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Abstract 

In recent years, with the rapid growth of edge data, the novel cloud-edge collaborative architecture has been pro-
posed to compensate for the lack of data processing power of traditional cloud computing. On the other hand, on 
account of the increasing demand of the public for data privacy, federated learning has been proposed to compen-
sate for the lack of security of traditional centralized machine learning. Deploying federated learning in cloud-edge 
collaborative architecture is widely considered to be a promising cyber infrastructure in the future. Although each 
cloud-edge collaboration and federated learning is hot research topic respectively at present, the discussion of 
deploying federated learning in cloud-edge collaborative architecture is still in its infancy and little research has been 
conducted. This article aims to fill the gap by providing a detailed description of the critical technologies, challenges, 
and applications of deploying federated learning in cloud-edge collaborative architecture, and providing guidance on 
future research directions.
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Introduction
In recent years, with the advancement of manufacturing, 
the number of IoT devices such as smartphones, smart-
watches, and tablets has grown exponentially. According 
to IoT analytics, dedicated to IoT market research, the 
number of IoT devices worldwide has reached 12.3 billion 
in 2021, and it is still increasing rapidly. At the same time, 
with the advancement of sensor and communication 
technology, the ability of IoT devices to collect behavio-
ral data of users (often involving their privacy) is getting 
stronger, making the scale of the edge data rise massively. 
The maturity of machine learning (ML) and deep learn-
ing (DL) has made the huge amount of edge data of great 
value [1], such as spelling prediction [2] and personalized 
recommendation [3]. More applications are landing in 
many other industries, such as intrusion detection in the 

Industrial Internet of Things (IIoT) [4], AI diagnosis in 
the healthcare industry [5], and traffic analysis in smart 
transportation [6].

However, due to the increasing demand for informa-
tion security and privacy, many privacy protection laws 
have been enacted in recent years, such as GDPR [7] 
and the Consumer Privacy Bill of Rights in the U.S. [8], 
which makes the traditional centralized data processing 
methods no longer suitable and gradually popularizes 
distributed machine learning methods. In cloud-based 
centralized ML, the data involved in training are pooled 
into a data center where ML training is performed, 
and the model parameters are sent back to each client 
after the training is completed. However, since the raw 
data often involves private information of users, there 
is a significant risk of privacy leakage when gathering 
the data into a central data pool [9]. In addition, due to 
competing interests, data from large enterprises is often 
not interoperable, resulting in massive “data islands” at 
the edge, while machine learning is a technology based 
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on a large amount of data, which makes the advance-
ment of ML seriously hampered [10]. In response to the 
issues, federated learning (FL), a distributed machine 
learning method, has been proposed in recent years 
to solve the problem of “data islands”, which allows the 
raw data involved in training to be kept on the user 
side, and then the local model parameters are sent to 
a model manager without sharing the raw data. The 
model manager then performs the local model aggre-
gation, and start another round of training. Thus, 
FL is considered to be a promising machine learning 
method for allowing multiple data pools for confiden-
tial training.

In addition to the shift of central ML to distributed 
FL, conventional centralized computing architecture is 
also shifting to be distributed. Cloud computing enables 
synchronization of data from multiple ends and improve 
IoT devices by providing data storage and management, 
together with fast computing services in the cloud [11], 
which was once considered as the future of the informa-
tion age [12]. However, various reasons make cloud com-
puting unable to provide satisfactory services in current 
IoT. In addition to the security risk of collecting data in 
a central data pool, the cloud computing model suffers 
from the following issues: 

1 Computation challenges Although the computing 
power of the cloud centers is increasing yearly, the 
rate of their increase is far from the growth rate of 
the scale of edge data to be processed.

2 Communication challenges In cloud computing, cli-
ents need to communicate with remote cloud servers, 
which are geographically distant and need to build 
long communication links, resulting in extremely 
inefficient communication and network congestion. 
What’s more, the communication delays cannot well 
support many current real-time demanding applica-
tions, such as driverless cars [13]. In addition, in ML 
for improving the quality of service (QoS), long-dis-
tance communication consumes much device power, 
which degrades QoS.

Due to these issues, centralized computing model is 
shifting to distributed computing model, where the 
cloud-edge collaborative model is widely considered to 
be a promising computing architecture for the future 
[14]. Edge computing (EC) processes data anywhere on 
the path from where the data is generated to the cloud 
computing center, which makes the communication of 
clients more efficient and obtains much less communi-
cation latency to support real-time demanding applica-
tions, and upward EC can share the huge pressure of the 
cloud computing centers, which is a good solution to the 

realistic problems we described above, therefore, EC has 
been carefully studied [15–17].

Both federated learning and cloud-edge collaborative 
computing architectures are based on distributed strate-
gies, and how to reasonably deploy federated learning in 
the cloud-edge collaborative architecture is the concern 
of this article. We believe that federated learning based 
on cloud-edge collaborative architecture is the key infra-
structure of future web services, which is recognized by 
many peers [18–20], and further in-depth research on it 
is crucial for the development of information science.

Li et  al. [21] and Yao et  al. [22] provided detailed 
reviews about cloud-edge collaborative architecture, 
respectively emphasized detailed collaborative tech-
niques and the collaborative learning mechanisms adapt-
ing to the cloud-edge collaborative architecture including 
pretraining models, graph neural networks and reinforce 
learning, while they have no discussion upon the promis-
ing decentralized federated learning in the collaborative 
architecture. There are much research aimed at discuss-
ing federated learning in edge computing environment 
[19, 23], however they emphasized EC-enabled tech-
niques and omitted the collaboration among the system 
entities. In this paper, we discussed FL in the cloud-
edge collaborative architecture, our contributions are as 
follows:

• Introduces the collaborative learning mechanisms for 
cloud-edge collaborative architecture.

• Identifies the key technologies and challenges for 
deploying federated learning in cloud-cloud collabo-
rative architecture.

• Presents promising applications of federated learning 
based on cloud-edge collaborative architecture.

• Presents future research directions for federated 
learning based on cloud-edge collaborative architec-
ture.

Cloud‑edge collaborative architecture
Edge computing
Edge computing (EC) is an emerging computing model 
that considers leveraging computation resources on the 
edge of the network. The model consists of three layers: 
cloud computing center, edge servers, and IoT devices, 
where “edge” means any computation and communica-
tion resources between the path from the raw data to the 
cloud cloud servers [24]. Edge computing transfers part 
of the computation tasks from the cloud to the edge serv-
ers, which improves communication efficiency that is sig-
nificant in Iot and satisfy real-time requirements [25]. It 
is worth noting that EC will not replace cloud computing 
but assists and expands it, which is still the primary and 
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fundamental computing paradigm. The two are comple-
mentary. In recent years, the energy consumption gener-
ated by cloud computing is also increasing year by year 
and some time-sensitive applications can not be well sup-
ported by cloud computing for the unsatisfied latency. 
Conventional cloud computing needs to be modified and 
EC is promising in some emerging applications such as 
video surveillance, smart cities, and intelligent trans-
portation, but EC also needs to consider the following 
challenges:

• Program Migration: In edge computing architecture, 
edge nodes often have different Operating Systems 
(OS), making some code on edge devices run incor-
rectly or fail to run when transferred to edge servers.

• Security: On one hand, the resources of edge devices 
are insufficient to support large scale traditional pri-
vacy methods, e.g. Homomorphic Encryption (HE). 
On the other hand, some edge nodes and clients may 
be malicious attackers due to loose management, 
which may corrupt the accuracy of the joint model.

• Service Continuity: Usually, edge devices are con-
nected to the edge server that is geographically close 
to it. However, in some scenarios, such as the Vehic-
ular Networks, edge devices tend to move to a place 
that is close to another edge server and connect with 
the new one. It is a challenge to keep the services 
continuous in the dynamic process.

Cloud‑edge collaboration
Cloud-edge collaboration refers to the novel comput-
ing architecture where cloud servers and edge servers 
cooperate with each other, jointly providing computing, 

storage, and other services. It is widely considered to be 
a promising computing paradigm for the future [26]. In 
the architecture, Edge Computing (EC) mainly processes 
data with high real-time requirements [27]. Due to the 
data in IoT is usually not disposable, the pre-processed 
data still needs to be gathered from the edge servers to 
the central cloud servers. Cloud computing mainly pro-
cesses non-real-time and long-period data and conducts 
management of edge applications, providing services 
such as data backup and big data analysis. The cloud-
edge collaborative architecture is shown in Fig. 1.

Cloud-edge collaboration involves the collaboration of 
IaaS, PaaS, and SaaS between the edge and the cloud. In 
general, IaaS, PaaS, and SaaS are three basic models of 
cloud and edge computing, or three basic services pro-
vided by cloud and edge computing providers. The spe-
cific meanings of IaaS, PaaS, and SaaS are as follows:

• IaaS Infrastructure as a Service. It refers to the pro-
visioning of infrastructure services that are originally 
deployed locally, which includes services such as net-
working, computing, and storage hardware, as well 
as virtual machines. At the same time, IaaS providers 
also give a number of accompanying infrastructure 
services at the same time, including real-time billing, 
monitoring, log acquisition, firewall and security pro-
tocols, backups and replies, etc. IaaS provides great 
convenience to various organizations because when 
organizations need to develop a new product, they 
can not bother to construct a specific infrastructure, 
but directly purchase or rent the corresponding one 
from the IaaS provider.

• PaaS Platform as a Service. It is based on IaaS for 
that PaaS not only includes the infrastructure hard-

Fig. 1 The cloud-edge collaborative architecture
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ware facilities but also provides infrastructure-
based software services including operating sys-
tems, middleware such as databases, etc. Other 
PaaS services are application design and develop-
ment, application testing and deployment, web ser-
vice integration, information security, and database 
integration.

• SaaS Software as a Service. It is a software distribu-
tion model where the provider hosts applications and 
makes them available to end users over the Internet. 
Unlike IaaS and PaaS, SaaS products are frequently 
marketed to both B2B and B2C users. Users do not 
need to care about setting up the working environ-
ment they need, including the installation of applica-
tions and system software, which are all contained in 
SaaS.

The upper layer of cloud-edge collaboration involves 
many aspects of collaboration, including resource col-
laboration, application collaboration, data collabora-
tion, intelligence collaboration, service collaboration, 
and business collaboration, and the lower layer relies on 
three basic service models of cloud and edge, namely 
IaaS, PaaS, and SaaS, where the resource collaboration of 
virtual resources such as computing and network relies 
on the collaboration between edge IaaS model and cloud 
IaaS model. Business collaboration, data collaboration, 
intelligence collaboration, and application collaboration 
rely on the collaboration between edge PaaS and cloud 
PaaS. And service collaboration relies on the collabora-
tion between the  edge SaaS model and the  cloud SaaS 
model. In this paper, we aim to explore the application 
and deployment of federated learning in the six types of 
collaboration in the upper layer of cloud-edge collabora-
tion. What the above six collaboration means is demon-
strated as follows:

• Resource Collaboration Similar to cloud servers, edge 
servers are equipped with a relatively small amount 
of virtual resources such as computation and net-
work. Edge servers have local resource management 
policies to allocate precious virtual resources. At 
the same time, the cloud server stands in a global 
perspective to observe the overall situation of some 
applications and schedules as well as manages the 
virtual resources for the edge servers that are distrib-
uted geographically adjacent to each other. Resource 
collaboration can provide better services to end-
users. Computation offloading is achieved by offload-
ing  the end-user’s local compute tasks to the cloud 
or edge servers, and the offloading decision process 
is the means of resource collaboration. Considering 
other resources like energy, the architecture can pro-

vide the smallest possible service latency while mini-
mizing energy consumption [28].

• Data Collaboration The job of the edge server is to 
perform  the initial collection and pre-processing of 
data generated close to the user side, which often 
involves the user’s privacy, and then hand over this 
simply processed data to the cloud, which takes a 
global view of the extensive data for long-term obser-
vation and processing.

• Intelligence Collaboration The edge server performs 
simple model inference on the collected edge data, 
and the cloud is responsible for aggregating the infer-
ence models from the edge and performing complex 
centralized training, and then delegating the final 
models to the edge servers, which involves typical 
machine learning methods such as deep learning 
models and techniques such as model splitting and 
model compression techniques.

• Application Collaboration PaaS services for edge 
servers enable most edge nodes to have a mainstream 
application deployment and runtime environment, 
which schedule and manage the operation of multi-
ple processes locally. Cloud PaaS manages and sched-
ules the processes of multiple edge nodes.

• Service Collaboration Due to the law as well as the 
number of users and other factors, the service level of 
application products often varies in different regions, 
and service collaboration is the key technology to 
achieve flexible service distribution. Edge SaaS sub-
mits to the service distribution strategy of cloud SaaS 
to realize SaaS services, and cloud SaaS needs to pro-
pose a  service distribution strategy to edge SaaS in 
addition to providing cloud SaaS services.

• Business Collaboration Edge servers provide modu-
lar, micro-services-based application instances and 
the cloud provides the ability to orchestrate business 
according to customer needs.

The design and deployment of cloud-edge collabora-
tive architecture are still in their infancy, where solving 
resource collaboration, data collaboration, intelligence 
collaboration, Application collaboration, business collab-
oration, and service collaboration are six significant issues 
[21]. Currently, researchers have tried to apply cloud-edge 
collaboration to possible fields, and the main applica-
tion areas are concentrated in content delivery network 
(CDN), Industrial Internet of Things (IIoT), Energy, Smart 
Home, Intelligent Transportation, Secure Monitoring, 
Agriculture, Healthcare, and Cloud Games [29].

P2P collaborative architecture
Apart from the client-server collaboration between the 
edge servers and the cloud server, edge nodes can also 
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collaborate with each other and comprise Peer-to-Peer 
(P2P) collaborative architecture, further improving the 
performance of the architecture, which needs to refer 
to the P2P network. P2P network models can be classi-
fied into centralized P2P and distributed P2P [30]. In 
the centralized P2P model, one or more cloud servers are 
deployed to record the dynamic status of the distribution 
of resources among the peers, while distributed P2P is 
the pure network of peers, each of which has equal privi-
lege. Therefore, we are supposed to refer to centralized 
P2P in this paper, where each edge node can not only col-
laborate with the cloud servers but also with other nearby 
edge nodes. Introducing decentralized P2P networking 
among the edge servers, the collaborative architecture 
can be more robust for that P2P mitigates the single 
point of failure in the naive cloud-edge architecture [31]. 
The introduction of P2P can make the architecture more 
flexible and robust when the edge nodes are mobile [32]. 
Therefore the application of P2P network in cloud-col-
laborative architecture is promising, Tang et al. [33] used 
P2P network to realize offloading in MEC and obtain effi-
cient and feasible performance. Currently, the application 
of P2P in cloud-edge collaborative architecture is still in 
its infancy, most research ignores the direct collabora-
tion among the edge nodes. In this paper, we touch upon 
some applications of P2P networks in cloud-edge collab-
orative architecture.

Federated learning
In order to keep the training data in clients, Federated 
Learning (FL) is proposed, which is a decentralized ML 
framework. A joint model resides in the cloud server, and 
the data for training are distributed in different devices. 
It is worth noting that the involved data from different 
sources are usually not independent and identically dis-
tributed (Non-iid). Mcmahan et al. [2] proposed the con-
ception of FL and the first FL algorithm, i.e., Federated 
Averaging (FedAvg). FedAvg mainly includes the follow-
ing three steps: 

1 Initialization: The global and local model parameters 
are initialized to the same value.

2 Local updates: A certain number of clients are 
selected randomly. Each selected clients perform gra-
dient descents on their local data.

3 Global update: Global model parameters are updated 
as a weighted average of all local model updates.

After iterating 2 and 3, a better model can be obtained. In 
FedAvg, only the model parameters are involved in com-
munication, and raw data transmission is avoided.

A widely received taxonomy of federated learning is: 
(i) Horizontal Federated Learning (HFL), (ii) Vertical 

Federated Learning (VFL), and (iii) Federated Trans-
fer Learning (FTL) [34]. HFL is the union of samples, 
which is applicable when most features while few sam-
ples overlap e.g. sharing diagnosis data between hos-
pitals in different regions for training a more robust 
model to make accurate diagnoses. VFL is suitable 
when there are many samples overlapping and few fea-
tures overlapping, e.g., banks and Internet companies 
sharing data to model client credit for risk control. FTL 
applies when both the samples and the features over-
lap little, e.g., start-up financial companies can get data 
from open financial data to learn and improve their ser-
vice capabilities.

While federated learning is safer compared with the 
conventional centralized ML and can efficiently process 
data silos, it can not always work. The main challenges 
in FL are statistical heterogeneity, system heterogeneity, 
and model heterogeneity [35]. Statistical heterogeneity 
is the case when the available local data can not repre-
sent the overall distribution System heterogeneity refers 
to clients participating in FL often having distinct hard-
ware conditions, such as network, battery, computing 
ability, and storage capacity. Some devices may be una-
ble to return the local updates in time due to their con-
strained resources, and most FL setting is synchronous, 
which may prolong the convergence. Model heteroge-
neity usually occurs in business-to-business (B2B) FL, 
where different clients may have different requirements 
for the model due to their different expectations, but 
in FL only one global model is provided for each client, 
and having good prediction performance for all the cli-
ents is a challenge. Additionally, most of the previous FL 
algorithms assume that clients are honest, which poses a 
security risk. The problems mentioned above make the 
model trained by FL may not outperform the local model 
for some clients, which makes the client reluctant to 
take part in the training. In view of the above situation, 
the evolution of federated learning is significant for IoT 
applications, which are highly dependent on addressing 
challenges, e.g., statistical heterogeneity, system hetero-
geneity, model heterogeneity and secure management, 
where statistical heterogeneity is more pervasive, which 
we introduce as follows:

Statistical heterogeneity
Statistical heterogeneity is the prominent challenge fed-
erated learning is confronted with. The available local 
data can not represent the overall distribution [36]. We 
assume a training task including features x and labels 
y. The union local data distribution of client i can be 
described as P(x, y). There are many forms of Non-iiD in 
the different learning tasks:
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• Feature distribution skew (covariate shift): the mar-
ginal distribution P(x) varies between different cli-
ents. Such as, the same verbal content spoken out 
by different people can be distinct in terms of timbre 
and tone in speech recognition [37].

• Label distribution skew (prior probability shift): the 
marginal distribution P(y) differs across clients. In 
different usage environments, the same feature can 
generate multiple labels.

• Same label corresponding to different features (con-
cept drift): the conditional distribution P(x|y) var-
ies. Similar features in certain clients at a particular 
time or in various places can correspond to multiple 
labels.

• Same feature corresponding to different labels (con-
cept shift): the conditional distribution P(y|x) differs, 
e.g., in Gboard, the same words “I want to” will be 
predicted to “go sleeping” for user A and “have some-
thing to drink” for user B.

• Quantity skew or unbalancedness: Participants in FL 
may be as small as a smartwatch to as large as a hos-
pital, where the number of data varies considerably.

Mcmahan et al. [2] demonstrated that FedAvg works well 
on Non-IID data, but much research [38–40] found that 
the derived model precision will degrade remarkably on 

Non-IID data. To measure Non-iid, Li et  al. [36] pro-
posed a way to evaluate the extent of Non-IID with the 
sum of the global objective function and local objective 
function, which is proved to be a positive correlation with 
the extent of Non-IID. Much research had been done to 
optimize FL from the aspect of statistical heterogeneity 
[41, 42] and achieve excellent results.

Edge federated learning
In the cloud-edge collaborative architecture, FL can be 
optimized by the cloud-edge collaboration and in this 
paper we call it edge federated learning. However, the 
complex environment and heterogeneity of IoT bring 
significant challenges to deploying edge federated learn-
ing [35]. As shown in Fig. 2, we introduce a popular edge 
FL framework. The framework consists of three layers: 
the central cloud server, edge servers, and edge devices, 
which are the three essential elements in the edge com-
puting model.

• Edge devices: Edge devices are usually portable 
devices distributed on the edge of the network, e.g., 
smartphones, smartwatches, and tablets. They are 
usually equipped with relatively limited computing 
and storage resources in terms of portability, which 
means that they are not good at performing large-

Fig. 2 The framework of edge federated learning
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scale computing tasks. They collect and store much 
user-generated data, and the data often contains 
users’ privacy.

• Edge servers: Edge servers are typically positioned in 
proximity to edge devices, the communication link 
is short, and the bandwidth resources are relatively 
abundant, so the communication is fast and efficient 
between the edge servers and the edge devices. Edge 
servers usually have much richer computing and 
storage resources and a more stable power supply 
than edge devices. They are promising to share the 
computing tasks of edge devices and expand their 
capabilities.

• Cloud server: Cloud computing centers are geograph-
ically far from edge devices and edge servers, with 
slower communications and limited bandwidth. The 
operators provide the central servers with vast stor-
age resources and mighty computing power, which 
are suitable for large scale computing tasks.

Different from traditional FL [2], in edge federated 
learning, the cloud server first distributes an origi-
nal global model to the edge servers, and edge devices 
request the assigned edge server to download the initial 
model parameters. Similarly, edge federated learning 
allows the local model outputs on the edge devices to be 
aggregated on the edge server first [19], after iterations, 
global aggregation is performed between the edge serv-
ers and the central server. The central server then dis-
tributes the global model parameters to the edge devices 
through edge servers when the model converges to the 
set accuracy.

Types of federation
There are mainly two FL settings in real-world appli-
cations [20], i.e., cross-device FL and cross-silo FL. 
They apply to different application scenarios respec-
tively. Cross-device FL is usually applied to the learning 

between a large number of IoT devices to improve QoS, 
e.g., spelling prediction. Cross-silo FL is often used in 
training between large institutions to maximize predic-
tion accuracy, e.g., collaborative training of disease pre-
diction models with higher accuracy among multiple 
medical institutions. It is worth noting that this taxon-
omy does not cover all application scenarios of FL. We 
list the differences and commonalities as follows:

Differences
We compared the two different FL settings, as shown in 
Table 1. The significant feature of cross-device FL is the 
large-scale clients, which brings challenges such as com-
munication bottlenecks and high concurrency. Cross-silo 
FL involves much fewer clients where a large number of 
samples are reserved by each client, requiring the clients 
to perform much more computation.

Commonalities
Although there are many differences between cross-
device FL and cross-silo FL, they all originate from con-
ventional FL and there are also many similarities between 
them. We demonstrate these similarities in architecture 
and challenges as follows:

Architecture

• They all store the data locally and each client cannot 
obtain the data of other clients.

• Different from the network topology of peer-to-peer 
communication, both of the two FL settings are star 
network topologies. The center is a training manager, 
and the nodes are clients.

Challenges

• They are all confronted with privacy and security 
challenges. Privacy leakage in cross-device FL may 
lead to users’ personal data being illegally used and 

Table 1 Differences between cross-device FL and cross-silo FL

Aspects Cross‑silo FL Cross‑device FL

Setting Clients are usually large institutions. Each client reserves a 
large number of training samples and has sufficient training 
resources.

Clients are usually portable devices and lack training resources.

Data availability Clients are almost always available Only some clients can be used for training at certain time 
periods.

Federation scale The number of clients is usually less than 100. The amount of the client is about 1010.

Primary bottleneck Communication and computation Communication

Addressability Each client is assigned an identity. Customers usually cannot be directly indexed.

Client reliability Usually few errors. High error rate.

Data partition axis Horizontal or vertical. Horizontal.
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data leakage in cross-silo FL may cause an inestima-
ble economic loss to the institutions.

• The training resources consumed by the two set-
tings are all huge. The communication consumed in 
cross-device FL is mainly due to the huge number of 
clients. Cross-silo FL needs to process massive data 
samples, requiring much computation.

• Both of them need to solve statistical heterogeneity, 
system heterogeneity, and model heterogeneity.

Cross‑device federated learning based on cloud‑edge 
collaboration
Compared with the traditional cross-device FL, cross-
device FL can be further improved in cloud-edge col-
laborative architecture. By deploying edge servers, edge 
networks can protect edge traffic, and the edge servers 
under attack can be withdrawn from training, where 
attacks on a local training governed by an edge node 
will not affect other local training [43]. In addition to 
the security enhancement, local computation tasks per-
formed by clients can be offloaded to the edge servers in 
a secure manner [44], and this can provide low-latency 
computation services to mobile devices with sufficient 
communication bandwidth between clients and the 
edge servers, thus reducing the computation of clients 
involved in the training.

Cross‑silo federated learning based on cloud‑edge 
collaboration
In the cloud-edge collaborative architecture, cross-silo 
FL has more possibilities. In cross-silo FL, the local data-
set in each client is more suitable to be seen as a separate 
learning task rather than the set of data fragments and 
one of the most important challenges is that when the 
data distribution between silos is significant, there will be 
serious Non-IID issues. In the traditional cloud comput-
ing architecture, meta-learning and transfer learning [45] 
are often used to solve Non-iid. Cloud-edge collaborative 
architecture provides a novel method of solving Non-iiD, 
i.e., Hierarchical Federated Learning based on clustering. 
The easiest way to design a cluster-based method is to 
divide clients according to data distribution and put cli-
ents with similar data distributions in the same learning 
task, and manage through the edge servers [46], Beiggs 
et al. [47] confirmed that this method is effective to solv-
ing Non-iiD issues.

Split learning
Split learning (SL) also called split neural networks 
(splitNN) was first introduced by MIT Labs. SL is a 
distributed and private deep learning technique, aim-
ing to train a deep neural network over multiple data 

clients and one central server. SL can satisfy the follow-
ing requirements: (i)data clients do not want their local 
sensitive data seen by other clients or the central server 
(ii) The central servers can keep some net parameters for 
inference (iii) The central server can control the overall 
architecture of the training. In SL, the novelty is that the 
deep neural network is split into multiple sections, and 
each of them is trained on a different data client. Every 
client trains one part of the deep neural network to the 
same layer, that is called cut layer, and then the outputs of 
the cut layer on the current client are transferred to the 
other client rather than the raw sensitive data. By orderly 
relaying the forward propagation, the rest of the forward 
propagation can be completed. Due to the relay-based 
training process, split learning is relatively slow than 
some other distributed machine learning methods, e.g. 
federated learning. After forward propagation, the gradi-
ents are back propagated from the last layer until the cut 
layer in a similar fashion, similar to forward propagation, 
only the gradients at the cut layer on clients are trans-
ferred to the central server and the rest of back propa-
gation is completed in the central server [48]. The above 
process is continued until the splitNN is trained and this 
process is the simplest configuration for SL. There are 
many other possible configurations for SL and we intro-
duce other two of them.

• U-shaped SL The above simple SL configuration are 
not private at some cases when the label is sensitive, 
such as the health situation and the financial status 
of the data clients. The U-shaped configurations can 
compensate for the deficiency. At end layers, the deep 
networks in the central servers are wrapped around 
and the outputs are transferred to data clients, from 
which the clients compute the gradients and perform 
back propagation without exchanging labels.

• Vertical SL Similar to VFL we discussed above, ver-
tical split learning (VSL) applies to the scenarios 
when the data samples overlap a lot while few fea-
tures overlap. When training a splitNN between two 
organizations when they have many common clients 
but they run different businesses, they two firstly 
train different partial models to the cut layer, then the 
outputs of the two cut layers are combined and trans-
ferred to the central server for the rest of the training. 
Then iterate the process until convergence.

SL is promising for its huge improvement of computa-
tional resource efficiency and the reduced communica-
tion costs over other distributed learning techniques 
like FL, however, SL is slower than FL for its relay-based 
training process. Therefore, Chandra et  al. [48] com-
bined the two popular distributed learning methods and 
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proposed novel architecture combining their advantages. 
Besides the current distributed learning techniques, more 
work needs to be done to realize efficient and secure dis-
tributed learning.

Key technologies of applying federated learning 
into cloud‑edge collaborative architecture
This section focuses on three key technologies for 
deploying federated learning in the cloud-edge collabora-
tive architecture, i.e., communication, privacy and secu-
rity, and personalization. In the next two sections we will 
talk about the applications and challenges respectively, 
and the researcharchitecture is shown in Fig. 3.

Communication
In the previous section, we illustrated that communi-
cation bottlenecks are a common challenge for both 
cross-device FL and cross-silo FL. Although clients can 
communicate more efficiently with edge servers, in FL, 
clients always need to perform many rounds of commu-
nication to make the model converge, and the size of a 
local model can be on a large scale, which may consume 
much training cost of the clients and incur unacceptable 
communication latency, especially in cross-device FL. 
Therefore, achieving efficient communication is widely 
considered to be a key technology for deploying feder-
ated learning in cloud-edge collaborative architecture. 
After research, we have compiled three effective ways to 
achieve efficient communication as follows:

End computing
Considering (i) The computing power of mobile devices is 
increasing and (ii) The data in clients is on relatively small 

scale, mobile devices are considered to be capable of per-
forming more local computations. Moreover, users tend 
to place more emphasis on communication resources 
compared to computational resources, e.g., users tend to 
participate in FL only if they are connected to WiFi. In 
view of the above situations, end computing tries to make 
FL clients perform more local computations, and edge 
servers perform more edge aggregations before global 
updates, accelerating the convergence rate of the model, 
to reduce the overall communication rounds. Mcmahan 
et al. [2] proposed two ideas for increasing computation: 
(i) increase the number of gradient descents on edge 
devices. (ii) increase parallelism to involve more clients in 
training. However, considering that the increase in com-
putation is limited, the optimal trade-off between compu-
tation and communication is a problem to be addressed. 
In their experiments, simulations based on datasets con-
forming to the IID distribution showed that (i) increas-
ing the amount of computation on the clients can reduce 
the number of communication rounds by more than 30 
times. (ii) There is a threshold for the reduction of com-
munication rounds by increasing parallelism, and when 
the threshold is exceeded, the number of communication 
rounds hardly decreases.

Aggregation control
Aggregation control reduces the number of communi-
cations by controlling the frequency of aggregation and 
the number of devices involved. Mills et al. [49] proposed 
a distributed ADAM optimization to tune FedAvg. To 
reduce the number of iterations required for conver-
gence, they explored novel compression techniques and 
proposed a communication-efficient variant of FedAvg, 

Fig. 3 The research architecture of federated learning in cloud-edge collaborative networks
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which they claimed could reduce the communication 
cost to one-sixth of FedAvg. Liu et  al. [50] considered 
deploying federated learning in the vehicular networks 
and they proposed a new communication protocol, Fed-
CPF. The method allocates part of clients to participate 
in the communication to avoid major concurrency and 
limits the communication time in each round, which pro-
vides a flexible solution. In [51] and [52], asynchronous 
aggregation is studied to avoid communication inefficien-
cies caused by lagging clients.

Model compression
In FL based on cloud-edge collaborative architecture, 
transferring gradient vectors between clients and edge 
servers is an unavoidable burden, but leveraging some 
approaches such as quantization, sparse and low-rank 
approximation to compress the models that clients need 
to upload, which means uploading partial rather than 
complete information, can improve the communica-
tion efficiency. However, since model compression is a 
lossy and inaccurate process, it is required to be able to 
maintain the training quality. Albasyoni et al. [53] inves-
tigated the trade-off between the number of bits required 
to encode the gradient vector and the compression error. 
They designed two trade-off operators to cope with 
two different scenarios, and they found that the quality 
of model training hardly degraded after the compres-
sion. Sattler et  al. [39] designed a specialized compres-
sion method, i.e., Gradient Ternary Compression for FL, 
which is an extension of TOP-K gradient sparsity and 
performs well in their four reference FL tasks. We con-
jecture that model compression methods such as STC 
are equally effective in cloud-edge collaborative archi-
tectures, i.e., model communication between edge-client 
and cloud-edge can be well improved by introducing 
appropriate model compression methods, maintaining 
the training quality of the models and achieving efficient 
infrastructure services.

Privacy and security
There are usually two hypotheses in most cloud-based FL 
frameworks: (i) All devices involved in FL including cli-
ents and edge servers are honest. They strictly abide by 
the requirements of the FL manager. (ii) All clients can 
not get access to the data from other clients. They sim-
plify the FL system, but the edge servers and clients may 
not be fully trusted in cloud-edge collaborative architec-
ture, and malicious attackers can easily participate in FL, 
without considering these two assumptions it is impos-
sible to make FL reliable infrastructure in the cloud-edge 
collaborative architecture, which may well cause privacy 
leakage and inability to defend against illegal attack [54], 

disrupting the social order and bringing negative impact 
to clients. Therefore, security and privacy are critical 
technologies when deploying FL in cloud-edge collabora-
tive architecture.

Security
FL is designed to protect the confidentiality of the train-
ing data in clients, which means the aggregators (edge 
servers or cloud servers) have no knowledge of how the 
uploaded vectors are generated, and thus FL is vulnerable 
to the malicious vectors uploaded. e.g. (i) data-poisoning 
attack: arranging some malicious clients to participate in 
FL with much mislabeled data, Tolpegin et al. [55] dem-
onstrated that even a small number of malicious par-
ticipants can cause great harm to the joint model, and 
Wang et  al. [56] detailed the destructive nature of this 
attack including the hidden causes. Compared to data-
poisoning attack, (ii) model-poisoning attack, is more 
destructive. Malicious participants can introduce back-
door functionality into the joint model by model replace-
ment. Bagdasaryan et al. [57] showed that by tampering 
with the classifier, the model-poisoning attack can cause 
fatal damage to FL and the failure cannot be detected by 
FL managers for most conventional FL aggregators see all 
the clients as the same.

Two effective defenses against the above two poisoning 
attacks are proposed in [58]: (i) overall failure: for updates 
from each participant, the aggregator checks whether the 
update can improve the performance of the joint model. 
When the global model performance decreases, the cli-
ent is flagged as a possible malicious participant, and the 
aggregator identifies a client as an attacker when multiple 
rounds of updates are found to degrade the joint model. 
(ii) client differences: The goal of attackers is usually to 
make the global model classify a set of highly concen-
trated mislabeled data samples, so the attackers can also 
be determined by judiciously comparing the model size 
of any two clients. When the model updates are large, 
the client is likely to be an attacker, and after multiple 
rounds of observation, the aggregator can filter out most 
attackers.

Privacy
Although clients do not directly access the original data 
of other clients, many inference attacks can recover 
the original data from model updates and can achieve 
a quite high accuracy [59]. There are many ways to attack 
FL, e.g. (i) membership inference [60]: attackers deter-
mine whether it is in the training set for a given sample. 
(ii) Attribute inference [61]: the attacking party deter-
mines whether it is involved in training in round t for 
a given sample attribute. (iii)Feature inference: restore 
the original data of the target sample by observing the 
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information of the maliciously arranged clients. These 
attacks can easily compromise the privacy of data pro-
viders. Zhu et al. [62] explored gradient deep leakage and 
experimentally proved that the label matching of images 
and text obtained can be significantly accurate, they also 
pointed out that an effective method to circumvent the 
privacy leakage is gradient pruning. After investigation, 
we elaborate  on the promising FL privacy protection 
strategies that can be applied to the cloud-edge collabo-
rative architecture as follows:

• Differential Privacy: Traditional ML also suffers from 
privacy leakage, and many privacy-preserving theo-
ries have been proposed to safeguard the training, 
among which differential privacy (DP) is one of the 
most effective theories [63]. However, DP is harder 
to deploy and almost ineffective in more complex 
deep learning tasks, and FL its own does not pro-
vide privacy-preserving mechanisms, which popu-
larizes introducing DP into FL. DP works by adding 
artificial noise e.g. Gaussian noise to the parameters 
of the clients before aggregating, and different arti-
ficial noise brings different levels of privacy protec-
tion levels [64]. Wei et al. [65] found that (i) there is 
a trade-off between model convergence performance 
and privacy level (ii) fixing the privacy level and 
increasing the number of clients improves the con-
vergence performance (iii) fixing the privacy level 
and model convergence, FL has an optimal number 
of communication rounds. Their work is the basis for 
applying DP in cloud-edge collaborative architecture, 
where edge-client and cloud-edge updates need to 
rationalize the parameters of DP to achieve various 
trade-offs including the trade-off between commu-
nication latency and privacy level. Considering that 
DP provides a lower level of protection when the 
scale of clients is relatively small, which is ineffective 
for cross-silo FL, Triastcyn et  al. [66] improved DP 
by proposing to enhance it with a natural relaxation 
of DP (BDP). Different from DP, BDP calibrates the 
noise to the data distribution, and they claim that 
BDP provides a better level of privacy than DP for the 
same noise.

• Homomorphic Encryption: Homomorphic encryp-
tion (HE) and DP share the same goal: to guarantee 
that the updated gradient can not be deciphered by 
the attacker when the gradient is leaked. In DP, arti-
ficial noise is added to the original data, which may 
cause data loss problems due to the receiver’s inabil-
ity to decrypt the noise as well. In contrast, homo-
morphic secrecy is more secure, allowing direct 
computation of the encrypted data and only the 
encrypting party can decrypt the encrypted data. 

At the same time, HE is more complex than DP, and 
usually the shortest key length can be tens of times 
the average gradient length, making the length of the 
ciphertext unacceptable and leading to extremely 
inefficient communication. Moreover, current HE 
usually involves many modular multiplication calcu-
lations and large exponential operations, taking up 
many computing resources originally for local train-
ing, which is particularly ineffective for cross-device 
FL. Considering its security and reliability, in the 
future, optimized HE may be effective for industrial 
FL with high privacy requirements. Zhang et al. [67] 
pointed out that in HE client computation used for 
HE dominates the training time and exacerbates the 
communication pressure. They proposed batchcrypt 
to encrypt gradient in a non-exact manner, and the 
encryption process is performed on a batch set. Gra-
dient batch processing is actually not simple [68], 
and most of the generic quantization methods do 
not support FL; to achieve this, they designed a new 
quantization scheme. Besides, since this approach 
causes a loss in the accuracy of the transmitted gra-
dients, they proposed a suitable model pruning 
algorithm. Batchcrypt greatly improves the training 
speed of the model (>20%), while significantly reduc-
ing the communication (>60%), and after simula-
tions, they claim that batchcrypt also hardly reduces 
the accuracy of the joint model. Hao et al. [69] com-
bined HE and DP, which theoretically provides higher 
privacy level. DP is performed by introducing some 
noise to the raw gradient before uploading them, and 
then HE is performed, which they claimed can resist 
FL attacks jointly by edge servers and malicious par-
ticipants, and can be deployed at a large scale. How-
ever, they do not consider the two key pervasive chal-
lenges: (i) communication and (ii) computation.

Personalization
Sometimes the local dataset is too small to train a model 
with high accuracy, so clients choose to participate in FL 
with the underlying goal of getting a better model, which 
costs communication and computation resources, risk-
ing a privacy breach at the same time. However there 
are cases where the quality of the local model may be 
stronger than the joint model, e.g., a client with a large 
dataset in cross-silo FL, for which their participation in 
FL may not be beneficial. Model heterogeneity refers to 
that different clients may have different requirements for 
the model. e.g., in a word prediction task, inputting the 
same “I like ......”, different customers will obviously expect 
different prediction results. Model heterogeneity issues 
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can be addressed to some extent by applying some per-
sonalization methods. We summarize some personalized 
federation learning (PFL) methods that are applicable to 
the cloud-edge collaborative architecture as follows:

• Meta-Learning: Meta-learning researches how to 
increase the efficiency of the learning system through 
experience, which aims at finding approaches to 
dynamically search for the best learning strategy with 
the number of tasks increasing [70]. Many research-
ers have studied applying Meta-learning into FL to 
enhance the model generalization performance. Jiang 
et al. [71] discussed the possibility and advantages of 
Meta-Learning in FL and demonstrated that Meta-
learning in FL is promising in the future, and they 
pointed that FL can be seen as a natural application 
scenario for Meta-Learning. Besides, they explain the 
traditional FedAvg with Meta-learning and prove that 
results derived from fine-tuned FedAvg will be bet-
ter than merely improving the accuracy of the global 
model. Fallah et al. [72] studied a personalized vari-
ant of FL to find an initial shared model that each cli-
ent can easily adapt to their local dataset by perform-
ing a few steps of gradient descent on their local data. 
Concretely, they design the meta-functions to replace 
the global loss function in FedAvg, and the meta-
functions also applies to the local training on each 
client. Chen et  al. [73] proposed a federated meta-
learning framework FedMeta. A meta-learner rather 
than a global model is communicated in the frame-
work. Meta-training consists of two phases. The 
algorithm � trains a model f on the support dataset, 
and then the model is evaluated on the query dataset 
where parameters reflecting the training ability of the 
algorithm will be computed, after that, the parameter 
� will be updated. There are only two kinds of infor-
mation communicated: (i) initial model parameters 
(server to clients) and (ii) test loss (clients to server), 
which is safer than the naive FL setting, and FedMeta 
exhibited faster convergence and higher accuracy.

• Transfer Learning: Transfer Learning emphasizes 
the ability of the system to recognize and apply the 
knowledge and skills learned in previous tasks to 
new domains or tasks. In the case of insufficient data 
quality which is pervasive in FL, the introduction 
of Transfer Learning can better the personalization 
performance of the model. Under this mechanism, 
each client can learn their personalized model faster. 
A group knowledge transfer algorithm, FedGKT, 
is introduced in [74] which trains a small CNN on 
resource-constrained devices and transfer local 
knowledge to a central server periodically. By slightly 

modifying the existing federated learning structure, 
Liu et  al. [75] proposed Federated Transfer Learn-
ing (FTL), which enables the target domain to obtain 
enough labels from the source domain to build a flex-
ible model. However, it is challenging to implement 
FTL in practical applications for that too much com-
putation is required. They considered designing a 
framework combining FTL with HE and secret shar-
ing (SS) for privacy protection, where HE consumes 
a significant amount of computation while SS avoids 
the loss of precision with little computation. Chen 
et al. [76] applied FTL into healthcare and proposed 
FedHealth for wearable medical devices, which ena-
bled accurate and personalized healthcare sugges-
tions without compromising privacy and security.

Applications of federated learning in cloud‑edge 
collaborative architecture
In the previous section, we introduced the key tech-
nologies of deploying FL in the cloud-edge collabora-
tive architecture, and in this section, we will focus on 
the applications of FL in the cloud-edge collaborative 
architecture.

FL for computation offloading
The hardware improvement of mobile devices and the 
complexity of emerging applications are parallel. How-
ever, mobile devices are limited by the battery capacity. 
In order to extend the battery life of the mobile devices, 
the computing tasks can be transferred from the mobile 
devices [77]. However, offloading the tasks to the cloud 
server brings unsatisfied latency [78], including the com-
munication time between clients and the cloud, as well 
as cloud processing time. Therefore, offloading the tasks 
to the edge servers is a better choice, although the exe-
cution time of the edge servers is longer than the cloud 
servers, where deciding what to offload is significant, and 
the details of computation offloading is demonstrated 
in Fig. 4, including partial offloading, full offloading and 
local execution. Some research has employed Deep Rein-
force Learning (DRL) to make the offloading decision. 
Ren et  al. [79] considered combining Deep Reinforce 
Learning and FL to achieve computation offloading. In 
each client, a task queue is maintained and the tasks are 
to be offloaded to the edge servers or executed locally. 
They employed the DRL agent to make the offloading 
decision and train the agent with FL. Clients download 
the agent parameters from the edge servers, training 
locally, and then aggregate local updates through FedAvg. 
Experiments showed that their FL-based distributed off-
loading decisions reached centralized methods.
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FL for edge caching
In the cloud-based collaborative architecture, users need 
to request it from a distant cloud to access the content 
they expect, which makes the content access slow and 
takes up precious network resources. In the cloud-edge 
collaborative architecture, caching content on edge serv-
ers (edge caching) can speed up user access and make 
the communication efficient. However, since the storage 
resources of edge servers are limited compared to the 
cloud and cannot cache much content, what to cache is 
one of the significant problems to be solved in edge cach-
ing. Recently, learning-based methods to predict file 
popularity is proved to be effective, which models user 
preferences based on the number of service requests, 
and the type of users, e.g., age, gender, and occupation. 
However, implementing the scheme will involve users’ 
privacy and it is insecure to use centralized ML, so there 
are some researchers considering employing FL to sup-
port edge caching. Yu et al. [80] proposed to cache suit-
able files at the edge servers using a FL-based approach 
(FPCC). FPCC is a client-edge model, where clients 
requesting content download encoder models from the 
server and then train on their local data, where hybrid 
filtering is used, and local updates are aggregated to the 
edge servers using FedAvg. Finally, N files are recom-
mended to the edge servers. FPCC outperforms the pre-
vious Random, m-ǫ-Greedy, and Thompson Sampling 

algorithms for file popularity prediction accuracy and 
provides higher security. Yu et  al. [81] considered edge 
caching in vehicular networks, which is a significant 
challenge for intelligent transportation. Different from 
other scenarios, vehicles move fast and the vehicles con-
nected to the edge server tend to change, posing two 
challenges: (i) The frequent changes of vehicles make the 
popular files difficult to predict. (ii) The cached contents 
are easily outdated. To address the above challenges, Yu 
et  al. [81] designed MPCF, an FL-based mobility-aware 
active caching approach. MPCF utilizes context-aware 
adversarial autoencoders for prediction, where vehicles 
receive stored data from RSUs for local training. In addi-
tion, they design a strategy of mobility-aware and cache 
replacement to achieve highly dynamic prediction. They 
experimentally claim that the dynamic prediction accu-
racy of MPCF exceeds that of other caching schemes.

Vehicular networks
Recently, research on edge computing in vehicular net-
works has been on the rise [82–84]. The goal of vehicular 
edge computing is to develop computing and communi-
cation resources at the edge of the Internet of Vehicles 
(IoV) and promote artificial intelligence applications in 
intelligent connected vehicles. However, data leakage 
may cause massive damage to users and data providers. 

Fig. 4 The frameworks of computation offloading, edge caching and edge aggregation
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In addition, resource constraints and dynamic network 
topology make data privacy protection a challenge.

Ye et al. [85] put forward a selective model aggregation 
method to guarantee the accuracy and efficiency of FL. 
Due to the central server being unaware of other details 
of the vehicle nodes, this setting can protect the private 
data of the vehicle client. Boualouache et al. [86] used FL 
to achieve collaborative learning among vehicles while 
protecting the privacy of vehicles, and finally achieved 
efficient detection of passive attacks in the Internet of 
Vehicles. Chen et al. [87] aimed to implement an intru-
sion detection system in IoV using FL which outperforms 
existing approaches for common attacks.

Medicine
Intelligent medical diagnosis based on ML relies on 
extensive disease samples, however, the disease data 
stored in each medical center is limited, making it 
impossible for computers to make accurate diagnoses. 
Therefore, some research aggregates data from multi-
ple medical centers to a central server for ML and have 
achieved remarkable success. However, medical data 
often involves patients’ privacy, and the centralized 
approach will pose a threat of privacy breach. FL ena-
bles the medical data to be stored in each medical center 
and participate in collaborative training to solve privacy 
issues.

Due to the significant improvement of wearable and 
sensor technology, smartphones and wearable devices 
can collect users’ physiological information and offer 
important warning of irregular health situations. FL can 
train large-scale abnormal health detection (AHD) mod-
els across participants. However, there are often signifi-
cant differences between participant data, which existing 
federated learning methods cannot solve. Guo et al. [88] 
presented an FL frame FedSens, specifically solving the 
imbalanced participant data in AHD so that FL can adapt 
well to AHD. The experiment proves that FedSens is 
effective. An important significance of federated learning 
in medical edge computing is to enable remote medical 
centers lacking advanced diagnostic equipment to obtain 
more benefits to promote the even distribution of medi-
cal resources. In [89–91], FL is applied to COVID-19 
diagnosis, Qayyum et al. [89] used cluster-based FL (CFL) 
to automate COVID-19 diagnosis. While ensuring data 
security, the performance of the CFL method improved 
by 16%. Different from [89], Zhang et al. [90] used a novel 
FL method based on dynamic fusion to determine par-
ticipating customers according to their local model per-
formance and arranged model fusion according to the 
client’s training time, enhancing the detection flexibility. 
Experiments demonstrated that the method outperforms 
the default setting of FL.

Cyber security
IoT brings potential applications to many fields such as 
healthcare, business, smart city. However, due to distrib-
uted and heterogeneous characteristics, various attacks 
such as DDoS and Dos can be quickly introduced to the 
network. Detecting these attacks and taking measures to 
defend against them is an important research task.

Huong et  al. [92] proposed a new security protocol, 
Lockedge. They considered that the source of network 
attacks in areas such as intelligent city monitoring is 
mainly compromised edge devices, so they deployed 
attack detection mechanisms at the edge for faster 
response, and they used lightweight FL to achieve dis-
tributed Attack detection to protect data privacy and 
adapt to resource-constrained terminal devices. Experi-
ments prove that the Lockedge approach outperforms 
CNN, NN, and RNN methods in accuracy and complex-
ity. Given that a single defender cannot accurately and 
efficiently detect network attacks, Li et al. [93] proposed 
using a federated learning method to perform collabo-
rative training on a larger data sample. At 2.7 times the 
cost, they obtained an accuracy similar to the central-
ized method. Chen et  al. [87] put forward a federated 
learning-based network intrusion detection algorithm 
FedAGRU, improving the detection accuracy of poison-
ing attacks. However, the method requires huge commu-
nication costs, so they adopted the attention mechanism 
to adjust the weight of terminal devices in aggregation, 
reducing unnecessary local updates. Experiments show 
that the accuracy of FedAGRU is more robust than that 
of centralized methods, and the communication effi-
ciency is lower than that of existing federated learning 
algorithms.

Challenges and future research directions 
of deploying federated learning in cloud‑edge 
collaborative architecture
In addition to the above issues, there are still many chal-
lenges to the large-scale deployment of federated learn-
ing in cloud-edge collaborative architecture, and this 
section focuses on these challenges, which we summarize 
in Table 2.

Outlier
In edge federated learning, a group of edge devices is 
decided for each round of training. The client selection 
strategy was introduced to personalize the model for 
each client. However, all these methods implicitly assume 
that all clients can remain connected to the edge serv-
ers. However, edge devices have limited energy, and their 
network environment is constantly changing, so edge 
devices are likely to be disconnected during the train-
ing process, and these disconnected clients are called 
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outliers. Most of the existing research on dealing with 
outliers focuses on keeping the training continuing when 
there are very few outliers, but they cannot cope with 
many outliers, and the performance of federated learning 
will be significantly reduced [109]. How to design an edge 
federated learning setting such that it can maintain stable 
connections for most clients is a significant challenge.

Aggregation
Model aggregation is one of the most significant steps 
in FL, which directly affects the quality of the training. 
However, in most FL settings, the aggregation is simple 
and cannot cope with complex cloud-edge collabora-
tive architecture, as Fig. 4. shows. Although people have 
made some efforts to try to solve (i) Handling of damaged 
updates [110]. (ii) Avoiding aggressive updates [111]. Fur-
ther research on robust FL aggregation is still required, 
e.g. considering mobility aggregation and more secure 
aggregation.

Incentive mechanism
In commercial FL, user modeling on clients’ local data 
can recommend highly accurate content [112], which 
brings economic benefits. However, the learning pro-
cess involves users’ private data, and as people pay more 
attention to their private data, how to design incentive 
mechanisms to encourage clients to participate in FL is 
a problem to be solved. Currently, techniques such as 
game theory [113] and economic theory [114] are applied 
into the design of incentive mechanisms for FL, but they 
merely perform well in simulated experiments and are 
not guaranteed for real environment performance which 
is dominated by subjectivity.

Migration
In mobile edge computing, the geographic location of 
the edge device is uncertain, and the edge device usu-
ally establishes a connection with the edge server that 
is closest to it, which leads to a problem. When another 
edge server establishes a connection, the server with the 
newly established connection to the edge device does not 
have a copy of the previous training, which makes the 
training impossible to continue, and the network’s per-
formance degrades significantly. How to keep the train-
ing going is an important research topic. Much research 
on service migration in edge computing has been done 
[115–118]. However, in edge federated learning, the 
model is relatively large. The delay in transferring model 
copies between edge servers is significant, which affects 
the performance of federated learning, so efficient service 

migration in a cloud-edge collaborative environment is 
essential to federated learning.

Asynchronicity
Most of the existing research uses the federated learn-
ing setting of synchronous aggregation. However, users 
have changing power reserves and network quality in 
an actual network situation. It is difficult for the edge 
nodes to keep training due to resource constraints, 
especially in traditional synchronous approaches. 
Much research has been done to design efficient asyn-
chronous federated learning algorithms in response to 
this problem.

Chen et  al. [119] designed an asynchronous federated 
learning framework (ASO-Fed). Considering the hetero-
geneity of edge devices, they required all edge devices to 
learn online and use asynchronous updates to achieve 
global aggregation. The results proved that ASO-Fed has 
a fast convergence rate and satisfactory accuracy. Chen 
et  al. [120] proposed an asynchronous federated learn-
ing algorithm to consider local computing and com-
munication resources adapted to the real-world IoT 
environment. Due to the use of the greedy algorithm, 
their algorithm is lightweight, and experiments prove 
that the algorithm is effective. The research on asyn-
chronous federated learning algorithms is currently 
in infancy. For the purpose of finer simulating the real 
IoT environment, asynchronous federated learning is a 
promising method. Notably, most of the current research 
only deals with the optimization problem of convex loss 
functions, and future research on non-convex loss func-
tions is necessary to improve adaptability.

Algorithms
In the edge-cloud collaborative architecture, many 
researchers are committed to fully leveraging the com-
puting resources at the edge of the network to acceler-
ate federal learning and design more efficient federated 
learning frameworks, which requires the support of novel 
efficient algorithms.

• Edge computing algorithms Speeding up model con-
vergence is often for cross-device FL, cross-silo FL 
usually requires not high on model convergence rates 
[121]. In cross-device FL, sometimes massive calcula-
tions are required to be performed on mobile clients. 
However, mobile devices are not good at large-scale 
computation, thus many researchers tried to transfer 
the computation tasks to the edge servers [79, 122], 
which is still in the infancy. Some efficient and safe 
offloading schemes are considered to be successful 
[123, 124], but they are usually complicated and not 
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suitable for mobile devices. In the future, it may be an 
important challenge to design lightweight offloading 
schemes for cross-device FL.

• Federated learning algorithms The famous FedAvg 
algorithm may not have a good performance in the 
edge-cloud collaborative architecture [19], especially 
in Hierarchical federated learning. FedAvg is not 
necessarily the best choice between Client-Edge and 
Edge-Cloud. Recently, many frameworks better than 
FedAvg have been proposed, such as FEDPD [125], 
fedBN [126]. Besides, conventional FL Algorithms 
usually employ SGD optimization on both the clients 
and the server, and some studies have pointed out 
that using ADAM optimization on the server may 
get better results [127]. Based on these inspiration, 
the flexible design of FL algorithms or frameworks 
may well be an important challenge.

Split learning
We elaborated on SL in the above sections [3.6]. SL is 
promising for its high computation efficiency, which 
is often at the cost of the increase in communica-
tion bandwidth. Besides, due to its relay-based train-
ing process, the training time may be prolonged. The 
combination of FL and SL is becoming a research hot-
spot, researchers try to combine the advantages of FL 
and SL, most of whom aim at speeding up SL with FL 
mechanism and keeping the accuracy of SL. Thapa et al. 
[48] proposed a collaborative learning method combin-
ing FL and SL, where after the initialization, the clients 
perform forward propagation and send the outputs of 
the cut layer to the central server, then after training 
on the central server and the clients received the gradi-
ents on the smashed data, clients perform backpropa-
gation and lastly, the clients update the model through 
FedAvg algorithm by the weighted average of the gra-
dients from the clients. Wu et  al. [128] proposed the 
clustered-based method, where they place each of the 
clients in a cluster, and in each cluster clients perform 
naive SL, and outside the cluster perform FL  which is 
similar to [48]. Both of their methods are effective and 
confirm that the combination of FL and SL is promis-
ing in the future. However, there are some problems 
that need to be considered when conducting the com-
bination. (i) One of the biggest novelties of SL is that 
SL splits the models into several parts and assigns them 
to different clients for collaborative training. However, 
how to split the model is one of the challenges, namely 
model decomposition. Similar to the dynamic aggre-
gation in FL, due to most of the current combination 
methods only consider the static split process, and the 
resource availability in the training is not considered 

carefully, the combination has not reached the ceiling. 
(ii) When the combination is considered in a larger sys-
tem, cases can be that different servers are required to 
be configured differently, the resource allocation can 
be unreasonable, therefore hierarchical structure can 
be introduced to make improvements [129]. (iii) Com-
pared to FL, little research has been done on security 
issues, Guo et al. [130] proved that the hidden vicious 
can degrade the training and even take control of the 
whole collaborative training. Thus security and privacy 
are significant issues to be addressed in the future.

Conclusion
Federated learning can be well applied to cloud-edge 
collaborative architecture, in the edge side FL can get 
access to the extensive edge data generated by end users 
and preprocess the edge data, and it can be a promising 
enabling technology for performing learning tasks in 
the cloud-edge collaborative architecture. In this paper, 
we elaborate on federated learning and cloud-edge col-
laborative architecture respectively. Then we summa-
rize the key technologies, applications, and challenges 
of deploying federated learning in cloud-edge collabo-
rative architecture. In addition to the challenges dis-
cussed in this paper, there are many unsolved problems 
in deploying FL in the novel cloud-edge collaborative 
architecture. The core motivation of this paper is to 
guide more people to pay attention to and study FL in 
the cloud-edge collaborative architecture and provide 
scientific guidance for future directions.
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