to detect and/or neutralise poisoning
attacks.

Xie et al. [128] (SLSGD) propose a variation of FedAvg to address non-IIDness and to tolerate
data poisoning attacks (evaluated by simulating the attack through label flipping). They act on the
baseline FedAvg algorithm by varying (i) the aggregation step and (ii) the new-model generation
step; (i) instead of aggregating the updates by averaging, they use a trimmed mean to (try to) filter
out poisoned updates and (ii) instead of replacing the previous global model with the resulting
aggregated model, they use a moving average between the previous and the just-aggregated model
to limit the influence of non-IID datasets and to mitigate the extra variance caused by such “robust”
aggregation.

Fung et al. [33] propose a defense against Sybil-based poisoning (precisely, label-flipping and
backdoor poisoning), namely FoolsGold, targeting a federated learning framework where partic-
ipants upload locally computed gradients to the (honest) aggregator. The idea is to identify ma-
licious colluding participants, i.e., poisoning Sybils, by monitoring the diversity of participants’
update; Sybils are supposed to share a common objective and the directions of poisoning gradi-
ents should seem unusually similar in respect to updates from honest learners. In a nutshell, Fools-
Gold maintains an historical aggregate of updates per participant at server side, i.e., the cumulative
sums of its updates so far, and it measures the cosine similarity between couple of the participants’
historical aggregates before each aggregation step—the rationale behind this strategy is that the
gradients resulting from single local iteration of SGD can be very similar in direction even among
honest clients. However, colluding parties will share the same objective in the long run, limiting
the effectiveness of poisoning throughout the training process by accordingly re-scaling the learn-
ing rate of participants that are deemed as possible Sybils. The clear limit of FoolsGold—apart from
being incompatible with secure aggregation and assuming honest aggregator—is that it is designed
to look for Sybils, hence a single participant adversary can remain undetected.

Zhao et al. [141] propose a defense against poisoning, specifically targeting label flipping
and semantic backdoor attacks, in a synchronous federated learning framework accounting also
for non-IIDness. Unlike FoolsGold [33], their strategy actively leverages on clients; the server

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:29

asks the participants to evaluate some sub-models, each one derived from the aggregation of
disjoint subsets of the model updates related to a certain round, and they provide back to the
server an indication about the correctness in the classification task of such sub-models, tested
on their private dataset, in the form of a binary matrix (obviously, a certain participant cannot
receive a sub-model derived from its own contribution). Thanks to the gathered matrices, the
server computes a penalizing coefficient for each sub-update to weigh the aggregation of such
sub-models (for example, if more than half of the clients report the anomaly for the same
sub-model, it should be zero-weighed). Fung et al. [33] highlight that their solution can be also
combined to FoolsGold , e.g., to detect a single-participant attack.

Similarly to [33] and [141], Li et al. [66] use a server-side pre-trained autoencoder model to
detect abnormal weight updates that are then accordingly penalised during the aggregation.

5 OPEN PROBLEMS AND FUTURE DIRECTIONS

As an obvious observation, we remark that data-sequential approaches are only limited to Cross-
silo federated settings, where the number of participants is limited (see Table 1). At the same time,
(data-parallel) star-shaped synchronous systems and related improvements (i.e., 44 out of 53 sur-
veyed solutions) have dominated the early years of decentralised learning, pushed by the Google’s
FedAvg baseline and, not surprisingly, the first real-world large-scale decentralised learning sys-
tem for Cross-device federated settings has followed this trend [12]. Nevertheless, we stress the
evidence that relaxing the synchronous constraint for aggregating updates in star-shaped systems
mitigates the struggles in handling a large amount of heterogeneous devices, while introducing
degrees of uncertainty that hamper the theoretical comprehension of the system’s behaviour in
real scenarios (e.g., FedAsync solution adopts this strategy). At the other end of the spectrum, we
observe a reduced portion of fully decentralised solutions (only 5 systems out of 53, with one of
them, i.e., SAPS-PSGD [117], that leverages a central entity for coordination). In addition, the MEC-
architecture has demonstrated to effectively help in scaling the learning process and is increasingly
adopted; in Table 1, we report three works explicitly considering this architecture. Indeed, that al-
lows us to favour the exploration and ease the implementation of hierarchical solutions, such as
star-shaped both between devices and edge servers and between edge servers and the cloud. To
conclude, in the next subsections, we will present other open challenges that will likely influence
the incoming future of decentralised learning systems, by also sketching the possible and the most
promising directions for future research.

5.1 Rethinking the Traditional ML Workflow for Federated Learning

The literature explored in this survey proposes solutions to the main challenges of employing
federated learning systems in real-world scenarios. However, most works suppose that the hyper-
parameters (e.g., the neural network’s architecture, regularisation techniques, and optimisers) of
the model to be trained have been already established, and typically the focus is not about the
tuning of their determination. Furthermore, decentralised learning systems introduce additional
algorithm-specific hyperparameters (e.g., the number of local epochs or the number of partici-
pants involved per round) that significantly influence the performance of the adopted solution.
While in cloud-centric DL it is feasible to run many rounds of training to empirically search the
hyperparameters space towards optimality, this strategy is probably infeasible for Cross-silo set-
tings and surely incompatible with Cross-device settings. Hence, we expect that hyperparameter
optimisation that targets the communication and computation overhead on the devices that com-
pose the federation, and not only aiming at the best accuracy of models as happens in data center
optimisations, will gain traction, by fostering the development of easy-to-tune and/or auto-tuning
algorithms for federated settings (e.g., [14]—explored in Section 4—and [41]).

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:30 P. Bellavista et al.

Another relevant phase of the traditional workflow in cloud-centric ML, which is reshaped
by the design of decentralised learning systems, relates to the debugging of trained models’
behaviour. In fact, preventing the access to the raw data by design does preclude modelers and
practitioners from directly investigating the causes of the detected problems (e.g., investigating
missclassification, noticing evident bias in the training set, identifying outliers, manually adding
or adjusting labels), i.e., manual data inspection is impossible [6]. Connected to that, the design
and implementation of privacy-preserving techniques to enable the debug phase also for feder-
ated learning systems are open areas of research. For example, in [6], the privacy concerns are
overtaken by using privacy-preserving Generative Adversarial Network trained in a federated
fashion, thus enabling the debugging of synthetic data examples that conjugate the trade-off
between information leakage and debugging utility.

5.2 Designing Incentive Mechanisms

Another assumption typically made in the FL-related literature is that the (selected) learners are
willing to participate. Leaving aside for a moment the privacy concerns that may discourage par-
ticipants, another factor that can determine the reluctance in being involved in federated learning
processes is the associated overhead, in terms of computation and communication. Self-interested
mobile devices may be unwilling to cooperate without receiving adequate rewards [55]. Such con-
siderations may be exacerbated in Cross-silo federated settings, where competitors should collab-
orate for a common objective, while they may have local data different in quality (i.e., an organ-
isation with rich and high-quality local data would not be willing to participate in a federated
learning process and sharing, for free, the acquired final knowledge with other competitors that
have contributed much less in the learned model due to scarce quality data). Furthermore, the rev-
enue generated from the built model will come only afterwards [133]. In this direction, solutions to
properly reward participants and attracting data owners with high-quality data, e.g., more conspic-
uous rewards for participants with higher quality of local data, are emerging (e.g., [55] and [133]).
Designing effective incentive mechanisms will be fundamental for the spreading of decentralised
learning in real-world scenarios.

5.3 Towards Model Heterogeneity and Personalisation

As we have seen, in federated settings, different kinds of heterogeneity must be addressed, from
system heterogeneity (i.e., device with different resource budgets) to data heterogeneity (i.e., non-
IIDness). We highlight an additional facet of heterogeneity that regards the local model architec-
ture: each participant of the learning process can design its own model accordingly to its needs.
This degree of freedom would further favour the collaboration among institutions—under the per-
spective of intellectual property related to the tailored model architecture—and can be also lever-
aged to favour the inclusion of more resource-constrained edge devices in the learning process.
Transfer learning and knowledge distillation are investigated to effectively enabling such inde-
pendence improvements among participants (e.g., [65]). Besides model heterogeneity, model per-
sonalisation, i.e., fitting the global model to the participant-specific local data, would represent an
additional tool to tackle non-IIDness [62].

5.4 Going beyond Supervised Learning

It is important to emphasise once more that almost all the cited works in this survey suppose
labelled data examples within supervised learning contexts. However, in real federated settings,
it could not be straightforward to automatically or to manually label data samples; while systems
to favour the collection of user-annotated examples are arising (e.g., [78]), the huge amount
of unlabeled raw data that will be produced in the next years at the edge of the network may

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:31

not be adequately exploited by only supervised learning techniques. Anyway, opening up to
semi-supervised [52], unsupervised, or reinforcement learning approaches would require similar
issues in terms of privacy guarantees, heterogeneity, communication efficiency, and scalability.

5.5 User Perception of FL Privacy Guarantees

The rising regulations about privacy protection would ideally require the express consent of users
for sensitive-data collection and processing. Decentralised learning techniques naturally shape
the principles of focused data collection and minimisation, on which most of the privacy-related
regulations build on as well. However, we might wonder if the average user fully understands
the privacy benefits and limitations that come with the design of decentralised learning systems,
and in particular with privacy-preserving decentralised learning systems (e.g., differential private
decentralised training). In fact, only if the user is aware of the guarantees about privacy protec-
tion, can she or he consciously decide whether and which data releasing be involved in possible
decentralised learning processes. Moreover, different users may value privacy aspects differently,
eventually entailing fine-granular and user-specific tuning of privacy guarantees, an aspect that
has not been thoroughly explored yet. Orthogonally, there is no clear consensus on how to choose
privacy parameters (e.g., € for e-DP mechanisms) [28]. Fostering and creating a shared consensus
about the adequate level of privacy in collaborative learning systems is another key aspect for
the incoming future, as well as fully understanding and addressing the specific privacy prefer-
ences of educated users (i.e., users who have full comprehension of the implications of the privacy
technology used).

5.6 Fairness and Sources of Bias in Decentralised Learning

The relevant objective of ensuring fairness does not strictly relate to decentralised learning; it is a
recognised and well-known issue in traditional ML/DL. However, some unique and peculiar traits
of decentralised learning systems open up to new directions for future research. In fact, especially
in Cross-device settings, practical assumptions and requirements about the (selected) per-round
participants can generate bias in the training data, which in turn might make the model unfair,
e.g., under-represented groups in training samples may receive lower-quality predictions, or indi-
viduals that should be treated similarly by the model receive significantly different outcomes, or
again the trained model might show prejudices against some sensitive subgroups of individuals. By
going into practical details and consequences, for example, the proposed implementation of FL for
Android mobile devices includes in the training rounds only the devices that are (i) connected to
unmetered network, (ii) charging, and (iii) responding within a time-out (also the involved devices
have to meet some hardware requirements, i.e., memory); this may lead to sample a biased popula-
tion of participants. Solutions for more flexible device participation (e.g., [105]) can mitigate such
phenomenon. Similar observations rise from other strategies, such as prioritizing fast connected
devices (e.g.,in [117] or [50]). Furthermore, imbalanced data among nodes can represent a source of
bias [26], and this has demonstrated to be more typical of Cross-device settings. Another factor that
makes fairness challenging in decentralised learning systems lies in the privacy-preserving design
of such approaches: usually data are not directly accessible to search for bias in data samples.

5.7 Towards Fully Decentralised Systems at Scale

While Cross-device (star-shaped) FL is mature enough to be used in large scale applications [12]
(e.g., in the realm of smartphone apps), Cross-device fully decentralised solutions have not reached
such mature implementations yet. As already highlighted, dealing with peer-to-peer topologies
inherently adds layers of complexity with respect to the client-server paradigm; that makes the
implementation as well as the theoretical analysis of such systems harder. A very practical solution

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:32 P. Bellavista et al.

may be having a central orchestrating entity that is aware of the current topology status thanks to
periodic reports provided by the federation of peers (as in [117]); in this way, the orchestrator?! can
determine and dictate the (favourable) peer links to be used in exchanging model updates. In this
perspective, in the short-term future research in the field, we expect growing efforts in practical
(and maybe more elegant) solutions to dominate the complexity of dynamic large-scale peer-to-
peer topologies, as is the case of real Cross-device federated scenarios of practical usage, since fully
decentralised systems bring, in principle, several advantages with respect to star-shaped solutions
(e.g., no need to trust central entities, no server bottlenecks, no unique points of failure). We also
note that while communication-efficient strategies can be more easily adapted from star-shaped to
fully decentralised systems (e.g., [117]), this may not be so natural for non-IIDness and for privacy
guarantees. Furthermore, as far as we know, poisoning has not been investigated considering such
topology of participants. In short, the literature about fully decentralised learning is still in its
embryonic stages: approaches to ensure formal privacy guarantees (e.g., DP-based approaches
and secure aggregation adaptations) and to effectively tackle non-IIDness (e.g., [92]) have still
to be thoughtfully explored and investigated before achieving the efficient implementation and
deployment of an associated large-scale prototype.

6 CONCLUDING REMARKS

This survey aims at offering a fresh and up-to-date overview of the motivations that are leading to
the rising popularity of decentralised learning, by also exemplifying them over a few variegated
instances of real-world applications. Most relevantly, this article proposes an original and relatively
simple taxonomy to readily classify baselines and their improvements/extensions for decentralised
learning, thus providing a useful guide to and shedding new light on this articulated research area
and the emerging frameworks/solutions in the field. The proposed taxonomy has been largely
used in this article as a lens for an in-depth technical analysis of up-to-date contributions in the
literature. This analysis has allowed us to highlight the main issues that the surveyed work has
addressed and to identify the primary lessons learned so far; the lessons learned based on our
taxonomy-driven analysis also helped us to identify the most relevant open problems and the
most promising future directions for research in this challenging, wide, relevant, and rising area.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. ACM, 308-318.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X. Yu, Sanjiv Kumar, and Brendan McMahan. 2018. cpSGD:
Communication-efficient and differentially-private distributed SGD. In Advances in Neural Information Processing
Systems. 7564-7575.

[3] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for distributed gradient descent. arXiv preprint
arXiv:1704.05021 (2017).

[4] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl, and Geoffrey E. Hinton. 2018.
Large scale distributed neural network training through online distillation. arXiv preprint arXiv:1804.03235 (2018).

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multiarmed bandit problem.
Machine Learning 47, 2-3 (2002), 235-256.

[6] Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen, Ra-
jiv Mathews, and Blaise Aguera y Arcas. 2019. Generative models for effective ML on private, decentralized datasets.
arXiv preprint arXiv:1911.06679 (2019).

[7] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. 2019. Differential privacy has disparate impact on
model accuracy. In Advances in Neural Information Processing Systems. 15453-15462.

21The orchestrator may also easily dictate the hyperparameters of the model to be trained and of the algorithm to be used.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:33

(8]
(9]
(10]
(1]
[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]
[28]
[29]
[30]

[31]

Evita Bakopoulou, Balint Tillman, and Athina Markopoulou. 2019. A federated learning approach for mobile packet
classification. arXiv preprint arXiv:1907.13113 (2019).

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. 2018. signSGD: Compressed
optimisation for non-convex problems. arXiv preprint arXiv:1802.04434 (2018).

Michael Blot, David Picard, Matthieu Cord, and Nicolas Thome. 2016. Gossip training for deep learning. arXiv
preprint arXiv:1611.09726 (2016).

Manuel Blum and Silvio Micali. 1984. How to generate cryptographically strong sequences of pseudorandom bits.
SIAM Journal on Computing 13, 4 (1984), 850—-864.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kid-
don, Jakub Konecny, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ram-
age, and Jason Roselander. 2019. Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046
(2019).

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. 2017. Practical secure aggregation for privacy-preserving machine learning.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 1175-1191.
Keith Bonawitz, Fariborz Salehi, Jakub Kone¢ny, Brendan McMahan, and Marco Gruteser. 2019. Federated learning
with autotuned communication-efficient secure aggregation. arXiv preprint arXiv:1912.00131 (2019).

Theodora S. Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch. Paschalidis, and Wei Shi. 2018. Fed-
erated learning of predictive models from federated electronic health records. International Journal of Medical In-
formatics 112 (2018), 59-67.

Sebastian Caldas, Jakub Kone¢ny, H. Brendan McMahan, and Ameet Talwalkar. 2018. Expanding the reach of fed-
erated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210 (2018).

Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou, Heiko Ludwig, Feng
Yan, and Yue Cheng. 2020. TiFL: A tier-based federated learning system. arXiv preprint arXiv:2001.09249 (2020).
Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Francoise Beaufays. 2019. Federated learning of out-of-
vocabulary words. arXiv preprint arXiv:1903.10635 (2019).

Xiangyi Chen, Tiancong Chen, Haoran Sun, Zhiwei Steven Wu, and Mingyi Hong. 2019. Distributed training with
heterogeneous data: Bridging median and mean based algorithms. arXiv preprint arXiv:1906.01736 (2019).

Yang Chen, Xiaoyan Sun, and Yaochu Jin. 2019. Communication-efficient federated deep learning with layerwise
asynchronous model update and temporally weighted aggregation. IEEE Transactions on Neural Networks and Learn-
ing Systems (2019).

Cisco. [n.d.]. Cisco Global Cloud Index: Forecast and Methodology, 2016-2021 White Paper. URL https://www.cisco.
com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html. Accessed
on April 2020.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, Andrew
Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng. 2012. Large scale distributed deep networks. In Advances in
Neural Information Processing Systems. 1223-1231.

Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE Transactions on Information Theory
22, 6 (1976), 644-654.

Tung V. Doan, Zhongyi Fan, Giang T. Nguyen, Hani Salah, Dongho You, and Frank H. P. Fitzek. 2020. Follow me, if
you can: A framework for seamless migration in mobile edge cloud. IEEE INFOCOM Workshops (2020), 1178-1183.
Alexey Dosovitskiy and Thomas Brox. 2016. Inverting visual representations with convolutional networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4829-4837.

Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang Liang. 2020. Self-balancing federated
learning with global imbalanced data in mobile systems. IEEE Transactions on Parallel and Distributed Systems 32, 1
(2020), 59-71.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research 12, 7 (2011).

Cynthia Dwork, Nitin Kohli, and Deirdre Mulligan. 2019. Differential privacy in practice: Expose your ep-
silons! Journal of Privacy and Confidentiality 9, 2 (2019).

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differential privacy. Foundations and Trends®
in Theoretical Computer Science 9, 3—4 (2014), 211-407.

EU. [n.d.]. Regulation (EU) 2016/679 of the European Parliament and of the Council. URL https://eur-lex.europa.eu/
legal-content/EN/TXT/.

Romano Fantacci and Benedetta Picano. 2020. Federated learning framework for mobile edge computing networks.
CAAI Transactions on Intelligence Technology 5, 1 (2020), 15-21.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://eur-lex.europa.eu/legal-content/EN/TXT/
https://eur-lex.europa.eu/legal-content/EN/TXT/

15:34

(32]

(33]
(34]
(35]
(36]

(37]

(38]
(39]
[40]
[41]
[42]

[43]

[44]

(45]

[46]
(47]
(48]

[49]

(50]
(51]
(52]

(53]

P. Bellavista et al.

Yingwei Fu, Huaimin Wang, Kele Xu, Haibo Mi, and Yijie Wang. 2019. Mixup based privacy preserving mixed col-
laboration learning. In Proceedings of the 2019 IEEE International Conference on Service-Oriented System Engineering
(SOSE). IEEE, 275-280.

Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. 2018. Mitigating Sybils in federated learning poisoning.
arXiv preprint arXiv:1808.04866 (2018).

Robin C. Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private federated learning: A client level perspec-
tive. arXiv preprint arXiv:1712.07557 (2017).

Lodovico Giaretta and Sartinas Girdzijauskas. 2019. Gossip learning: Off the beaten path. In Proceedings of the 2019
IEEE International Conference on Big Data (Big Data). IEEE, 1117-1124.

Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural network over multiple agents. Journal
of Network and Computer Applications 116 (2018), 1-8.

Meng Hao, Hongwei Li, Guowen Xu, Sen Liu, and Haomiao Yang. 2019. Towards efficient and privacy-preserving
federated deep learning. In Proceedings of the 2019 IEEE International Conference on Communications (ICC 2019).
IEEE, 1-6.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Francoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018).
Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. 2018. Gossiping GANs. In Proceedings of the Second Workshop
on Distributed Infrastructures for Deep Learning: DIDL, Vol. 22.

Valentin Hartmann and Robert West. 2019. Privacy-preserving distributed learning with secret gradient descent.
arXiv preprint arXiv:1906.11993 (2019).

Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. FedNAS: Federated deep learning via neural ar-
chitecture search. arXiv preprint arXiv:2004.08546 (2020).

Chaoyang He, Conghui Tan, Hanlin Tang, Shuang Qiu, and Ji Liu. 2019. Central server free federated learning over
single-sided trust social networks. arXiv preprint arXiv:1910.04956 (2019).

Istvan Hegedis, Gabor Danner, and Mark Jelasity. 2019. Gossip learning as a decentralized alternative to federated
learning. In Proceedings of the IFIP International Conference on Distributed Applications and Interoperable Systems.
Springer, 74-90.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015).

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models under the GAN: Information leakage
from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 603-618.

Wei Hou, Dakui Wang, and Xiaojun Chen. 2020. Generate images with obfuscated attributes for private image
classification. In Proceedings of the International Conference on Multimedia Modeling. Springer, 125-135.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335 (2019).

Li Huang, Yifeng Yin, Zeng Fu, Shifa Zhang, Hao Deng, and Dianbo Liu. 2018. LoAdaBoost: Loss-based ADAboost
federated machine learning on medical data. arXiv preprint arXiv:1811.12629 (2018).

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2018.
Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID pri-
vate data. arXiv preprint arXiv:1811.11479 (2018).

Jingyan Jiang, Liang Hu, Chenghao Hu, Jiate Liu, and Zhi Wang. 2020. BACombo—Bandwidth-aware decentralized
federated learning. Electronics 9, 3 (2020), 440.

Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. 2020. Stochastic-sign SGD for federated learning
with theoretical guarantees. arXiv preprint arXiv:2002.10940 (2020).

Yilun Jin, Xiguang Wei, Yang Liu, and Qiang Yang. 2020. A survey towards federated semi-supervised learning. arXiv
preprint arXiv:2002.11545 (2020).

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adria Gascon, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid
Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Kone¢ny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancréde Lepoint, Yang
Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Ozgiir, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel
Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh,
Florian Tramer, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen
Zhao. 2019. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019).

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:35

[54]

[55]

[56]

[57]

[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

[73]

[74]
[75]

[76]

(77

[78]

Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hiiger, Peter Schlicht, Tim Wirtz, and Stefan Wrobel. 2018.
Efficient decentralized deep learning by dynamic model averaging. In Proceedings of the Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 393-409.

Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan Zhang. 2019. Incentive mechanism for reliable
federated learning: A joint optimization approach to combining reputation and contract theory. IEEE Internet of
Things Journal 6, 6 (2019), 10700-10714.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and Ananda
Theertha Suresh. 2019. SCAFFOLD: Stochastic controlled averaging for on-device federated learning. arXiv preprint
arXiv:1910.06378 (2019).

Kimon Karras, Evangelos Pallis, George Mastorakis, Yannis Nikoloudakis, Jordi Mongay Batalla, Constandinos X.
Mavromoustakis, and Evangelos K. Markakis. 2020. A hardware acceleration platform for Al-based inference at the
edge. Circuits System Signal Processing 39, 2 (2020), 1059-1070.

Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2018. On-device federated learning via blockchain
and its latency analysis. arXiv preprint arXiv:1808.03949 (2018).

Diederik P. Kingma and Jimmy Ba. 2014. ADAM: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

Jakub Kone¢ny, H. Brendan McMahan, Daniel Ramage, and Peter Richtarik. 2016. Federated optimization: Dis-
tributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016).

Jakub Kone¢ny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and Dave Bacon. 2016.
Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).
Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. 2020. Survey of personalization techniques for federated learn-
ing. arXiv preprint arXiv:2003.08673 (2020).

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436-444.

David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph Dureau. 2019. Federated learning for
keyword spotting. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2019). IEEE, 6341-6345.

Daliang Li and Junpu Wang. 2019. FedMD: Heterogenous federated learning via model distillation. arXiv preprint
arXiv:1910.03581 (2019).

Suyi Li, Yong Cheng, Yang Liu, Wei Wang, and Tianjian Chen. 2019. Abnormal client behavior detection in federated
learning. arXiv preprint arXiv:1910.09933 (2019).

Tian Li, Zaoxing Liu, Vyas Sekar, and Virginia Smith. 2019. Privacy for free: Communication-efficient learning with
differential privacy using sketches. arXiv preprint arXiv:1911.00972 (2019).

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Magazine 37, 3 (2020), 50-60.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2018. Federated
optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018).

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. FedDANE:
A federated newton-type method. arXiv preprint arXiv:2001.01920 (2020).

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019. On the convergence of fedavg on
non-iid data. arXiv preprint arXiv:1907.02189 (2019).

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. 2017. Can decentralized algorithms
outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent. In Advances
in Neural Information Processing Systems. 5330-5340.

Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang, Dusit
Niyato, and Chunyan Miao. 2020. Federated learning in mobile edge networks: A comprehensive survey. IEEE Com-
munications Surveys & Tutorials (2020).

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. 2017. Deep gradient compression: Reducing the
communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887 (2017).

Lumin Liu, Jun Zhang, S. H. Song, and Khaled B. Letaief. 2019. Edge-assisted hierarchical federated learning with
non-IID data. arXiv preprint arXiv:1905.06641 (2019).

Menghan Liu, Haotian Jiang, Jia Chen, Alaa Badokhon, Xuetao Wei, and Ming-Chun Huang. 2016. A collaborative
privacy-preserving deep learning system in distributed mobile environment. In Proceedings of the 2016 International
Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 192-197.

Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. 2020. Accelerating federated learning via momentum gradient
descent. IEEE Transactions on Parallel and Distributed Systems 31, 8 (2020), 1754-1766.

Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu,
and Qiang Yang. 2020. FedVision: An online visual object detection platform powered by federated learning. arXiv
preprint arXiv:2001.06202 (2020).

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

15:36

(79]

(80]

(81]
(82]
(83]

(84]

(85]

(86]

(87]
(88]

(89]

[90]
[91]

[92]

(98]
[99]
(100]
(101]
(102]

[103]

P. Bellavista et al.

Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats to federated learning: A survey. arXiv preprint arXiv:2003.02133
(2020).

Evangelos K. Markakis, Kimon Karras, Nikolaos Zotos, Anargyros Sideris, Theoharris Moysiadis, Angelo Corsaro,
George Alexiou, Charalabos Skianis, George Mastorakis, Constandinos X. Mavromoustakis, and Evangelos Pallis.
2017. EXEGESIS: Extreme edge resource harvesting for a virtualized fog environment. IEEE Communications Mag-
azine 55, 7 (2017), 173-179.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2016.
Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016).
H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning differentially private language
models without losing accuracy. arXiv preprint arXiv:1710.06963 (2017).

H. Brendan McMahan and Matthew Streeter. 2010. Adaptive bound optimization for online convex optimization.
arXiv preprint arXiv:1002.4908 (2010).

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. 2019. Exploiting unintended feature
leakage in collaborative learning. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
691-706.

Jed Mills, Jia Hu, and Geyong Min. 2019. Communication-efficient federated learning for wireless edge intelligence
in IoT. IEEE Internet of Things Journal (2019).

Akinori Mitani, Abigail Huang, Subhashini Venugopalan, Greg S. Corrado, Lily Peng, Dale R. Webster, Naama
Hammel, Yun Liu, and Avinash V. Varadarajan. 2020. Author correction: Detection of anaemia from retinal fun-
dus images via deep learning. Nature Biomedical Engineering 4, 2 (2020), 242-242.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted Boltzmann machines. In Proceed-
ings of the 27th International Conference on Machine Learning (ICML-10). 807-814.

Arvind Narayanan and Vitaly Shmatikov. 2008. Robust De-anonymization of Large Datasets (How to Break
Anonymity of the Netflix Prize Dataset). University of Texas at Austin (2008).

Milad Nasr, Reza Shokri, and Amir Houmansadr. 2018. Comprehensive privacy analysis of deep learning: Stand-
alone and federated learning under passive and active white-box inference attacks. arXiv preprint arXiv:1812.00910
(2018).

Solmaz Niknam, Harpreet S. Dhillon, and Jeffrey H. Reed. 2020. Federated learning for wireless communications:
Motivation, opportunities, and challenges. IEEE Communications Magazine 58, 6 (2020), 46-51.

Takayuki Nishio and Ryo Yonetani. 2019. Client selection for federated learning with heterogeneous resources in
mobile edge. In Proceedings of the 2019 IEEE International Conference on Communications (ICC 2019). IEEE, 1-7.
Kenta Niwa, Noboru Harada, Guogiang Zhang, and W. Bastiaan Kleijn. 2020. Edge-consensus learning: Deep learn-
ing on P2P networks with nonhomogeneous data. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 668—678.

State of California Department of Justice. [n.d.]. California Consumer Privacy Act (CCPA). URL https://oag.ca.gov/
privacy/ccpa. Accessed on May 2020.

U.S. Department of Health & Human Services. [n.d.]. The HIPAA Privacy Rule. URL https://www.hhs.gov/hipaa/
for-professionals/privacy/index.html. Accessed on May 2020.

Trishan Panch, Peter Szolovits, and Rifat Atun. 2018. Artificial intelligence, machine learning and health systems.
Journal of Global Health 8, 2 (2018).

Stephen R. Pfohl, Andrew M. Dai, and Katherine Heller. 2019. Federated and differentially private learning for elec-
tronic health records. arXiv preprint arXiv:1911.05861 (2019).

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. 2018. Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Transactions on Information Forensics and Security 13, 5 (2018),
1333-1345.

Le Trieu Phong and Tran Thi Phuong. 2019. Privacy-preserving deep learning via weight transmission. IEEE Trans-
actions on Information Forensics and Security 14, 11 (2019), 3003-3015.

Maarten G. Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-Cramer, Rajiv Gupta, and Ramesh Raskar.
2019. Split learning for collaborative deep learning in healthcare. arXiv preprint arXiv:1912.12115 (2019).

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Francoise Beaufays. 2019. Federated learning for emoji
prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329 (2019).

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Koneény, Sanjiv Kumar, and
H. Brendan McMahan. 2020. Adaptive federated optimization. arXiv preprint arXiv:2003.00295 (2020).

Sashank J. Reddi, Jakub Kone¢ny, Peter Richtarik, Barnabas Poczés, and Alex Smola. 2016. AIDE: Fast and commu-
nication efficient distributed optimization. arXiv preprint arXiv:1608.06879 (2016).

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. 2019. FEDPAQ:
A communication-efficient federated learning method with periodic averaging and quantization. arXiv preprint
arXiv:1909.13014 (2019).

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html

Decentralised Learning in Federated Deployment Environments: A System-Level Survey 15:37

[104]
[105]
[106]

[107]

[108]

[109]
[110]

[111]
[112]

[113]

[114]

[115]
[116]
(117]
(18]
[119]
[(120]
[121]

[122]

[123]

[124]

[125]

[126]
[127]

[128]

Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pélsterl, Nassir Navab, and Christian Wachinger. 2019. Braintorrent:
A peer-to-peer environment for decentralized federated learning. arXiv preprint arXiv:1905.06731 (2019).

Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong. 2020. Towards flexible device participation in
federated learning for non-IID data. arXiv preprint arXiv:2006.06954 (2020).

Felix Sattler, Simon Wiedemann, Klaus-Robert Miiller, and Wojciech Samek. 2019. Robust and communication-
efficient federated learning from non-IID data. IEEE Transactions on Neural Networks and Learning Systems (2019).
Felix Sattler, Simon Wiedemann, Klaus-Robert Miiller, and Wojciech Samek. 2019. Sparse binary compression: To-
wards distributed deep learning with minimal communication. In Proceedings of the 2019 International Joint Confer-
ence on Neural Networks (IJCNN). IEEE, 1-8.

Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. 2020. Federated learning with cooperating devices: A consensus
approach for massive [oT networks. IEEE Internet of Things Journal (2020).

Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612-613.

Ohad Shamir, Nati Srebro, and Tong Zhang. 2014. Communication-efficient distributed optimization using an ap-
proximate Newton-type method. In Proceedings of the International Conference on Machine Learning. 1000-1008.
Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. 2019. Detailed comparison of commu-
nication efficiency of split learning and federated learning. arXiv preprint arXiv:1909.09145 (2019).

Jinhyun So, Basak Guler, and A. Salman Avestimehr. 2020. Turbo-aggregate: Breaking the quadratic aggregation
barrier in secure federated learning. arXiv preprint arXiv:2002.04156 (2020).

Konstantin Sozinov, Vladimir Vlassov, and Sarunas Girdzijauskas. 2018. Human activity recognition using federated
learning. In Proceedings of the 2018 IEEE International Conference on Parallel & Distributed Processing with Appli-
cations, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking,
Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, 1103-1111.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A
simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15, 1 (2014),
1929-1958.

Nikko Strom. 2015. Scalable distributed DNN training using commodity GPU cloud computing. In Proceedings of the
16th Annual Conference of the International Speech Communication Association.

Gabor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. 2007. Measuring and testing dependence by correlation of
distances. The Annals of Statistics 35, 6 (2007), 2769-2794.

Zhenheng Tang, Shaohuai Shi, and Xiaowen Chu. 2020. Communication-efficient decentralized learning with spar-
sification and adaptive peer selection. arXiv preprint arXiv:2002.09692 (2020).

Zeyi Tao and Qun Li. 2018. ESGD: Communication efficient distributed deep learning on the edge. In Proceedings of
the {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18).

Chandra Thapa, M. A. P. Chamikara, and Seyit Camtepe. 2020. SplitFed: When federated learning meets split learn-
ing. arXiv preprint arXiv:2004.12088 (2020).

Aleksei Triastcyn and Boi Faltings. 2019. Federated learning with Bayesian differential privacy. arXiv preprint
arXiv:1911.10071 (2019).

Aleksei Triastcyn and Boi Faltings. 2019. Improved accounting for differentially private learning. arXiv preprint
arXiv:1901.09697 (2019).

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. 2019. A
hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security. 1-11.

Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar. 2019. Reducing leakage in distributed
deep learning for sensitive health data. arXiv preprint arXiv:1812.00564 (2019).

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing federated learning on non-IID data with
reinforcement learning. In Proceedings of the IEEE Conference on Computer Communications (IEEE INFOCOM 2020).
IEEE, 1698-1707.

Shigiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He, and Kevin Chan.
2019. Adaptive federated learning in resource constrained edge computing systems. IEEE Journal on Selected Areas
in Communications 37, 6 (2019), 1205-1221.

Wikipedia. [n.d.]. Facebook-Cambridge Analytica data scandal. https://en.wikipedia.org/wiki/
Facebook%E2%80%93Cambridge_Analytica_data_scandal. Accessed on May 2020.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934 (2019).

Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. SLSGD: Secure and efficient distributed on-device machine
learning. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases.

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal

15:38

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]

[148]

P. Bellavista et al.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applica-
tions. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 2 (2019), 1-19.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and
Francoise Beaufays. 2018. Applied federated learning: Improving Google keyboard query suggestions. arXiv preprint
arXiv:1812.02903 (2018).

Xin Yao, Tianchi Huang, Rui-Xiao Zhang, Ruiyu Li, and Lifeng Sun. 2019. Federated learning with unbiased gradient
aggregation and controllable meta updating. arXiv preprint arXiv:1910.08234 (2019).

Chun-Hsien Yu, Chun-Nan Chou, and Emily Chang. 2019. Distributed layer-partitioned training for privacy-
preserved deep learning. In Proceedings of the 2019 IEEE Conference on Multimedia Information Processing and Re-
trieval (MIPR). IEEE, 343-346.

Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato, and Qiang Yang. 2020. A fairness-
aware incentive scheme for federated learning. In Proceedings of the AAAI/ACM Conference on Al Ethics, and Society.
393-399.

Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan, Mahdi Soltanolkotabi, and Salman
Avestimehr. 2019. Lagrange coded computing: Optimal design for resiliency, security, and privacy. In Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS 2019).

Zhengxin Yu, Jia Hu, Geyong Min, Haochuan Lu, Zhiwei Zhao, Haozhe Wang, and Nektarios Georgalas. 2018. Fed-
erated learning based proactive content caching in edge computing. In Proceedings of the 2018 IEEE Global Commu-
nications Conference (GLOBECOM). IEEE, 1-6.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. 2018. Adaptive methods for non-
convex optimization. In Advances in Neural Information Processing Systems. 9793-9803.

Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019. Deep learning in mobile and wireless networking: A survey.
IEEE Communications Surveys & Tutorials 21, 3 (2019), 2224-2287.

Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. 2012. Functional mechanism: Regression
analysis under differential privacy. arXiv preprint arXiv:1208.0219 (2012).

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recommender system: A survey and new
perspectives. ACM Computing Surveys (CSUR) 52, 1 (2019), 1-38.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. iDLG: Improved deep leakage from gradients. arXiv preprint
arXiv:2001.02610 (2020).

Lingchen Zhao, Shengshan Hu, Qian Wang, Jianlin Jiang, Chao Shen, and Xiangyang Luo. 2019. Shielding collabo-
rative learning: Mitigating poisoning attacks through client-side detection. arXiv preprint arXiv:1910.13111 (2019).
Lingchen Zhao, Qian Wang, Qin Zou, Yan Zhang, and Yanjiao Chen. 2019. Privacy-preserving collaborative deep
learning with unreliable participants. IEEE Transactions on Information Forensics and Security 15 (2019), 1486-1500.
Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng Wang, and Robert X. Gao. 2019. Deep learning and its
applications to machine health monitoring. Mechanical Systems and Signal Processing 115 (2019), 213-237.

Ying Zhao, Junjun Chen, Di Wu, Jian Teng, and Shui Yu. 2019. Multi-task network anomaly detection using federated
learning. In Proceedings of the 10th International Symposium on Information and Communication Technology. 273-279.
Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated learning with
non-II data. arXiv preprint arXiv:1806.00582 (2018).

Jun Zhou, Zhenfu Cao, Xiaolei Dong, and Xiaodong Lin. 2015. PPDM: A privacy-preserving protocol for cloud-
assisted e-healthcare systems. IEEE Journal of Selected Topics in Signal Processing 9, 7 (2015), 1332-1344.

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge intelligence: Paving the last mile
of artificial intelligence with edge computing. Proc. IEEE 107, 8 (2019), 1738-1762.

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. In Advances in Neural Information
Processing Systems. 14747-14756.

Received June 2020; revised September 2020; accepted October 2020

ACM Computing Surveys, Vol. 54, No. 1, Article 15. Publication date: February 2021.

