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With an increasing number of smart devices like internet of things devices deployed in the field, offloading

training of neural networks (NNs) to a central server becomes more and more infeasible. Recent efforts to

improve users’ privacy have led to on-device learning emerging as an alternative. However, a model trained

only on a single device, using only local data, is unlikely to reach a high accuracy. Federated learning (FL)

has been introduced as a solution, offering a privacy-preserving tradeoff between communication overhead

and model accuracy by sharing knowledge between devices but disclosing the devices’ private data. The

applicability and the benefit of applying baseline FL are, however, limited in many relevant use cases due

to the heterogeneity present in such environments. In this survey, we outline the heterogeneity challenges

FL has to overcome to be widely applicable in real-world applications. We especially focus on the aspect

of computation heterogeneity among the participating devices and provide a comprehensive overview of

recent works on heterogeneity-aware FL. We discuss two groups: works that adapt the NN architecture and

works that approach heterogeneity on a system level, covering Federated Averaging, distillation, and split

learning–based approaches, as well as synchronous and asynchronous aggregation schemes.
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1 INTRODUCTION

In recent years, a paradigm shift in machine learning (ML) on smart devices, such as internet

of things (IoT) or smartphones, could be observed. Previously, most deployments of ML solutions

on such devices were designed to train the ML model once at design time in a high-performance
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cloud [83]. At runtime, the fully trained model gets deployed on the devices, where only infer-

ence tasks are performed. The increasing number of smart devices and recent hardware improve-

ments open the possibility of performing (continuous) on-device learning. This paradigm shift is

mainly motivated by privacy and security concerns and motivated by policies like the European

Union’s GDPR [30] or California’s CCPA [11].

On-device learning has several advantages over centralized training. In the extreme case, when

devices independently perform on-device learning, no information about local data samples leaves

the device, maintaining users’ privacy. Additionally, on-device learning eliminates communication

that comes with uploading collected training samples to a centralized server. This is particularly

relevant with the expected growth rate of IoT devices [69], each equipped with sensors produc-

ing massive amounts of data, where the increasing communication burden limits the ability to

process all this data centrally. However, this comes with new challenges. First, not all deployed

devices are capable of doing any training and hence rely on an externally trained model. Further,

devices that are capable can only train on their own samples (a tiny subset of a potential cen-

tralized dataset), and the resulting models suffer from accuracy losses and weak generalization

properties.

Federated learning (FL) [70] is a recently introduced decentralized approach, where training

is done in a distributed manner on each device, but devices can still collaborate to share knowl-

edge. Federated learning improves privacy [8, 96] compared to the traditional centralized cloud

paradigm. At the same time, FL enables devices to exchange relevant knowledge, improving the

models’ ability to generalize and overall increasing the accuracy. There are several techniques for

how knowledge can be exchanged. The most common approach is to exchange neural network

(NN) model weights [70], but there are other methods, as will be discussed later.

While FL systems for smart devices are proposed for a lot of different fields like health-

care [19, 32, 49, 105], transportation [21, 62, 78, 84], and robotics [64, 65] using natural language

processing, computer vision, and reinforcement learning policies, only a few production use cases

like the Google Keyboard (GBoard) [100] provide evidence of the success of the FL approach.

We argue that real-world applications powered by FL are challenging to build because of the het-

erogeneity present in these environments [7, 46, 60], as almost any real-world system has hetero-

geneous properties that affect the efficacy of an FL system. A key factor of heterogeneity is the de-

vices’ different capabilities to perform training of an NN due to different degrees of computational

resources.1 Training NNs is computationally expensive due to the high number of trained parame-

ters and its iterative search for a solution. This manifests itself in long training times, ranging up

to several weeks for complex tasks. Today’s IoT devices, smartphones, and embedded systems are

still heavily constrained in their training capabilities.

For example, the PM2.5 [16, 17] IoT sensor network continuously measures air quality (fine

particular matter below a diameter of 2.5 µm) to train a model for anomaly detection. Several

factors affect the devices’ computational resources. The two most important ones in this setting

are as follows:

• The open source nature of the project allows for a variety of hardware realizations, hence

sensor devices have heterogeneous computational resources.

• Sensor devices are deployed in various environments, like indoors, where the devices are

continuously powered, or outdoors where energy harvesting is required, limiting energy for

training in a heterogeneous manner.

1Section 3 gives a detailed overview over the types of computational resources and the sources and characteristics of

heterogeneity in these resources.
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These and other sources of heterogeneity need to be considered when designing an FL system

for cooperative learning. However, research on FL on computationally constrained heterogeneous

systems is still in its infancy.

For instance, in GBoard, incorporating devices with heterogeneous resources is circumvented

by forcing a homogeneous setting and excluding devices that do not fit. The ML model is exclu-

sively trained on high-end smartphones that are in an idle state and have at least 2 GB of memory.

These limitations might play a minor role when having a billion participating devices, as it could

be the case in cross-device FL [50], but in smaller-scale applications (i.e., horizontal cross-silo [50]),

excluding a large number of devices from the training reduces the achievable accuracy and gen-

eralization of the model. More importantly, there are cross-device cases where excluding devices

also excludes an essential share of data that is exclusively available on constrained devices [68].

Because of fairness or fair representation, it might be required to learn from these devices. There-

fore, computation-heterogeneity-aware FL is required to enable FL to learn from all devices and

utilize any data.

While we mainly focus on computation heterogeneity in FL, heterogeneity also manifests itself

in other domains. Devices have different data distributions and quantities of samples available.

Also, they could have different communication capabilities. For a wider use of FL systems, these

heterogeneities should be taken into account.

1.1 Scope and Contribution

This survey studies FL under computation heterogeneity. We also briefly discuss other sources

of heterogeneity, such as communication and data heterogeneity, when there is an overlap with

computation, but we refer readers to recently published surveys, e.g., References [86] and [56], for

a more detailed discussion. In this survey, we first provide an extensive analysis of the sources

of heterogeneity in devices in various kinds of environments and the implications for cross-

device and horizontal cross-silo FL. We then provide a thorough analysis of the state-of-the-

art techniques that cope with heterogeneous computation capabilities during FL training. We

focus on literature that tackles computation heterogeneity on two different levels and exclude

techniques that improve the resource efficiency of devices through hardware design considera-

tions, such as accelerators [5], as they are not specific to FL. For techniques that exclusively tar-

get inference, such as federated neural architecture search (NAS) techniques, we refer to Lui

et al. [66].

The presented techniques are grouped into two major groups, namely techniques that tackle

heterogeneity through the devices’ NN architectures level and techniques that address hetero-

geneity on the system level. An additional fine-grained categorization is based on the employed

FL paradigm (Federated Averaging (FedAvg), distillation, and split learning) for NN architecture-

level techniques and is based on whether system-level techniques employ synchronous or asyn-

chronous aggregation. We present our taxonomy of the research on FL with computation het-

erogeneity in Section 3 and Table 3, where we outline the different computation-related chal-

lenges that come from real-world applications and present a selection of works that make no-

table contributions to computation heterogeneity aware FL. Finally, we conclude by outlining

open problems and remaining challenges. In contrast to previous surveys [1, 6, 47, 51, 67, 98,

103] that cover certain aspects of device heterogeneity in FL, we provide the following novel

contributions:

• We provide an up-to-date review of the state of the art and analyze many techniques that are

not yet covered in existing surveys. The problem of computation heterogeneity in FL only

very recently gained relevance with upcoming training-capable IoT devices and proposals
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Table 1. Previous Surveys in FL That Partially Cover Computation Heterogeneity in FL

Survey Focus
Techniques w/ comp.

heterogeneity
Distillation

Abdulrahman et al. [1] FL Overview 7 ✗
Xu et al. [98] Asynchronous FL 4 ✗
Imteaj et al. [47] FL for constrained IoT 10 ✗
Khan et al. [51] FL for IoT 3 ✗
Lo et al. [67] FL Engineering Aspects 6 ✗
Yin et al. [103] FL Overview 3 ✗
Bellavista et al. [6] FL Deployment 7 ✗

Ours Comp. heterogeneity in FL 35 ✓

for 5G sensor networks. Therefore, FL techniques addressing computation heterogeneity

only recently gained popularity. In particular, about 50% of our covered techniques were

published in 2021/2022. Besides, existing surveys cover less than half of the papers we survey.

Table 1 presents a comparison to other works.

• Existing literature treats computation resources in a very abstract way (e.g., only considering

the training time of the number of multiply accumulate operations), neglecting the different

kinds of computational resource limitations and their different implications. This is as their

main focus is different (see Table 1). For the design of future real-world FL applications, these

abstract metrics do not suffice, as they do not well reflect the variety of heterogeneity sources

that affect a deployed FL application. In contrast, we distinguish between four different con-

cepts, which are constraint types, heterogeneity types, the scale of the heterogeneity, and

its granularity.

• In contrast to existing surveys, we also include distillation-based FL approaches. This novel

knowledge aggregation technique potentially enables NN model-agnostic FL and therefore

enables the use of custom-tailored NN models to better account for the devices’ hetero-

geneous capabilities. We provide an in-depth description of how distillation-based FL ap-

proaches exchange knowledge, present seven different approaches that utilize distillation to

cope with computation heterogeneity, and discuss their current limitations.

The remainder of this survey is structured as follows: First, in Section 2, we introduce the ma-

jor baseline algorithm of FL, FedAvg, and recently introduced distillation and split learning ap-

proaches and their respective advantages and disadvantages. In Section 3, we analyze the different

sources that enforce computation constraints on devices and discuss how that leads to computa-

tion heterogeneity in FL. In Section 4, state-of-the-art work addressing computation heterogeneity

is discussed. Finally, Section 5 presents open problems and future directions.

2 BASICS OF FEDERATED LEARNING

2.1 Problem Formulation

Similarly to distributed stochastic gradient descent (SGD), FL follows a server–client model,

where client workers (devices) do training and communicate with a central server to share knowl-

edge. The simplified case of FL aims to learn a model under the constraint that the training data are

locally distributed among many devices. Therefore the goal is to minimize the following function

by finding optimal NN weights w s.t.:

min
w

f (w ) where f (w ) :=
1

|K |
∑

k ∈K
fk (w ), (1)
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Fig. 1. FedAvg: Knowledge of devices 1, . . . ,K is shared through averaging the NNs’ weights. Each device
trains on its disjoint local data D1, . . . ,DK , producing newly trained weights w1, . . . ,wK . Every round, the
new averaged weights wt are distributed to all devices.

where f (w ) is the global loss (at a centralized server that handles knowledge aggregation)

and fk (w ) is the loss function of device k , where k is a device within the set K . Each device

exclusively has access to its local dataset Dk = {xk ,yk }, where xk is the input and yk is the label.

The function fk (w ), therefore, can be rewritten as

fk (w ) = l (xk ,yk ,w ) {xk ,yk } ∼ P ∀k . (2)

Each device k draws its samples from the distribution P, resulting in |K | disjoint splits of the full

dataset. The accuracy of such a scheme is bounded by the following two bounds. First, a natural

upper accuracy bound is the centralized training case where a device has access to the whole

dataset. The second is a device without any knowledge transfer, only relying on its local data,

thus building a natural lower bound to the accuracy. We identify two main goals in computational

heterogeneity-aware FL techniques: Increasing the convergence speed and reaching a high final

accuracy despite having constrained devices.

2.2 Baseline Federated Averaging

FedAvg is an algorithm for FL that was first introduced by McMahan et al. [70] and is widely

considered a baseline for FL. In the case of synchronous FedAvg, training is done in rounds. In

each round, every device pulls the current model from the server. Now, each device trains for a

fixed amount of mini-batches up to several epochs on its data. After training, each device uploads

its models to the server. The server model is updated by averaging all the uploaded models. In

the special case where during the local training phase, each device only applies one gradient step,

FedAvg behaves like distributed SGD.

The following detailed description assumes synchronous round-based FedAvg. The aggregation

scheme (one round) is visualized in Figure 1 and described in the following steps:

(1) At the beginning of every training round, the server deploys the current weights wt on the

set of devices. When starting the trainingwt = w0 to achieve the same random initialization

of the NN on all devices. Since usually a very large number of devices participate in federated

learning, a subset C ⊂ K of all devices is selected for training.

(2) Devices train their model (SGD steps) for a fixed number of mini-batches or epochs on their

local data, consequently, every device does the same amount of training steps

wt+1
k = wt − η∇fk (wt ), (3)

where wt+1
k

is the resulting model weights set, while η is the learning rate.
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(3) Afterward, devices upload their updated model weights wt+1
k

to the server.

(4) The server aggregates the devices’ knowledge by averaging the received weights using

wt+1 =
1

|DC |
∑

k ∈C
|Dk |wt+1

k , (4)

where wt+1 represents the new global model and |DC | the number of samples of devices in

subset C. The next round starts with Item 1 (wt+1 → wt ).

2.3 Client Selection in FedAvg

In Reference [70], as presented in Section 2.2, the availability of devices inK is modeled to be ran-

dom, s.t. each round t a random subset Ct ⊂ K participates in FL. If a device k in the set Ct takes

longer than others, then it delays the synchronous aggregation and, hence, slows down the overall

FL training. If waiting becomes impractical, then the device has to be dropped from the current FL

round, wasting its resources. Devices like these are called stragglers. Client selection techniques

assume that device availability and their expected resources for training can be acquired by the

server to select an optimal subset Ct of devices for each round. Further, they allow for variable

per-round training time deadlines. Client selection techniques mainly target one or more of the

following goals: Maximizing the overall FL convergence speed, minimizing the number of strag-

glers, or minimizing the overall energy spent on FL.

2.4 Asynchronous FedAvg

Alternatively, in asynchronous FedAvg, devices can pull the most recent model from the server at

any time, perform local update steps on it, and upload it at any time. Knowledge aggregation is

done at the server as soon as a new model update from a device arrives. Stale devices: In asynchro-

nous schemes, devices cannot become stragglers, since their updated model can be aggregated

instantly into the global model. Yet, devices that take too long to finish their training become stale

devices. Stale devices upload their trained weights based on an old state of the global model, intro-

ducing instability. Chen et al. first provided evidence of that for asynchronous SGD [15]. Further,

Xi et al., as well as Xu et al., demonstrate that staleness in FL lowers the convergence speed and

affects the maximum reachable accuracy [97, 99].

2.5 Distillation for Federated Learning

Distillation techniques in FL take motivation from knowledge distillation (KD) [40], which was

originally used to transfer knowledge of a larger NN into a reduced smaller one for model compres-

sion. Typically, NNs trained on classification problems output probabilities using a softmax layer

that converts logits into probabilities. Knowledge distillation aims to distill the better generaliza-

tion of larger models into smaller ones by not training the smaller network on the sample’s class

but rather on the sample’s distribution (soft label) that is predicted by the larger network. There-

fore, the smaller network not only learns the correct classes but also, through likelihood scores,

learns about the larger model’s knowledge representation.

Federated model distillation (FedMD) is an algorithm that uses distillation for FL that has

been proposed recently by Li and Wang [59]. We describe how distillation is used in federated

learning using FedMD: In addition to the devices’ local (private) datasets, a second dataset Dp is

introduced, which is a public dataset that is known to all participating devices. With consecutive

training of private data and inference on public labels, devices transfer the knowledge of their

private data into the public soft labels. The major difference to the previously discussed FedAvg

scheme is that knowledge is not shared through model weights but through soft labels of a public

dataset. This concept change allows for devices to be independent of the server model architecture.
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Fig. 2. FedMD: Knowledge of devices 1 to K is shared through soft labels yt
p of the public datasetDp that is

known to all devices. Additionally, devices train on their private datasetD1, . . . ,DK . Devices transfer knowl-
edge of their private data into public soft labels. Every round, the new averaged soft labels are distributed to
the devices.

The steps of a synchronous knowledge aggregation round are visualized in Figure 2 and de-

scribed in the following steps. In the general case, FedMD is applicable to any machine learning

algorithm and task. For the sake of simplicity, we consider in the following detailed explanation

only NNs that perform classification with a softmax activation layer. Again a subset C of all devices

contributes in one round.

(1) At the beginning of each round, all devices download the current public dataset’s soft la-

bels yt
p . In the first round, the public dataset’s labels are one-hot encoded.

(2) First, all devices train their NNs on the public dataset Dp , followed by training on their

private data Dk = {xk ,yk }. After training on the private dataset, an inference phase on the

public set follows. Instead of storing the one-hot encoded outputs, each device stores its

generated soft label outputs yt+1
p,k

.

(3) The outputs, representing the probability distribution of the input over all possible classes,

are uploaded for each public data sample to the server.

(4) The results from all participating devices are aggregated by using averaging

yt+1
p =

1

|C|
∑

k ∈C
yt+1

p,k , (5)

building a new averaged soft label for each sample in the public dataset. The public dataset

is updated to {xp ,y
t+1
p }. The round repeats with Item 1 (yt+1

p → yt
p ).

2.6 Split Learning

Last, we also briefly elaborate on split learning techniques. In difference to FedAvg or distillation-

based approaches, split learning techniques transfer information by using activations and gradi-

ents. In split learning, the NN model is split into two parts: A device model ak = fk (wk ,xk ) for

all devices k ∈ K and a single server model fs (ws ,ak ) that takes activations ak from the devices

as input. A combination of both can be used on device k for inference, s.t. ŷk = fs (ws , fk (wk ,xk )).
Server and device models are trained in the following way:

(1) Device k calculates activations ak by using ak = fk (wk ,xk ) for its private dataDk and sends

activations ak with the respective class labels yk to the server.

(2) The server receives the activations and class labels and calculates ŷ = fs (ws ,ak ) as well as

the gradient ∇fs (ws ). The gradient step (w.r.t fs ) is applied on the server the gradient w.r.t

to ak is sent back to device k .
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Table 2. (a) Computational Capabilities (Float Performance, RAM) Vary across Different Device Classes and
(b) the Resource Requirements (Number of MAC Operations, Memory Footprint) for Training of Several
Established Image Classification NNs (Training with PyTorch [76], on CIFAR10 [55] with Batch Size 32)

(a) Computational resources of end-devices

Device FLOPS RAM

MSP430 Ser. 105–106 0.5–66 KB

STM32F7 Ser. (Arm Cortex-M7) 2 · 108 256–512 MB

Raspberry Pi Ser. 108–1010 512 MB–8 GB

Low-End Smartphones 1010–1011 1–2 GB

Nvidia Jetson Nano 1011–1012 2–4 GB

High-End Smartphones 1011–1012 4–8 GB

Server GPUs 1013–1014 32–100 GB

(b) Resource requirements of NNs

ML Model # MACs Memory

(Forward) (Training)

LeNet 6.7 · 105 0.5 GB

ResNet18 5.6 · 108 0.8 GB

EfficientNet 3.2 · 107 0.9 GB

MobileNetV2 9.6 · 107 1.4 GB

ResNet152 3.7 · 109 5.3 GB

(3) Device k uses the received gradient from the server to calculate ∇fk (wk ). The procedure

repeats with Item 1.

Split learning techniques can reach a high convergence speed and allows us to reduce the compu-

tational burden on the devices. This comes at the cost of a high communication volume.

3 COMPUTATION HETEROGENEITY IN FEDERATED LEARNING

This section covers different types of heterogeneity in devices and their effects on FL systems.

Our main focus is on computation heterogeneity in existing devices, i.e., different devices cooper-

ating in an FL system differ in their capabilities to train NNs.

3.1 Computational Resources in End-Devices

Table 2(a) shows the computational resources of several common end device classes in terms of

floating-point operations per second (FLOPS) and RAM. These devices range from ultra-low-

power MSP430 microcontrollers to high-performance server GPUs. Table 2(b) shows the resource

requirements of several well-known image classification NNs, in terms of the number of MAC

operations in the forward pass and required memory for training a mini-batch of size 32. Note

that the number of MAC operations for training a whole epoch would be 3–5 orders of magnitude

larger, because training additionally requires a backward pass, which has around 2× the MACs

of the forward pass [4] (plus eventual computations for a stateful optimizer), and a device has

hundreds to thousands of local training samples to process in a round.

We observe that it is unrealistic to aim at training recent NN topologies on all devices. For

instance, an MSP430-based embedded device by far does not provide sufficient memory. This is

an important observation that puts a limit on how far into the embedded domain we can push FL,

and it is much more realistic to employ powerful embedded devices such as Raspberry Pi, NVIDIA

Jetson, or smartphones in FL systems. Nevertheless, there is large heterogeneity even within one

type of device. For instance, the computational performance of smartphones varies between 1010

and 1012 FLOPS and 512 MB and 8 GB RAM. Heterogeneity greatly affects FL, because, clearly, not

all devices can perform the same computations in each round, as will be discussed in more detail

in Section 3.2.

In general, this heterogeneity may have many different sources:

• Different hardware or software generations of devices or device tiers may cooperate in

one FL system. These can be, for instance, different smartphone generations or hardware

revisions of IoT devices [17]. Different hardware generations may be equipped with different
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ML accelerators that speed up training. Devices also can have different amounts of memory

or storage capacities, limiting the devices’ training capabilities.

• Degradation of components affects the available resources. The two famous examples are

battery fading, where the energy capacity and peak power capabilities of a rechargeable

battery reduce over time [26, 29], and circuit degradation, which reduces the switching

speed of a circuit over time, reducing the achievable performance [92].

• The power/energy supply may be subject to variation. For example, the power supplied

by a solar cell varies with solar irradiation, which both depends on local random weather

effects (clouds) and regular cycles (day/night, summer/winter). Similar effects apply to other

energy harvesting techniques [33].

• Ambient temperature affects the efficacy of cooling. This limits the thermally safe power

dissipation and, thereby, also limits computation [38].

• Shared resource contention with other applications running on a device affects the available

resources for training. ML model training often runs in parallel to other tasks on the same

platform [31]. This leads to fast-changing degrees of contention in shared resources such

as CPU time, memory, or energy.

3.2 Categorization of Constraints and Heterogeneity

We distinguish between two main categories of computation constraints, hard constraints and soft

constraints, that cause different kinds of computation heterogeneity in an FL system, namely het-

erogeneity across devices, over rounds, and over time. These heterogeneities can have different scales

and granularities.

Hard Constraints: These constraints prevent a device from training a given NN model. The

most prominent example is limited memory. Despite considerate efforts to shrink the number of

parameters in modern NNs [42, 89], model architectures like MobileNetV2 [43] still have millions

of parameters, which need to be kept in memory in high-precision (e.g., 32-bit floating-point)

during training. In addition to the model parameters, also activations have to be kept in memory

for applying backpropagation. This may easily accumulate to more than 1 GB of memory for

training, as shown in Table 2(b). If a chosen NN architecture in an FL system exceeds the devices’

memory capacity or the memory is not available due to resource contention, then the device cannot

participate in the FL system.

Soft Constraints: These constraints allow for training a certain NN architecture but prevent

the device from achieving its full training throughput (e.g., FLOPS). The computational capability is

affected by several factors, such as the used micro-architecture, degradation of components, unsta-

ble power supplies, or shared resource contention. Constraints like these enforce slower training.

For a device participating in an FL system, soft constraints can prevent the device from finishing

its local training on time, making it a straggler or a stale device.

The aforementioned constraints may be heterogeneous throughout the set of devices participat-

ing in FL and over the training duration. We differentiate between three types of heterogeneity

caused by device constraints.

Heterogeneity across Devices: First, devices participating in an FL system may have differ-

ent kinds of hard and soft constraints, causing heterogeneity across the devices. These kinds of

constraints (e.g., availability of accelerator or memory capacity) are either known at design time

or before starting the training and do not change over time. Different devices may be subject to

different constraints that limit the training throughput. An example of heterogeneity across de-

vices is a smartphone application FL system. As discussed above, a low-end smartphone operates

only with 1/100th of the peak performance and may have only 1/8th of the memory capacity of

a high-end smartphone. Table 2 also lists other devices and their respective training throughput
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and memory resources. To support heterogeneity across devices, an FL algorithm needs to be able

to use different amounts of resources on different devices in a round.

Heterogeneity over Rounds: If the number of devices in an FL system is comparatively small

(cross-silo FL), then devices need to participate in many FL rounds. This is, for instance, the case

in robotics [45] or lifelong learning [64]. Soft constraints of devices may be determined by the

devices’ environments and change over the rounds. Examples of such constraints are the devices’

expected battery level during training, the current power supply, or ambient temperatures. This

includes all constraints that change slower than FL rounds (in the range of minutes to hours), can

be predicted and are known prior to an FL round. To support heterogeneity over rounds, an FL al-

gorithm needs to either implement stateless clients or explicitly support changes in the availability

of the resources of a device.

Heterogeneity over Time: Soft constraints that change at a finer granularity than FL rounds

cause heterogeneity over time in an FL system. These throughput changes cannot be predicted

and randomly occur (in the range of milliseconds/seconds). One example is resource contention

on a smartphone, where the share of available resources is unpredictable for the FL system and

changes within seconds, i.e., much faster than FL rounds. To support heterogeneity over time, an FL

algorithm needs to adaptively adjust the required resources at the client during the round without

relying on the server.

In any real system, a combination of the different types of heterogeneities is expected to oc-

cur. Finally, there are two additional properties of the heterogeneity that describe the statistical

distribution of constraints present in a set of devices.

Scale of Heterogeneity: Heterogeneity across devices or over rounds/time can have different

scales. This scale can vary depending on the source of constraints. In a smartphone application

with different tiers or hardware generations, memory capacity and peak performance can vary by

a factor of 10× and 8×. Contrary to that, constraints caused by an aging effect (battery) may result

in a peak power reduction of more than 50% [26], which translates to a throughput difference

of around 20%, assuming a cubic relationship between dynamic power and performance (V 2 f -

scaling [37]). This is much lower than the scale of 10× observed with different tiers or hardware

generations. An FL algorithm must support the scale of heterogeneity present in the system.

Granularity of Heterogeneity: The heterogeneity present in an FL system can have different

granularities. In a smartphone application, where devices are equipped with different memory

capacities (e.g., 1, 2, and 4 GB), an FL system has to account for only a small finite number of types

of devices. However, devices experiencing resource contention can have a continuous range of total

training throughput in an FL round. Either an FL algorithm supports arbitrary resource availability

levels or quantizing the continuous range into a reasonable finite number of constraint levels is

required. The number of supported levels by the algorithm must be high enough to avoid wasting

too many resources, which can slow down the overall training. For example, resource contention

(e.g., four other applications sharing CPU time) would reduce the available resources for training by

5×. If the FL algorithm supports only 5 levels, which is not uncommon, as we observe in Section 4,

then the ratio between subsequent levels is at least 1.5× if levels are distributed exponentially. As

an example, levels of [1×, 1.5×, 2.2×, 3.3×, 5×] could lead to 33% of available resources for training

being wasted. Note that this gap increases strongly if a larger scale needs to be supported.

As with all the other properties, an FL technique must be able to cope with the granularity of

the system at hand.

These different types of computational heterogeneity require different solutions. We analyze

the capabilities of the state-of-the-art techniques for heterogeneity-aware FL to cope with all the

different types of computational heterogeneity in Section 4.
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3.3 Communication Heterogeneity

Knowledge transfer, for instance, through sharing NN parameters between devices, is only pos-

sible via communication. The throughput, latency, and reliability of communication channels are

limited and can vary between devices causing stragglers or stale devices. Most of the current re-

search focuses on making the transmission more efficient by using compression and quantization

schemes [3, 28, 54, 72]. Even though we do not focus on communication heterogeneity in this sur-

vey, we nevertheless cover certain aspects of communication because of the inter-dependencies

between communication and computation:

• The complexity of the trained NN architecture correlates with the model size that has to be

transmitted to the server. Hence, reducing the NN structure (e.g., by pruning [48]) reduces

not only the computation complexity but also the communication burden.

• Increasing training throughput and communication throughput can create a tradeoff sce-

nario [81], because ultimately, both may compete for resources like energy [73].

3.4 Data Quantity Heterogeneity

In a real-world scenario, the quantity of the data gathered on different devices may vary. However,

to guarantee a high accuracy, the model needs to be trained over all available data. This imposes

more training overhead on devices with a higher quantity of data, as they need to perform higher

numbers of mini-batch training per round. Techniques that cope with limited throughput (soft

constraints) can be applied to such devices to prevent them from becoming a straggler or stale

devices.

4 COMPUTATION HETEROGENEITY-AWARE FEDERATED LEARNING

4.1 Categorization of Techniques

We categorize techniques addressing FL with heterogeneous computational capabilities into two

groups.

NN architecture level: We distinguish between techniques where devices can choose from a lim-

ited set of model architectures or submodels. These techniques stem from FedAvg and are covered

in Section 4.2. Other techniques do not impose any limitations on the model architecture. These

techniques build on top of FedMD and are covered in Section 4.3. Last, we cover split learning–

based techniques in Section 4.4.

System level: In this case, heterogeneity is not addressed by varying model complexity but by

allowing for variable-length rounds, grouping, and partial updates. Besides synchronous solutions,

variable training times can also be accounted for by allowing for asynchronous updates. These

approaches are covered in Section 4.5 and 4.6, respectively.

Last, we discuss which types of computation heterogeneity are addressed. All discussed tech-

niques are listed in Table 3.

4.2 NN Architecture Heterogeneity Based on FedAvg

The following techniques adapt FedAvg to achieve model architecture heterogeneity. Allowing

for variable model complexity in FedAvg is not straightforward, since the aggregation scheme

relies on averaging of model weights. If the model architectures vary, then it is not clear how to

match the parameters for averaging. Even networks with the same architecture can have different

learned structures; thus, averaging their weights hurts performance [70]. One reason for that is

the NNs’ permutation invariance, which means that even two-layer networks trained on the same

distribution can have different internal structures. Several research works, therefore, focus on

matching internal features. Wang et al. [94] introduce FedMA to match layerwise filters together.
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Table 3. Comparison of Techniques Aiming at Computation Heterogeneity-aware FL

Work Layer Mechanism Constraints Heterogen.

Async Knowledge ex. Hard Soft D R T

Section 4.2 NN Architecture Heterogeneity based on FedAvg

Caldas et al. [9] Model — Parameters ✓ ✓ — — —

ELFISH Xu et al. [99] Model — Parameters ✓ ✓ ✓ ✓ —

DISTREAL Rapp et al. [80] Model — Parameters — ✓ ✓ ✓ ✓
HeteroFL Diao et al. [25] Model — Parameters ✓ ✓ ✓ ✓ —

MFL Yu and Li [104] Model — Parameters ✓ ✓ ✓ ✓ —

FjORD Horváth et al. [41] Model — Parameters ✓ ✓ ✓ ✓ ✓
FedRolex Alam et al. [2] Model — Parameters ✓ ✓ ✓ ✓ —

FedorAS Dudziak et al. [27] Model — Parameters ✓ ✓ ✓ ✓ ✓
FedHM Yao et al. [101] Model — Parameters ✓ ✓ ✓ ✓ —

FLANC Mei et al. [71] Model — Parameters ✓ ✓ ✓ ✓ —

ZeroFL Qui et al. [79] Model — Parameters ✓ ✓ — — —

CoCoFL Pfeiffer et al. [77] Model — Parameters ✓ ✓ ✓ ✓ —

Section 4.3 NN Architecture Heterogeneity based on Distillation

FedMD Li and Wang [59] Model — Soft labels (public) ✓ ✓ ✓ — —

Cronus Chang et al. [14] Model — Soft labels (public) ✓ ✓ ✓ — —

FedHE Hin et al. [39] Model ✓ Soft labels (per class) ✓ ✓ ✓ ✓ ✓
FedProto Tan et al. [90] Model — Soft labels (per class) ✓ ✓ ✓ — —

FedDF Lin et al. [63] Model — Soft labels (server) ✓ ✓ ✓ — —

FML Shen et al. [85] Model — Soft labels (public) ✓ ✓ ✓ — —

Section 4.4 NN Architecture Heterogeneity based on Other Techniques

FedGTK He et al. [85] Model ✓ Soft labels & activ. ✓ ✓ — — —

AdaSplit Chopra et al. [20] Model ✓ Gradients & activ. ✓ ✓ ✓ ✓ ✓
Section 4.5 System Level Awareness Through Client Selection and Flexible Aggregation

FedCS Nishio and Yonetani [75] System — Parameters — ✓ ✓ — —

TiFL Chai et al. [12] System — Parameters — ✓ ✓ ✓ —

FLANP Reisizadeh et al. [82] System — Parameters — ✓ ✓ — —

Oort Lai et al. [57] System — Parameters — ✓ ✓ ✓ —

PyramidFL Li et al. [58] System — Parameters — ✓ ✓ ✓ —

FedProx Li et al. [61] System — Parameters — ✓ ✓ ✓ ✓
Wang et al. [93] System — Parameters — ✓ ✓ ✓ —

Wang et al. [95] System — Parameters — ✓ — ✓ —

Tran et al. [91] System — Parameters — ✓ ✓ — —

AutoFL Kim and Wu [52] System — Parameters — ✓ ✓ ✓ —

Section 4.6 System Level Awareness Through Asynchronous Aggregation

ASO Chen et al. [18] System ✓ Parameters — ✓ ✓ ✓ ✓
FedAsync Xie et al. [97] System ✓ Parameters — ✓ ✓ ✓ ✓
Sprague et al. [87] System ✓ Parameters — ✓ ✓ ✓ ✓
Papaya Huba et al. [44] System ✓ Parameters — ✓ ✓ ✓ ✓
FedAT Chai et al. [13] System ✓ Parameters — ✓ ✓ ✓ ✓

We differentiate between hard and soft constraints, and heterogeneity across devices (D), over rounds (R), and over

time (T).
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Similarly, Yurochkin et al. [106] focus on matching neurons by identifying similar neuron subsets

to match features in non-independent and identically distributed (iid) data scenarios. Reliable

feature matching would allow for combining networks with varying architectures as well as

a better generalization in non-iid data scenarios. Current techniques circumvent direct feature

matching of varying NN structures by training with regularly changing variable-sized dropout

masks or by training subsets of the full network, as discussed in the following. These techniques

share some similarities with well-known inference approaches like pruning. The major differences

are that pruning is primarily done after training has converged, intending to create an efficient

model for inference. Meanwhile, in the following approaches, smaller subsets remain embedded

in the full-size NN architecture, while each part is constantly updated every round.

Unstructured Subsets: Caldas et al. [9] were within the first to address the high computation

burden of FL, introducing Federated Dropout (FD) for FedAvg, where instead of the full network,

only a subset of the network is trained and updated in every round. A fixed set of weights is set

to zero, and the remaining weights are packed into a dense matrix for efficient computation. For

convolutional layers, full filters are dropped. In their experiments, they achieve a 1.7× reduction

of computations on MNIST [23] without hurting final accuracy. The provided results suggest that

averaging subsets through dropout masks does not negatively impact the aggregation mechanism

of FedAvg. While reducing the devices’ computation effort, FD forces a fixed dropout rate on all

devices, thus limiting the ability to adapt to heterogeneity across devices. Heterogeneity across

devices is tackled by Xu et al. [99] in ELFISH, a method that identifies neurons that contribute

much to convergence and builds dropout masks based on this information. Each device receives a

specific dropout mask to best match its current computing capabilities. Masks are updated every

round. In DISTREAL [80], the authors explore how subsets can be trained in environments with

time-varying computational resources that change faster than FL rounds and are not known in

advance. A mini-batch level granularity for training subsets by randomly switching filters of the

convolutional neural network (CNN) during training is achieved. Additionally, DISTREAL does

not require a common fixed subset ratio per layer. Instead, this design space is explored with a

genetic algorithm to find Pareto-optimal per-layer subset ratios. The results show that in scenarios

with fast-changing resources, randomly switching between filters and optimized per-layer subset

ratios result in faster convergence and higher final accuracies compared to FD.

Structured Subsets: While FD and ELFISH utilize unstructured subsets (masks), where the sub-

set parameters are scattered over the full-size NN structure, some other studies propose a strictly

hierarchical nesting of subsets. HeteroFL is presented by Diao et al. [25], a FedAvg adaption that al-

lows devices to select from specific subsets of the full model. A smaller set is constructed as a subset

of the next bigger set, giving devices a hierarchical selection of networks. Aggregation is done by

only averaging trained parameters from the devices. Therefore, some parts of the model are only

updated by strong devices. Similarly, Yu and Li [104] propose partitioning of CNN layer width,

depth, and kernel size by slices of power of two and introduce a submodel search algorithm to best

match a submodel to the devices’ individual resources. They only provide proof-of-concept experi-

ments for small networks in homogeneous cases. Horváth et al. [41] present FjORD, where devices

receive submodels of various complexities through applying Ordered Dropout (OD). Differently

to HeteroFL, in each local round, every device uniformly selects from different complexity levels

(within its capabilities) for a short training period. Since higher-performance devices are not fully

utilized this way, the authors apply KD on top of OD to transfer knowledge from larger complexity

models to smaller ones during local training. For comparison, they extend FD with variable dropout

rates for each device and show that their structured subsets outperform random dropout masks.

Hybrid Subsets: Also, a mixture of both approaches, specifically the use of structured but

not hierarchical subsets, is considered. In difference to the previous approaches, this allows
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training of NN-models that exceed the strongest devices’ capacity. Additionally, each parameter

gets eventually trained by each device. The use of a rolling window approach is proposed by Alam

et al. [2] in FedRolex. In each training round, a device trains a different slice of the NN. Feder-

ated NAS [35, 74, 102] techniques are proposed, using subsets of shared common structure to

allow for device personalizing, aiming for better accuracy in non-iid cases and efficient models

for inference. An advantage compared to previous techniques is that the devices’ NN models can

be independently optimized for their hardware; however, this comes at the cost of exploring the

architecture search space, which can be resource hungry. Dudziak et al. [27] present FedorAS, a

federated NAS technique that also accounts for device heterogeneity during training. Similarly

to FedRolex, devices receive a subset of the full server model and, depending on their resources,

switch between further splits of the subset on a mini-batch level. The common training is followed

by an architecture search for several tiers based on the full model and, last, a fine-tuning step.

Low-Rank Factorization: Low-rank factorization is considered to select the subset’s parame-

ters. These techniques also root from inference compression. The major difference to its use for

inference is that here the low-rank NN is updated during training and the low-rank updates are

applied to the full model on the server. Yao et al. [101] present FedHM, where they create low-

complexity submodels on the server by doing a low-rank factorization of the full model. Layer

parameters with dimensionsm × n are decomposed into two matrices with dimensionsm × r and

r ×n. The complexity of the model can be controlled via the rank r . Computationally weak devices

perform two lightweight convolution operations based on the matrix decomposition instead of one

complex operation. To avoid a strong accuracy degradation, the complexity reduction through ma-

trix decomposition is preferably applied in the later layers of the NN model. The authors show that

subsets through low-rank factorization can achieve higher accuracies than straightforward split-

ting but, more importantly, dramatically reduces the communication burden. A similar technique

is employed by Mei et al. [71] in FLANC, where in the factorization, the parameters are decomposed

in matrices with dimensions smaller than m and n, allowing for a reduction of the activation size

and, hence, memory requirements.

Others: In ZeroFL [79], dropout masks in combination with sparse convolutions are used to

lower the computational complexity in training (FLOPS) and reduce the communication volume,

although special hardware and software support is required to enable real-world gains. Last, in

CoCoFL [77], a technique is presented that does not use subsets of an NN for training. Instead,

only for some layers per round gradients get calculated while the remainder of the layers are

frozen. This saves computation time (fewer backpropagation components) and reduces the upload

volume, since only updated layers must be uploaded. Further, the freezing of the remaining lay-

ers allows for the reduction of the computation complexity by using inference techniques, such

as batch norm folding and quantization (e.g., int8 instead of float32), while in width scaling

approaches (HeteroFL), gains in computation time and communication volume are tightly cou-

pled, and selective freezing and training can decouple those properties. The results show benefits

over HeteroFL, especially in scenarios where the devices’ constraints regarding computation and

communication are decoupled.

Discussion: Most presented techniques send lower complexity subsets of the full NN model

to the devices. Allowing flexible NN models addresses hard constraints (e.g., devices can train a

submodel with a lower memory footprint). Approaches partly require the resources to be known

prior to the round, limiting real-world use cases. A remaining challenge is the scale and granu-

larity of heterogeneity: For example, HeteroFL uses five subsets and scales down the parameters

exponentially down to a 250× reduction. Consequently, there is a 4× gap between the full model

and the largest sub-model. It remains unclear if subsets maintain effectiveness under both large

scale and high granularity (many subsets). Last, while devices are enabled to participate in training
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with a 250× reduction of parameters, it remains untested if these devices can make a meaningful

contribution to the global model.

4.3 NN Architecture Heterogeneity Based on Distillation

Contrary to FedAvg, FedMD does not transfer knowledge by sharing model weights but by sharing

soft labels of a public dataset. Since the aforementioned problems of FedAvg (matching of NN

features) do not apply here, the devices’ capabilities can be better matched with tailored models

(even disclosed from the server) as long as they share the soft label representation at the NNs’

output. This allows to address hard constraints. However, creating a suitable public dataset and

distributing it to all devices may be challenging in real-world scenarios. Additionally, training

and inference on public data are computationally expensive. Also, distributing the public dataset

to all devices may induce a large communication volume, thereby increasing the communication

overhead. Also, if knowledge is shared purely through soft labels, then participating devices have

to be stateful. Consequently, when a new device joins the system at a later stage, it still needs

to train its model from scratch with the public soft labels. This is in contrast to FedAvg, where

new devices simply download the latest model weights and immediately benefit from the already

performed training of other devices.

Distillation With Public Data: Li and Wang [59] introduce FedMD (in detail shown in Sec-

tion 2.5), which utilizes KD for FL, directly addressing the heterogeneous computational capabil-

ities of devices. They test their solution with the EMNIST/MNIST [22] and the CIFAR10/100 [55]

dataset (public/private) using 10 devices, each deploying a unique NN architecture. They achieve

a 20% increase in accuracy on every device compared to an isolated (on-device) setting. Chang

et al. [14] present Cronus, which is similar to FedMD and also allows for heterogeneous architec-

tures. While in FedMD, public and private data are trained consecutively, Cronus mixes both for

local training.

Mixture of Distillation and FedAvg: As distillation approaches lack behind FedAvg w.r.t.

achievable accuracy, a mixture of both approaches is proposed. Lin et al. [63] present FedDF, which

moves KD from the devices to the server, thus, removing the additional public dataset training and

inference effort. FedDF, similarly to FedMD or Cronus, also allows for heterogeneous architectures,

while here, the server is fully aware of the devices’ architectures. Aggregation is done by averaging

all devices’ weights (similar to FedAvg) within groups, and building an averaged starting model

for each group. Each averaged group model now acquires knowledge from averaged soft labels

computed with all received devices’ weights. Compared to FedAvg, FedDF shows better robust-

ness in non-iid data cases and allows for more local steps between rounds without degrading the

performance. A disadvantage of this approach is that it requires data for distillation on the server.

Shen et al. [85] propose FML, where two models are deployed on each device. The first one is a

custom model that best fits the devices’ computational capabilities and data. The second one is

a knowledge transfer model that is used with KD to transfer knowledge between both networks

in both directions. FedAvg is used to average the weights of the knowledge transfer model on

a server. While they outperform FedAvg and FedProx [61] in certain experiments, this approach

comes with the major downside of an additional computational burden of knowledge sharing on

the device and forcing a fixed architecture for knowledge sharing on all devices.

Single per-Class Representations: Transferring soft labels of a public dataset comes with

a large computational burden. To address this, the transfer of single per-class representations is

discussed. Hin and Edith present FedHe [39], which, similarly to previous approaches, allows for

different model architectures per device. Contrary to FedMD or Cronus, FedHe does not use a

public dataset for distillation. The devices’ models only share a single per-class representation

(soft label) of their output layer trained on private data with the server. On the server, the per-class
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representation is averaged asynchronously. The devices train on their private data with a mixture

of one-hot and soft label loss. FedHe is, therefore, lightweight in communication and requires no

training with public data. The authors show that FedHe outperforms FedMD in many scenarios.

Similarly, Tan et al. present FedProto [90], where knowledge is exchanged with class prototypes

instead of public soft labels. Contrary to FedHe, not the output representations of the classes are

used but an internal representation (an intermediate layer output before the NN network’s last

layer) to allow for higher expressiveness. The models on the devices are trained with a combined

loss that accounts for the one-hot encoded private data and normalizes the model by keeping

representations of private samples close to the global class representations.

Discussion: Presented approaches provide the most flexibility for devices to adapt their model

architecture (addressing hard constraints), therefore also achieving a finer granularity of the het-

erogeneity compared to using subsets. In cases where certain devices have certain ML accelerators

for specific tasks or very small memory budgets, distillation-based approaches allow for specifi-

cally tailored NNs to be deployed on the devices. Still, distillation-based approaches show cer-

tain disadvantages. First, in most cases, they do not reach the same accuracy as FedAvg-based

approaches. Second, if knowledge between server and devices is exchanged through soft labels,

then devices are stateful. Consequently, it is required that each device participates in a high num-

ber of rounds to have a sufficiently trained local model. Therefore, they do not scale as well as

FedAvg-based techniques w.r.t. the number of participating devices and are best suited for hori-

zontal cross-silo scenarios. Last, distillation adds computational overhead, limiting the applicability

for purely throughput-constrained devices.

4.4 NN Architecture Heterogeneity Based on Other Techniques

He et al. [34] present a combination of split learning and distillation in FedGKT, where two models

are employed. A lightweight feature extractor on the devices to lower the computational burden

and a more complex server model. Knowledge is shared in both directions: The server receives

feature maps and respective soft labels from the devices. The devices receive soft labels from the

server. However, FedGKT does not allow for heterogeneous splits between device and server and

provides no aggregation algorithm that supports heterogeneity. The final full model is a combina-

tion of the device and server models. The knowledge exchange is done asynchronously to avoid

stragglers. Chopra et al. enable device heterogeneity in split learning, where the full NN is split,

and parts of the model are trained on the devices while the other part is trained on the server. They

present AdaSplit [20], which allows for different device model sizes by varying the split position

between the device and the server. While in baseline split learning, activations have to be uploaded

to the server, and gradients have to be downloaded from the server, AdaSplit mitigates this by us-

ing a contrastive loss to train locally without server interaction and send activations to the server

only after the local phase. The implementation allows for asynchronous transfer of gradients.

A downside of the approach is that it requires training the model partly on the server, i.e., com-

putation of gradients by using the received activations, which is more complex than averaging

and might show problems with scaling to many devices. Additionally, split learning techniques

result in stateful devices, as every device’s final model is a combination of device and server mode.

Consequently, the presented techniques are best suited for horizontal cross-silo FL, as each device

has to participate in many rounds to reach a sufficiently trained device model.

4.5 System Level Awareness through Client Selection and Flexible Aggregation

In heterogeneous FL systems, devices with soft constraints delay the parameter aggregation, since

the server has to wait for the slowest device (straggler) [99]. To demonstrate the different be-

haviors over time FedAvg with stragglers is visualized in Figure 3. Additionally, asynchronous
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Fig. 3. FL aggregation of three different strategies over time. The first (top) is baseline FedAvg, where con-
strained devices can become stragglers, slowing down the rounds. The second (middle) is FL with system-
level awareness (e.g., through client selection). The third (bottom) is asynchronous aggregation, where con-
strained devices can upload stale updates, hurting accuracy.

aggregation and aggregation with system awareness are displayed. The following works account

for heterogeneity by minimizing straggler time through system awareness while still maintaining

synchronous rounds.

Tier-based Client Selection: Nishio and Yonetani [75] propose FedCS, where they jointly con-

sider the communication and computation resources of devices during device selection. At the

beginning of each global round, the server requests the devices’ current capabilities and selects a

subset for the next aggregation step. The objective of this work is to achieve the highest accuracy

in a limited time. Achieving this goal requires a tradeoff between maximum local training time

(the longer the maximum round time is, the more devices can participate) and finishing many

rounds within the given time budget. Chai et al. [12] introduce a tier-based aggregation scheme

TiFL, where devices are profiled and grouped in tiers based on the time it takes to train for one

epoch. Profiling can be done either static (prior to training) or continuously. The article discusses

several tier selection schemes for training. Their experimental setup consists of five groups, where

a higher tier always has the double performance of the previous tier. Training only with the fastest

tier drastically reduces training time but hurts final accuracy, while uniform selection matches

baseline FedAvg accuracy and reduces the training time by 50% (FedAvg has to wait for stragglers).

They propose an adaptive selection to address non-iid data scenarios that selects tiers that have low

accuracy with a higher probability, thereby achieving higher accuracy than baseline FedAvg, while

significantly reducing the training time. Reisizadeh et al. [82] introduce FLANP, where the strag-

gler problem is mitigated by utilizing the fast devices at the start. The authors assume an iid data

environment and train with fast devices until they reach an accuracy threshold. They increase the

accuracy threshold and iteratively add more (slower) devices to training. This slows down training

but increases accuracy, since, every round, more data are available. Using this technique, FLANP

converges a lot faster compared to FedAvg when having heterogeneous devices.
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Presented techniques rely on similarities between devices, e.g., a low number of groups per

round. An increase in the granularity and the scale of the heterogeneity deteriorates the gains.

While an active selection of devices based on resources speeds up training in iid scenarios, it might

hurt performance in non-iid cases, especially when resources are coupled with data distribution

shifts, therefore, an environment not only enforces specific constraints on some devices but also

influences the devices’ data distributions. This may, for instance, be the case in an IoT system,

where some devices are deployed indoors while others are outdoors, with outdoor devices being

more constrained in energy and with data distribution being variant between indoor and outdoor

devices. This issue is tackled in the following techniques.

Client Selection with Device Impact: Lai et al. [57] present Oort, a client selection framework

with the aim to optimize convergence speed (w.r.t. time) by allowing for rounds with variable

lengths. In difference to previous client selection techniques, Oort considers the impact a device

has on the global model. Devices and round times are selected based on a utility score that includes

the resources and the global model impact based on the local training loss. Li et al. [58] introduce

PyramidFL, building on top of Oort and further improving convergence speed, mainly through a

more fine-grained selection by allowing devices to train variable amounts of local epochs.

Partial Device Updates: Li et al. [61] introduce FedProx, which instead of dropping stragglers

completely, allows for partial contributions to the global model. This is achieved by introducing an

inexactness term to the devices’ updates that accounts for fewer local epochs. FedProx, therefore,

allows for a variable number of local steps. Especially in cases where in baseline FedAvg many

devices have to be dropped, FedProx outperforms FedAvg with respect to final accuracy. Wang

et al. [93] present an optimization framework to tackle stragglers in a mobile device scenario. They

conduct real-world measurements on smartphone processors to measure the training throughput

of various devices. Contrary to other works, they also incorporate the effects of thermal throttling

into the throughput model. The framework achieves optimal utilization of devices by accounting

for the devices’ capabilities and splitting the devices’ private data into trainable subsets. The device

scheduling algorithm is also designed to be aware of non-iid data.

Efficiency Tradeoffs: Wang et al. [95] study how to effectively utilize available resources and

obtain a convergence bound, highlighting how local device steps and global rounds contribute to

convergence. Further, they propose an algorithm that finds a resource-efficient tradeoff between

communication and computation but does not specifically cover heterogeneity over time or across

devices. They show that in non-iid data scenarios, their adaptive synchronous approach outper-

forms asynchronous settings in terms of convergence speed. Similarly, Tran et al. [91] study the

tradeoff between training time/accuracy and energy spent on training. They associate an energy

cost with training throughput per time and communication bandwidth. They model energy con-

sumption for training throughput per second and transmission of bytes per second in a wireless

channel environment. A scenario with three classes of devices is studied where each device oper-

ates at certain CPU frequency levels. With that, they determine a Pareto-optimal tradeoff between

time and energy in FL with heterogeneous devices. Kim and Wu present AutoFL [52], a system-level

approach to optimize convergence speed and energy usage by training a reinforcement learning

algorithm to select an optimal subset of devices for training. The server algorithm takes several

device-specific factors into account, such as the number of data classes, network bandwidth, CPU,

and memory contention. The solution is evaluated in a scenario with 200 mobile devices with

three different device classes (high-end, mid-end, and low-end), simulating resource contention,

unstable connections, and data heterogeneity.

Discussion: Presented synchronous system-level approaches optimize the round time and de-

vice selection by processing the devices’ resource availability information at the server mostly on a

round basis. To account for soft constraints (i.e., throughput constraints) of the devices, the server
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has to track and monitor the devices’ state and estimated capabilities. This induces overhead on

the server as well as on the devices and might be unreasonable to predict in real-world scenarios.

Others, like FedProx, allow partial local training, accounting for resource changes during local

rounds without server knowledge.

4.6 System-level Awareness through Asynchronous Aggregation

Another way to account for different training times is by doing weight aggregation asynchronously.

Thereby, each device can download the current model at any time and, depending on its resources,

upload its updated weights (visualized in Figure 3). Several papers [15, 82, 88, 108] hint that asyn-

chronous aggregation achieves similar convergence speeds as synchronous schemes if the stale-

ness of devices is within certain bounds. It has to be noted that most theoretical guarantees only

cover asynchronous distributed SGD in convex cases. Convergence speed guarantees for asynchro-

nous FedAvg, especially the comparison with synchronous FedAvg, is ongoing research.

Asynchronous Aggregation: Chen et al. [18] introduce Asynchronous Online Federated

Learning (ASO) for a setting with devices under heterogeneous resources and data quantity. They

use a modified version of baseline FedAvg (L2-norm regularization on the client and weight nor-

malization on the server) to account for the devices’ data quantity and reduce the effect of the

devices’ models drifting away from the global model. They assume devices continuously receive a

new stream of training data and do not have the memory capacity to learn in batches. The authors

show that their asynchronous aggregation scheme requires less time to converge in comparison to

baseline FedAvg. Similarly, FedAsync by Xie et al. [97] uses an asynchronous aggregation scheme

with a local regularization term. The staleness problem of devices is mitigated by weighting the de-

vices’ updates contribution with a time-dependent parameter. This means that the contribution of

devices that take very long, thus updating an old model state of the server, is reduced. The authors

show that FedAsync outperforms FedAvg in small staleness scenarios. Sprague et al. [87] study

the effects of synchronous and asynchronous FedAvg, showing that asynchronous aggregation

outperforms synchronous w.r.t. convergence speed in cases where devices have different training

throughput. Additionally, they study the effects of devices joining late in training, observing a

disturbance in the convergence in non-iid cases. Huba et al. present Papaya [44], a framework

for large-scale FL that supports synchronous and asynchronous aggregation. They empirically

show that in large-scale (100M phones) next-word-prediction tasks, asynchronous aggregation

converges faster and with higher accuracy compared to synchronous FL. In a similar experiment,

synchronous FL converges slower if the aggregation waits for stragglers or reaches lower final

accuracies if stragglers are discarded.

Hybrid Aggregation: Extending their previous work TiFL [12], Chai et al. [13] present FedAT, a

hybrid synchronous-asynchronous approach utilizing tiers. Devices are grouped in tiers based on

their performance, similarly to TiFL. While devices within one tier do synchronous aggregation,

tiers asynchronously update the global model. To mitigate bias towards faster tiers (especially in

non-iid cases), FedAT weights the updates of tiers, s.t. slower tiers are considered with a higher

weight when updating the global model, thus allowing for equal contribution to the global model.

Similarly to FedProx [61], they use a constraint term to restrict local weights to be closer to the

global model. Experiments with 100 devices grouped in five tiers show that FedAT outperforms

baseline FedAvg, as well as TiFL and pure asynchronous schemes like FedAsync [97].

Discussion: Presented approaches tackle soft constraints of devices by doing aggregation asyn-

chronously. Asynchronous approaches allow for an arbitrarily high granularity in the heterogene-

ity, since every device can upload its model at any time. While the straggler effect can be fully ad-

dressed that way, asynchronous aggregation suffers from stale updates. The scale of heterogeneity

is therefore limited by the effect of stale updates. From current research, it can be concluded that it
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is unknown whether synchronous or asynchronous aggregation is ultimately preferable. Results

show that, depending on the assumptions, both show advantageous properties. Further theoretical

work to study convergence properties beyond convex utility cases is needed.

5 OPEN PROBLEMS AND FUTURE DIRECTIONS

Current techniques covered in Section 4 have great potential to enable FL for applications with

device heterogeneity. However, we identify several open problems that demand further research.

Problem 1: Maintaining effectiveness under fine-grained granularity or large-scale het-

erogeneity: In most of the state-of-the-art research, tackling heterogeneity focuses on accounting

for soft and/or hard constraints. The attributes scale and granularity are often neglected, are hid-

den behind the technique, and lack discussion in the papers. The reported scale in the resources

supported by the techniques ranges from 4× to 25× [12, 41, 52, 61, 71, 77, 79, 80, 85, 101] up to 100×–

250× [25, 87], yet it remains unclear whether training at such high scales is still effective. Hence,

while all approaches show the effectiveness of their solution in certain scenarios, it often remains

unclear whether devices with low resources or stale devices can make a meaningful contribution

that advances the global model. Especially in iid settings, current state-of-the-art works do not

compare themselves against trivial baselines such as dropping of devices (accepting a smaller total

share of data), which is the solution that current real-world FL applications like GBoard employ. A

second trivial baseline is deploying a low-complexity model for all devices [80], which can already

outperform some state-of-the-art techniques. A potential solution to maintaining effectiveness

for large-scale heterogeneity with fine-grained granularity could be the interplay of system-level

and NN-level approaches, as their favorable properties could complement each other. For exam-

ple, an NN-architecture subset technique [25, 41] could be complemented by system-level client

selection [75] or asynchronous aggregation [18, 87, 97] to increase granularity w.r.t. throughput.

However, while system and NN architecture level mechanisms are often orthogonal, it remains

unclear how this would affect the convergence and reachable accuracy.

Problem 2: Comparability: Current research lacks comparability w.r.t. the resource model.

This is especially the case in techniques using subsets, where some model resources in terms of

power usage [104], while others count the number of parameters [2, 25, 41, 79], the number of

multiply accumulate-operations [41, 80], or the required training time [77]. Therefore, the sup-

ported scale of heterogeneity by the techniques is not comparable. Similarly, also the granularity

of heterogeneity lacks discussion. While distillation-based approaches allow for different model ar-

chitectures, only a small number of model architectures are used in the experiments (e.g., ResNet20,

ResNet32 [36], and ShuffleNet [107] in FedDF [63]). The complexity differences in training these

various types of networks are not further evaluated. Other approaches support two to five groups

of devices [12, 13, 41, 91], which may lead to inefficient use of available resources, as discussed

in Section 3.2. In general, different scales and granularities of the heterogeneity have to be taken

into account to address real-world heterogeneity aspects such as varying peak performance and

memory capacity, as well as resource contention. For a broader deployment of FL solutions in real-

world use cases, these aspects require further discussion. Besides that scale of heterogeneity, also

the number of devices and their share of data influences the performance of the techniques. As of

now, there is no standard scenario. As a result, some approaches evaluate their techniques with

over 1,000 devices, while others evaluate only a setting with two participants. Benchmark scenar-

ios to compare FL techniques have been proposed only recently [10]. However, these benchmarks

do not represent the resource constraints of devices as it is present in real-world applications. Ad-

ditionally, available state-of-the-art FL simulation frameworks like FLOWER,2 FedML,3 TensorFlow

2https://flower.dev.
3https://fedml.ai.

ACM Computing Surveys, Vol. 55, No. 14s, Article 334. Publication date: July 2023.

https://flower.dev
https://fedml.ai


Federated Learning for Computationally Constrained Heterogeneous Devices: A Survey 334:21

Federated,4 or OpenFL5 do not implement device heterogeneity specifically, memory, throughput,

or energy constraints. To solve this issue, first, a more device-representative benchmark for FL is

required that more realistically models the environments of IoT, smartphones, or sensor networks.

Second, heterogeneity support in popular FL frameworks is required.

Problem 3: Unexplored tradeoffs and non-iid data scenarios: The objectives of the dis-

cussed techniques are mostly accuracy or convergence speed. Only a few consider energy effi-

ciency in heterogeneous settings, which is crucial in many embedded or IoT scenarios [24] where

the available energy is limited. While utilizing all devices up to their capabilities speeds up train-

ing the most, it might not always be a very energy-efficient way to train the global model. Limited

energy leads to a tradeoff between using the energy for communication or computation [91, 95],

which has not been explored in heterogeneous FL. Besides tradeoffs between communication and

computation, also tradeoffs between computation and memory exist, where intermediate results

can either be stored in memory or dynamically recomputed when needed [53], which are unex-

plored in the context of resource-constrained FL.

Another rather unexplored problem in FL with computationally constrained devices is the ef-

fects of non-iid data. A case currently not present in the literature is the case when the data distri-

bution is non-iid over the devices, but additionally, there is a correlation between the data and the

devices’ resources. Yet, a scenario like this is expected to occur in real-world FL applications [68].

A first example is a set of sensors with different power sources that sample environments that

differ from each other. Similar examples can be found in a smartphone FL application. To meet

a price target for certain markets, devices with different capabilities are manufactured. Different

markets can lead to differences in device usage, hence, differences in the collected data. This may

lead to a non-iid data scenario where weak devices hold a certain type of data that, due to fairness

reasons, cannot be excluded and has to be incorporated into the global model. This kind of non-iid

scenario exacerbates the need to learn from any device available.

Further research is required to identify what the effect of these correlations is and how their

effects on the global model can be mitigated to enable a fair representation of any user group in

the global model.

6 CONCLUSION

This survey provided an overview of FL under computation heterogeneity among the participating

devices, as it occurs in many practical scenarios. We analyzed the computational constraints in

smart devices that lead to heterogeneity and presented a categorization that groups the constraints

into hard constraints and soft constraints that vary over devices, rounds, and time and can lead to

heterogeneity of different scales with different granularities. We provided a comprehensive survey

on current research on FL under heterogeneous computation constraints and how the techniques

tackle the different proprieties of heterogeneity. Finally, we identify several open problems, such

as the lack of comparability, problems with the solutions’ effectiveness w.r.t. the heterogenities’

scale and granularity, and unexplored tradeoffs.
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