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a systematic literature review encompassing 201 studies on model aggregation in FL. The focus is on
summarizing the proposed techniques and the ones currently applied for model fusion. This survey
serves as a valuable resource for researchers to enhance and develop new aggregation techniques, as

well as for practitioners to select the most appropriate method for their FL applications.
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1. Introduction

Since its very first introduction, machine learning (ML) has
garnered immense popularity across various fields due to its re-
markable problem-solving capabilities. ML’s capacity to uncover
concealed information and identify non-linear patterns in data
has provided significant benefits to scientific research and real-
life applications. Consequently, it is increasingly being utilized in
industries such as finance, healthcare, and business [1]. However,
while ML brings substantial advantages, its data-driven nature
has raised concerns regarding privacy and security [2]. This is
primarily because the potential for data leakage or illicit data
collection poses security risks within the ML space. In tradi-
tional artificial intelligence (Al) technologies, such as ML itself,
the data used for training models are usually concentrated in
the data center. Large datasets have enabled incredible advances
in ML. Once these data centers storing a large amount of data
are attacked, the consequences are immeasurable. Furthermore,
data are frequently personal or proprietary and are not intended
to be shared, making privacy a critical concern and roadblock
to centralized data gathering and model training. Based on the
above-made premise, with the purpose of protecting privacy, a
distributed training approach, federated learning (FL) came into
being.

Federated learning represents a novel paradigm in ML that
aims to facilitate the training of high-quality models by coordi-
nating multiple clients or devices, all while preserving the privacy
of their respective local datasets. The foundational framework for
FL was initially proposed by the Google team [3], and since then,
it has gained increasing popularity among researchers. This is
primarily due to its inherent ability to provide enhanced privacy
protection compared to traditional ML approaches.

As research interest in FL has grown, several variations of
the initial server—client model have emerged. These include fully
decentralized FL, where only clients are involved [4], as well
as FL built on blockchain technology [5], among others. In the
most common setup, FL consists of a central server and multiple
clients. The server’s role is to coordinate the collaborative training
process, while the clients act as individual participants. These
clients can range from small devices with computational capabil-
ities (such as IoT devices, mobile phones, or computers) to large
organizations or institutions. Importantly, each client retains its
own local dataset and does not share it with other participants,
which forms the fundamental premise of FL.

Fig. 1 shows an overview of the general FL framework. In each
communication round, the following steps occur: first, each client
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Fig. 1. Overview of the general FL framework. During the tth communication
round, each client downloads the latest global model from the server for
initialization ® and uses its own local dataset for iterative training @. Then,
the updated weights are uploaded to the server ® which performs model
aggregation @ to generate a new global model. These steps are repeated for
each communication round.

downloads the latest model from the server to initialize their local
model. Second, clients employ their own local datasets to perform
training and update their respective local models. Subsequently,
the clients send their updated models back to the server. Finally,
the server performs model aggregation on the received local
models, resulting in a new global model. These steps are repeated
until communication ceases.

Compared to traditional ML approaches where all data is col-
lected centrally, FL ensures that local data remains on the client
devices. This characteristic provides enhanced privacy and secu-
rity guarantees. While FL can be considered a form of distributed
ML, it also presents unique challenges and issues to address, such
as the statistical heterogeneity of data and device heterogene-
ity [6]. Statistical heterogeneity refers to the fact that the data
distributed among clients often have different distributions, de-
viating from the assumption of independent and identically dis-
tributed (IID) data. This heterogeneity can lead to challenges such
as reduced model accuracy and slower convergence speed [7].
Device heterogeneity, on the other hand, pertains to variations in
computing capabilities and transmission speeds among different
clients, which can impact the operational efficiency of FL to
varying degrees.

Undoubtedly, FL has gained significant traction in various
practical applications, particularly in the realm of edge comput-
ing [8]. The proliferation of edge computing has been enabled by
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the enhanced computational capabilities of modern devices like
mobile phones, wearables, drones, and autonomous vehicles [9].
By integrating FL technology into the edge network, local data can
be stored on terminal devices, local training can be conducted,
and the data can subsequently be aggregated and updated by
a central server. This approach addresses the imperative need
for data privacy on devices while effectively coordinating a large
number of remote devices.

A review of relevant literature on FL reveals that a substantial
portion of the research has focused on applying FL to diverse do-
mains such as healthcare [10], smart transportation [11], wireless
networks [12], and the Internet of Things (IoT) [13]. Several sys-
tematic federated frameworks have been implemented, including
the mobile device federated system [14].

Researchers have dedicated considerable efforts to studying
FL, encompassing a broad range of topics, including data distri-
bution patterns [15], advancements in model aggregation [16],
and practical applications of FL [17]. Since the introduction of
the FedAvg algorithm, which is based on weighted averaging,
by McMahan et al. [18], an increasing number of studies have
focused on exploring aggregation strategies in FL. Thus, the mo-
tivation behind this paper is to conduct a systematic and com-
prehensive survey of existing model aggregation methods in the
field of FL, aiming to provide valuable references for researchers
and practitioners. Currently, only a few surveys are available, such
as [19,20], which discuss the crucial issue of model aggregation
in FL. However, these surveys cover only a limited number of
research works and techniques. Recognizing the significance and
effectiveness of model aggregation techniques, we conducted a
systematic literature review of model fusion methodologies em-
ployed in FL from 2017 to 2023. The objective of this study is to
identify the scope, trends, and methods used in the field of model
fusion, ultimately enhancing our understanding of this domain
and providing a comprehensive taxonomy of relevant methods.
To achieve these objectives, we formulated the following research
questions:

RQ1: What are the model aggregation methods utilized by the
research community in FL, and how do they compare in
terms of their advantages and disadvantages?

What are the primary ML/DL algorithms employed in the
field of FL, and how do they impact the model aggregation
phase?

Can existing aggregation methodologies be grouped to pro-
vide a comprehensive and accurate taxonomy?

What are the most popular journals publishing literature
on model aggregation?

What are the main application domains of FL, and how do
they relate to model aggregation techniques? Are model
aggregation techniques specific to certain domains?

What are the main challenges encountered during the
model aggregation phase?

RQ2:

RQ3:
RQ4:

RQ5:

RQ6:

1.1. The contributions of the survey

In recent years, the remarkable growth of FL and its appli-
cations has led to an upsurge in related surveys and reviews.
Table 1 provides a summary of recent surveys that have garnered
significant citations in the field of FL. Notably, the papers [6,19]
offer introductions to the fundamental concepts of FL and discuss
the challenges it faces. Meanwhile, [20,21] focus on security and
privacy concerns in FL, summarizing potential risks and vulner-
abilities in the context of FL. And, [22] conducts a survey on
personalization in FL, highlighting the impact of non-IID data on
federated models. Furthermore, [23] delves into the exploration
of non-IID data in FL. The authors of [24] present a summary of
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relevant consensus protocols, platforms, and real-world cases in
FL. Moreover, [9,25-29] provide reviews on FL research applica-
tions, covering areas such as healthcare, edge networks, 5G, and
[oT.

However, to the best of our knowledge, while there are nu-
merous reviews available that focus on various aspects of FL, such
as privacy and security issues, non-IID data, and applications in
different domains, the topic of model aggregation has not re-
ceived the attention it deserves. Despite the claim by [27] to be a
review of model aggregation, it merely provides a brief introduc-
tion to several classic aggregation methods without conducting a
comprehensive taxonomy or summary.

This highlights the gap in the existing literature, further em-
phasizing the need for a systematic and comprehensive review
specifically focusing on model aggregation techniques in FL. The
present study aims to fill this gap and provide a thorough exam-
ination of the various methodologies employed in model aggre-
gation within the context of FL.

Key contributions of the survey are enlisted as follows:

1. The paper provides a comprehensive and systematic re-
view of model aggregation techniques in FL. It includes a
detailed taxonomy and literature survey, offering a com-
prehensive overview of recent work in the field.

. In addition to discussing model aggregation strategies, the
paper explores the impact of data heterogeneity on FL
models. It also introduces real-world applications of FL,
highlighting the relationship between model aggregation
and different application domains.

3. The paper identifies current challenges in FL, such as com-
munication bottlenecks and privacy and security concerns.
Furthermore, it examines potential future trends and de-
velopments in the field, providing insights into the direc-
tion of research and advancements in FL.

1.2. The structure of the survey

This survey is organized as follows: firstly, in Section 2, we
outline the systematic approach employed to retrieve research
work on model aggregation in FL, while Section 3 provides a com-
prehensive introduction to FL, covering its fundamental concepts
and principles. Section 4 presents a detailed survey and taxonomy
of model aggregation methods in FL. In Section 5, we explore
application scenarios related to FL from the perspective of model
aggregation. Section 6 delves into the challenges currently faced
by FL, including statistical heterogeneity of data, communication
bottlenecks, and security threats. We also propose potential re-
search directions to address these challenges and advance the
field of FL. Fig. 2 provides a visual representation of the struc-
ture of this survey, illustrating the flow and organization of the
different sections.

2. Research methodology

To evaluate the applications and impact of aggregation meth-
ods in FL, a systematic literature review was conducted. This
involved following a systematic approach to identify and analyze
pertinent studies in a specific area of interest [30], ensuring that
the review process was scientific, transparent, and reproducible.
Expert-defined guidelines were utilized to ensure a comprehen-
sive and effective systematic literature review. Specifically, the
guidelines proposed by Siddaway et al. [31] and the PRISMA
statement by Moher et al. [32] were studied and adhered to.
The Siddaway et al. proposal outlines an eight-step process for
conducting a systematic literature review, including formulating
research questions, defining inclusion/exclusion criteria, search-
ing the literature, screening studies, extracting data, assessing
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Table 1

Existing surveys on FL topics and our contributions.

Future Generation Computer Systems 150 (2024) 272-293

Paper Topic Key contribution Statistical Communication Security Model Taxonomy
heterogeneity and privacy aggregation
[6] FL concept Discussed the properties and v v v X X
challenges of FL; provided a survey
of classical results, and summarized
open issues.
[19] FL concept Introduced the current work of FL X v v v v
from 5 aspects, sorted out the
current challenges and future
research directions of FL.
[21] Security and Analyzed the privacy leakage risk in  x v v X v
privacy in FL FL from 5 aspects, summarized the
existing methods and future research
directions.
[20] Security and Discussed threats in FL and evaluated x v v v v
privacy in FL related mitigation techniques.
[22] Personalization in  Explained statistical heterogeneity v v v X X
FL due to non-IID data; highlighted the
need for model personalization.
[23] Non-IID data in FL  Analyzed the impact of non-IID data v v v X v
on parametric and nonparametric ML
models in FL; reviewed current
challenges.
[24] Platforms, Summarized the most relevant X v v X X
protocols, and protocols, platforms, and real-life use
applications cases for FL; outlined the main
challenges.
[25] FL and healthcare  Presented the motivation and v v v X v
requirements for using FL in smart
healthcare; reviewed emerging
applications of FL in key medical
areas.
[9] FL and edge Introduced the applications, v v v X X
networks challenges, and future directions of
FL in mobile edge networks
optimization.
[26] FL and 5G Discussed possible applications and X v v X X
key technical challenges in 5G
networks.
[28] FL and IoT Introduced the recent progress of FL. X v v v v
in IoT applications.
[27] FL model Current aggregation techniques and v v v v X
aggregation challenges in FL are discussed.
Ours  FL model A systematic survey on model v v v v v

aggregation aggregation in FL, from scientific
literature retrieval to detailed
taxonomy of aggregation methods;
also explores hot issues in FL,
including non-IID data,

communication, security, and privacy.

study quality, analyzing and synthesizing results, and reporting
findings. On the other hand, the PRISMA statement provides a
checklist for reporting systematic reviews and meta-analyses,
covering items such as the title, abstract, introduction, methods,
results, discussion, and funding.

In the subsequent sections, we present the search strategy
and selection criteria employed to identify relevant studies for
this systematic literature review. The research questions, as pre-
viously formulated in the introduction section, served as a guide
throughout the review process.

2.1. Search strategy

At the beginning of the literature search, we decide to utilize
the Scopus and Web of Science databases, given their comprehen-
sive coverage of papers. As mentioned earlier, the concept of FL
was first introduced by the Google team in October 2016 [3],
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and the FedAvg algorithm was defined by McMahan et al. in
2017 [18]. These works established the foundation for the con-
cept of FL as intended in this survey. Therefore, our literature
search was limited to publications between 2017 and June 2023,
encompassing formal publications and preprints, while excluding
non-English articles.

To ensure comprehensive coverage of relevant literature, the
primary search term “federated learning” was used to search the
titles, abstracts, and keywords of the literature. Furthermore, in
order to account for the possibility that some researchers may use
the terms “fusion” and “aggregation” interchangeably, the sec-
ondary search term “model aggregation” OR “model fusion” was
employed to search all sections of the literature. It is important to
note that despite using these search keywords, it is possible that
not every relevant publication was captured without omission.
This is because, in the early stages of FL development, some
researchers preferred to name their proposed frameworks instead
of explicitly using the term "model aggregation”. Examples of
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Literature Search Strategy ‘
S2: Research
Methodology ‘

Selection Criteria

SSaRederard General introduction to FL ‘

Learning
Definition & Algorithms ‘

] Aggregation in FL

Asynchronous

Taxonomy

Hierarchical

Robust

S5: Applications of
Aggregation Methods

Statistical Heterogeneity ‘

S6 : Chall
and Future
Directions

Communication Bottlenecks

Security Aggregation |

Fig. 2. The structure of the survey. The survey is organized into several sections,
starting with an overview of the methodology employed for conducting the
study. Following that, it introduces the concept of aggregation methods in
FL, providing readers with essential background information. Subsequently, a
comprehensive and detailed taxonomy of the various aggregation methods
proposed thus far is presented. The survey also features a discussion on the
application of FL aggregation methods in diverse data types and scenarios. Lastly,
the survey concludes with a summary of future research directions in this field.

such frameworks include FedProx [7], FedNova [33], Scaffold [34],
among others. To mitigate the risk of missing articles that did not
explicitly mention the keywords, we also searched the references
of the retrieved papers for further relevant publications.

2.2. Selection criteria

The literature search began by conducting a comprehensive
search using key terms, which resulted in finding 495 articles
on Scopus and 597 articles on Web of Science; duplicates were
excluded. Additionally, it was acknowledged that some of the
initially retrieved literature may not be relevant to the research
topic. To address this, a set of criteria was developed for screening
the literature. Review articles and surveys were excluded from
the analysis, as the focus was specifically on experimental articles.
Next, the titles and abstracts of the articles were scanned to
exclude those that did not mention model aggregation design
or research. Finally, the full text of the remaining articles was
reviewed, and articles that only used existing methods in the
model aggregation stage without proposing any new ones were
excluded. Following this screening process, a total of 933 arti-
cles were eliminated, resulting in a final set of 201 articles that
were deemed suitable for inclusion in the survey. The literature
selection process is depicted in Fig. 3, comprising four stages:
identification, screening, eligibility, and inclusion.

Initial statistics have been compiled for the 201 selected arti-
cles. Fig. 4 presents the distribution of research articles focusing
on model aggregation techniques in FL from 2017 to June 2023.
It indicates that the majority of published articles (75%, i.e., 151
articles) have been released in the past two years (2021 to the
present), indicating the active and current nature of research in
model aggregation in FL. Out of the screened papers, 113 are from
IEEE Computer Society, encompassing various field journals such
as IEEE Conference on Computer Vision and Pattern Recognition,
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Retrieval key terms:
("Federated Learning") AND

_g ("model aggregation" OR "model fusion")
=
EE Scopus (n=495) Web of Science (n=597)
5
=
Additional articles obtained by searching the references
of retrieved articles (n=42)
Exclusion duplicates
The initial number of (n=253)
articles
& (n=1134) Exclusion non-English
= (n=7)
g il
b
é? Exclusion based on title
Title and abstract scanning (n=126)
=874 =
(o ) Exclusion based on
- abstract (n=383)
4
Z
E‘E Full-text assessed Exclusion based on full-
) (n=365) text browsing (n=164)
=
1
E Number of articles
E included
= (n=201)
=

Fig. 3. The systematic literature review conducted in this study follows a
research article retrieval methodology that consists of four stages: identification,
screening and eligibility, and inclusion. In the identification stage, the appro-
priate keywords were determined to retrieve research articles relevant to the
research topic under investigation. In the screening and eligibility stages, specific
criteria were established to screen and exclude literature that did not meet the
research needs and objectives. Finally, in the inclusion step, the literature that
met the criteria and requirements of the study was determined and included in
this paper.

33
30

Number of papers

2
0 |

T
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T T T T
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Fig. 4. Year-wise distribution of papers on the subject area of model aggregation
in FL.

IEEE International Conference on Computer Vision, IEEE Internet
of Things Journal, IEEE Transactions on Wireless Communications,
among others. Furthermore, there are 20 papers from ACM (in-
cluding the International Conference on Machine Learning and
ACM Conference on Embedded Networked Sensor Systems), 20
papers from Elsevier, 11 papers from Springer, 5 papers from
MIT Press (including Advances in Neural Information Processing
Systems), and 32 papers from other journals. Table 2 lists the
Journal-wise distribution of papers.
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Table 2
Journal-wise distribution of papers on the subject area of model aggregation in
FL.

Journal No. Percentage
IEEE 113 56.22%
I0T-] 10
TWC 6
CVPR 5
ICC 5
IJCNN 4
Trans. Wirel. Commun. 6
Trans. Neural Netw. Learn. Syst. 3
J. Sel. Areas Commun. 4
Trans. Parallel Distrib. Syst. 6
Trans. Ind. Informat. 5
Others 59
ACM 20 9.95%
ICML 11
Others 9
Elsevier 20 9.95%
Springer 11 5.47%
MIT Press 5 2.49%
NeurIPS 5
Others 32 15.92%

3. Federated learning

In this section, we provide a brief introduction to FL, including
its principles, features, and categories.

3.1. Principles of FL

FL generally refers to a distributed ML process deployed on
multiple clients. The process involves N clients {C1, Ca, ..., Cn}
indexed by k, each with its own local dataset {Dq, Dy, ..., Dy},
which is kept locally, and data cannot be shared between clients
or collected by a third party. Typically, a server coordinates dif-
ferent clients and their training. FL involves three key steps:

(1) Initialization: at communication round t, the clients down-
load the latest model w' from the server for initialization;

(2) Local training: each client C, performs iterative training
based on its own local dataset Dj, and hyperparameter 7. The
local model wj, is updated to w,ﬂ“ after certain training epochs
according to w"' <— wi(n, Dy), and then send to the server.

(3) Model aggregation: the server performs model aggrega-
tion on received local models, and updates the global model
w;;; «~—Agg(wi™; ke[1,...,N]).

In this way, FL enables multiple clients to collaborate on
training a model without sharing their data, which is especially

useful for privacy-sensitive applications.
3.2. Features of FL

This section covers unique features that set FL apart from tra-
ditional centralized ML approaches. These distinguishing features
include aspects such as data and device heterogeneity, as well as
the specific topology of the federated scenario.

3.2.1. Data distribution

In FL, one of the major challenges is the presence of statistical
heterogeneity in the data, also referred to as non-IID-ness. Unlike
traditional centralized ML approaches that assume independent
and identically distributed (IID) data structures, FL data often
exhibits statistical heterogeneity due to variations in client dis-
tribution, data generators, or other factors. This can result in
local models that are biased towards the distribution of the local
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dataset, which can cause a decline in the performance of the
aggregated model.
Three primary sources of non-IID-ness can be identified:

e Label distribution skew. Label distribution skew refers to the
variation in the distribution of labels, denoted as P(y), across
different clients. In typical FL experimental setups, datasets
are sorted by labels and assigned to clients in a round-robin
fashion. For example, in studies such as [35-37], the MNIST
dataset is assigned to clients, where each client is allocated
only two out of the total ten labels. This means that client
i may have data labeled as “1” and “2”, while client j has
handwritten data labeled as ”3“ and "4”, with no label
overlap between clients. This allocation method is com-
monly used and straightforward. Furthermore, researchers
commonly employ the Dirichlet distribution Dir(8), which
is based on the Bayesian prior distribution, to simulate the
distribution differences in FL data [16,38,39]. In this context,
the concentration parameter § plays a crucial role in con-
trolling the non-IIDness of the data. A smaller 8 value cor-
responds to higher data heterogeneity. By manipulating 5,
researchers can flexibly generate various data distributions
to investigate the effects of non-IIDness on FL models.
Feature distribution skew. Feature distribution skew refers
to the variation in the distribution of features, denoted
as P(x) or input data, across different clients in FL. This
variation can lead to discrepancies in the representation
of data for the same class across different clients. To ad-
dress feature distribution skew, researchers have explored
various methods. Some approaches involve adding noise to
the dataset or using federated datasets specifically designed
to mitigate this issue [40]. The Federated Extended MNIST
(FEMNIST) dataset is another example of a dataset created
to address feature distribution skew in FL [41]. FEMNIST
includes 62 different handwritten characters, comprising 10
numbers, 26 lowercase letters, and 26 uppercase letters.
It partitions the data from the Extended MNIST (EMNIST)
dataset, which consists of characters written by different
authors with varying styles and degrees of sloppiness, thus
skewing the feature distribution.

Quantity skew. Quantity skew refers to the unequal amount
of data that different clients have in a FL setting. It is not
feasible to ensure that every client has the same amount of
data, and in practice, the data is often randomly partitioned
among clients. For instance, in [42], the CIFAR-10 dataset is
partitioned among clients with different amounts of training
data, ranging from 400 to 1600 examples per client. The
amount of data each client has can significantly affect the
performance of the model, and this skew must be taken into
account when designing and evaluating FL algorithms.

3.2.2. Cross-device and cross-silo

FL can be categorized into cross-device and cross-silo based
on the difference in client size. Cross-device FL is often employed
in distributed mobile networks [14], where numerous similar
devices act as clients. Real-world examples of cross-device FL
include federated systems based on the Internet of Vehicles,
where each vehicle independently collects its own driving data
(such as captured images and current coordinates). On the other
hand, cross-silo FL involves large organizations or institutions as
clients, with fewer clients compared to cross-device FL. In this
case, different companies may collaborate to build a federated
system, where each company maintains local data and performs
model training based on their respective databases.
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Fig. 5. The two primary network structures for FL: centralized FL and decentralized FL. In a centralized FL system (a), there is a server positioned at the center,
forming a star network structure. Multiple clients connect to this central server for model aggregation and synchronization. On the other hand, in a decentralized
FL system (b), there is no central server. Instead, clients directly communicate with each other in a peer-to-peer (P2P) manner, creating a mesh network structure.
Decentralized FL is specifically designed to mitigate the presence of untrusted servers and offers advantages such as increased resilience to network failures and

communication delays.

3.2.3. Network structure

During the initial stages of FL design, a common depiction
involved a central server positioned at the center, surrounded by
multiple clients. In this setup, the central server was responsible
for the model aggregation phase, while each client performed
local model training using its own data. This configuration, known
as centralized FL, typically employed a star topology. As illus-
trated in Fig. 5(a), the central server was situated at the center,
with all other clients connected to it. In contrast, there exists
a distinct federated configuration referred to as decentralized
FL [43], which adopts a mesh topology (see Fig. 5(b)). In this
structure, there is no central server. Each client in the system
conducts local model training based on its private data. Subse-
quently, clients select other clients to communicate with, and
local models are exchanged or fused in a peer-to-peer (P2P)
manner. This decentralized approach facilitates model aggrega-
tion and updates without relying on a central server, thereby
mitigating the presence of untrusted servers.

3.2.4. Data partition

FL can be classified into three categories based on the distri-
bution of feature space and sample space: horizontal FL, vertical
FL, and federated transfer learning.

e Horizontal Federated Learning. Horizontal FL, also known as
sample-based FL, involves clients sharing the same feature
space but different sample spaces. This means that data from
different clients may be sampled from different objects, such
as A, B, C, etc., but all share the same characteristics, such
as color, as shown in Fig. 6(a). For example, a study using
FL to detect COVID-19 infection [44] used chest CT images
as training data for each client, which were sampled from
people of different ages and genders but had the same
feature space.

e Vertical Federated Learning. Vertical FL, also referred to as
feature-based FL, is a situation where the training data used
by all clients participating in training have the same sample
space but different feature spaces. This means that the data
is sampled from the same object (object A), but different
features (different colors) are distributed among different
clients, as depicted in Fig. 6(b). The primary goal of vertical
FL is to align overlapping data samples between different
clients, and it is commonly used in scenarios where non-
competing companies or organizations, such as financial
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institutions, e-commerce platforms, and advertising compa-
nies with different data characteristics, collaborate to train
a shared learning model. By leveraging vertical FL, these
organizations can collectively develop a model that facili-
tates personalized shopping experiences for online shoppers
within the same region, sharing a common sample space.
For instance, financial institutions can provide prepaid funds
to users when they make purchases on online shopping plat-
forms, while advertising companies can offer personalized
suggestions based on users’ purchasing behaviors. This col-
laborative model allows for the integration of different data
characteristics from various sources, enabling the delivery
of enhanced personalized services to users.

Federated transfer learning. Federated transfer learning in-
volves data from different participants that not only differ
in samples but also in feature spaces. Fig. 6(c) illustrates
the schematic diagram of federated transfer learning, where
local data comes from different objects (object A, B, C...)
with different features (different colors). In this approach,
common representations between different feature spaces
are typically learned from a limited set of common sam-
ples. These common representations are then applied to the
sample prediction task with only one-sided features [45].
An example of this is FedHealth [46], which is a framework
for researching wearable healthcare using federated transfer
learning. In this framework, the cloud server trains the cloud
model based on the basic dataset. After obtaining the cloud
model, transfer learning is performed in combination with
the client’s local data to establish a personalized local model.

4. Model aggregation in FL: Towards a taxonomy

In this section, we first introduce the definition of model
aggregation. Then, we show some well-known aggregation algo-
rithms. Finally, we categorize model aggregation based on differ-
ent forms of aggregation.

4.1. Definition of model aggregation

In FL, model aggregation refers to summarizing model pa-
rameters from all parties in each round of communication to
form an updated global model. Privacy protection is achieved
by aggregating model parameters instead of raw training data.
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Fig. 6. Data partition in FL: (a) Horizontal FL, (b) Vertical FL and (c) Federated transfer learning.

Model aggregation can be divided into two types: parameter-
based aggregation and output-based aggregation, based on the
objects being aggregated. In parameter-based aggregation, train-
able parameters of the local learning model, such as the weight
parameters and gradients of the deep neural network, are the
objects of aggregation. In each round of communication, local
models are shared in parameters/gradients after iterative training
based on their local dataset [47,48].

Output-based aggregation focuses on aggregating the repre-
sentations of the model, such as the output logits or compressed
sketches [39,49]. A notable example of output-based aggregation
is the Fedmask approach introduced by Li et al. [50]. Fedmask
takes into account the limited computing resources of mobile
devices in FL. In this approach, each device learns a binary mask,
and the server aggregates the overlapping binary masks to en-
hance the computational efficiency of training. By aggregating the
binary masks, the computational burden on individual devices is
reduced while still achieving effective model training.

When considering the form of aggregation, in centralized FL,
the model aggregation is conducted by the central server. The
central server is responsible for collecting and merging the mod-
els from individual clients to create an aggregated model. In
contrast, in decentralized FL, model aggregation occurs through
peer-to-peer (P2P) communication. Typically, one party initiates
the communication and collaborates with neighboring clients or
collaborators to aggregate their respective models. This decen-
tralized approach involves the exchange and fusion of models di-
rectly between the participating clients or collaborators, without
relying on a central server for aggregation.

added more computation to each client by iterating the local
update multiple times before the averaging step. During

the tth communication round, FedAvg works as wyf} <

D kes, ”ka,i“, where k € S; represents the members of
the selected set of clients; 2 refers to the weight factor,
which is equal to the ratio of the data volume of client k to
the total data volume. Finally, w,ﬁ“ represents the updated
model of client k after local training, and wéfg,} represents
the aggregated global model.

FedProx

FedProx [7] is an enhancement to the FedAvg method aimed
at mitigating the problem of local optimization inherent in
SGD-based approaches. The authors posit that performing
numerous local iterative training steps in FedAvg may cause
each client to prioritize achieving its local objective rather
than the global goal, leading to suboptimal convergence or
model divergence. In FedProx, a proximal term is incorpo-
rated into the objective function to regulate the influence
of local models and ensure convergence guarantees. Such
term, defined as & ||w} — wf,| ?is the P-norm of the
local model and global model. Here, «© > 0 is the penalty
constant of the proximal term, and FedProx is equal to
FedAvg when p = 0. The local model is pulled towards the
global model through the constraints of the proximal term.
The subsequent model aggregation and global model update
follow the same process as FedAvg.

FedNova

The FedNova algorithm, proposed by Wang et al. in [33],
enhances the model aggregation phase of the FedAvg al-
gorithm to address non-IID-ness. The algorithm introduces
a technique to normalize and scale the local updates from
each client based on its local iteration number, before updat-
ing the global model. The update rule for FedNova is defined
as follows:

Ny

t+1 t t

w “— Wiy — Teff E o ndy
keSt

4.2. Main algorithms for model aggregation

There have been numerous traditional aggregation algorithms
proposed to address fundamental challenges in FL, particularly
related to communication overhead and data privacy concerns.
These algorithms are often incorporated into various federated
frameworks as foundational computing approaches. Below, we
provide an introduction to several of these algorithms.

e FedAvg

where dj = Gia}/ ||d} H1
One of the earliest and most commonly used methods for

FL is FedAvg [18]. In FedAvg, a group of clients is randomly
selected at each round of training for aggregation. During
the aggregation process, the parameters of each client are
weighted and averaged to produce a global model, where
the weight factor is the proportion of the client’s data vol-
ume. Note that, in the FedAvg’s implementation it could be
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where 7 denotes the effective iteration step. The local
updates d}, are calculated by normalizing the gradients with
a non-negative vector a}, and its I'-norm. In the case of using
vanilla SGD as the local solver, a,ﬂ is a unit vector. The stack
of all stochastic gradients received from client k at round t
is denoted as Gi.
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o Scaffold

To address the client-drift problem resulting from data het-
erogeneity, the Scaffold algorithm [34] suggests employing
control variable technology, specifically variance reduction,
in the local update process. This algorithm incorporates
client control variable ¢, and server control variable ¢, with
the server control variable being the average value of the
control variables from all clients. The disparity between lo-
cal and global control variables is utilized to rectify gradient
updates during local training. The update procedure for the
control variables in Scaffold is as follows:

1
+ t t
C <~ c—c+ efm(wg,ob — wy)

> -

keSt

1
“—~C+ —
IN|

ct

where "*" denotes update and n, is learning rate. e is the
number of local update steps, and N represents the total
number of clients.

MOON

MOON [51] aims to minimize the discrepancy between local
models and the global model by incorporating a model con-
trastive loss as a regularization term. The model contrastive
loss serves as a metric for quantifying the dissimilarity be-
tween the local model and the global model. Its definition
is as follows:

exp(sim(w, w;lob)/r)

—log —————1 ——
exp(sim(wy,, wey,)/T) + exp(sim(w,

loon <

prev
Wy

)/T)

The model-contrastive loss used in MOON is defined as a
function of three terms: the global model wy,, the previous
round model w}*", and the current local model w}. Also, sim
represents the cosine similarity, and temperature parameter
T is used to control the sharpness of the loss function. The
purpose of the model-contrastive loss is to encourage the
local models to be close to the global model while avoiding
overfitting the current local data.

Zeno

To prevent Byzantine faults in FL, the Zeno algorithm uses a
stochastic zero-order oracle to score each candidate client.
The scoring is based on the loss function, and is used to
select high-scoring clients for aggregation. More specifi-
cally, Zeno defines the Stochastic Descendant Score (SDS)
for any gradient update. The SDS score measures how much
the candidate client contributes to reducing the loss of the
global model, while penalizing large updates that may cause
instability. The high-scoring clients are then selected for
aggregation, and their updates are combined to form a new
global model. This approach allows Zeno to select reliable
clients and improve the robustness of the learned global
model against Byzantine behavior.

Per-FedAvg

Per-FedAvg [52] combines model-agnostic meta-learning
(MAML) with FL to produce personalized local models.
MAML first trains the initial parameters of the model, and
then uses a small amount of data to perform one or more
gradient descents on the new task, enabling the model to
achieve good performance. For more information on MAML,
please refer to [53]. In Per-FedAvg, the local model is up-
dated using one-step gradient descent of the loss function
with the objective of finding an initial model (i.e., meta-
model) for each client.
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Fig. 7. The synchronous aggregation in FL. The diagram depicts the synchronous
aggregation process, where the server carries out model aggregation in each
round after receiving updates from all participating clients.

4.3. Taxonomy of model aggregation

As FL research advances, the possibilities for designing model
aggregation methods seem almost limitless. There are various
aggregation techniques that serve different purposes, such as
enhancing the performance of the federated model, minimizing
communication overhead, and addressing data security and pri-
vacy concerns. This paper categorizes the aggregation techniques
into four types based on their aggregation form: synchronous,
asynchronous, hierarchical, and robust aggregation.

4.3.1. Synchronous aggregation

In synchronous aggregation-based FL research, model aggre-
gation occurs after all client updates have reached the server,
and the latency or lag experienced on the client side is generally
disregarded. Fig. 7 illustrates the schematic diagram for syn-
chronous aggregation. In algorithms like FedAvg, for example, the
server randomly selects clients to participate in training during
each round of communication, and their model parameters are
included in the aggregation process. The synchronization occurs
without explicitly considering the latency or potential delays
experienced by individual clients.

Even though the server performs synchronous aggregation of
client updates, discrepancies can still arise during the aggrega-
tion process, giving synchronous-based FL research its unique
advantages. To tackle data heterogeneity in the synchronous sce-
nario, recent research works often focus on (1) Adding regulariza-
tion terms to constrain local models; (2) Adjusting aggregation
weights to assign appropriate shares for different clients; (3)
Compressing the model to improve its expressiveness.

e Regularization terms introduction.

In the case of non-IIDness, the optimization objective of the
local model differs from that of the global model, which
can lead to increased convergence time for the global model
or even cause it to diverge. For example, in the FedDyn
approach [54], a dynamic regularizer is suggested for each
client in each round to minimize the disparities between
local models and the global model. This is due to the fun-
damental difference between the minimum value of the
local-device empirical loss and that of the global empirical
loss. In the FL system called FedDist [55], regularization
terms are based on Euclidean distances between the local
models and the global model. On the other hand, in the
FedAAR approach introduced by [56], cosine distances are
employed as a measure of dissimilarity between the local
models and the global model.
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o Weights adjustment.

When aggregating models using the parameter-weighted
average method, the typical approach is to determine the
aggregation weights based on the amount of data each client
possesses. However, this approach can be disadvantageous
for data-poor clients. Clients with larger amounts of data
have a greater influence on the quality of the global model,
while those with smaller amounts of data may not re-
ceive sufficient attention [57,58]. To address this issue, re-
searchers have proposed optimizing the allocation of ag-
gregation weights [59-61]. The aim is to ensure a fair dis-
tribution of weight by assigning appropriate shares to dif-
ferent clients. This approach considers clients that are of-
ten overlooked, allowing global models to learn additional
knowledge from these previously neglected clients [61]. For
instance, in the FedDisco approach introduced by [62], the
authors found that using dataset size as the sole aggregation
weight is suboptimal. Instead, they propose using the dif-
ference between local and global category distributions as a
complementary metric for aggregation weights. Similarly, in
the work by [63], the authors suggest adaptively assigning
different weights to clients based on their contribution in
each round. In their work, Wu et al. [64] propose measuring
the contribution of participating clients by contrasting the
local gradient vector with the global gradient vector. They
suggest quantizing the weights using a nonlinear mapping
function. Another efficient approach for quantifying weights
is based on a scoring system. In studies such as [38,65-67],
reputation scores are introduced for local models and uti-
lized to scale the aggregation weights. The reputation score
of a client is computed based on performance metrics of the
local model in each round of training, providing an assess-
ment of the direct contribution of the local model [63,64].
Furthermore, the learning mechanism, such as an attention
mechanism, can be employed to learn learnable parame-
ters in the model for obtaining aggregated weights [68,
69]. Some researchers [70,71] propose incorporating an at-
tention mechanism during model aggregation, where an
attention score is learned for each client, and these attention
scores serve as the weight factors. In the FedLAW frame-
work [72], a learnable approach to aggregation weights is
proposed. The authors demonstrate that the L1 norm of the
aggregation weights can be less than 1, indicating that the
aggregation weights can be adaptively adjusted during the
aggregation process.

Knowledge distillation.

Knowledge distillation, commonly used in ML, involves
training a smaller model (student) to learn from a larger
model (teacher). In the context of FL, applying knowledge
distillation techniques is referred to as federated distilla-
tion [73,74]. This technique has the potential to signifi-
cantly reduce communication costs in FL [75,76]. The gen-
eral framework of knowledge distillation in FL is illustrated
in Fig. 8. For instance, the FedGKT framework proposed
by [77] trains smaller networks on edge nodes and employs
knowledge distillation to transmit the learned knowledge
to the server. This approach helps reduce communication
costs, particularly when the local model is a large convo-
lutional neural network. Knowledge distillation techniques
have been utilized in various FL architectures to enhance
convergence speed and performance. Some studies, such
as [78,79], leverage knowledge generated on public datasets
to facilitate convergence. Distillation terms are also added
to the local objective function in order to generate per-
sonalized models, as demonstrated in [80,81]. Furthermore,
integrating local knowledge with predictive logits can im-
prove the performance of general distillation fusion models,
as observed in [82].
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Fig. 9. Asynchronous aggregation in FL. In the asynchronous aggregation pro-
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4.3.2. Asynchronous aggregation

Asynchronous FL (AFL) has gained significant attention due
to the growing influence of device heterogeneity in federated
systems. AFL allows clients to upload their local updates in a stag-
gered manner, which helps mitigate the negative impact of device
heterogeneity. In traditional FL, delays caused by poor network
signals or client crashes during training may lead to delays in
uploading updates, thereby increasing the waiting time for the
server to receive updates from all clients [83,84]. The primary
goal of asynchronous aggregation is to accelerate the training
process. In fully asynchronous aggregation, the aggregation takes
place as soon as the server receives the local updates from each
client, allowing each client to train independently without wait-
ing for other clients to complete their updates. This asynchronous
approach enhances the efficiency and scalability of FL by reducing
the waiting time and enabling clients to contribute their updates
at their own pace. A schematic diagram of asynchronous aggre-
gation is shown in Fig. 9. Recent research has proposed further
improvements, such as (i) dynamic fusion and (ii) evaluation
of the client-side model, optionally for aggregation. In addition,
the semi-asynchronous aggregation between synchronous and
asynchronous also brings about the optimization of the training
process.

e Dynamic fusion of local models.
Dynamic fusion of local models has emerged as a popu-
lar method in FL to reduce overall training time [85-87].
While fully asynchronous aggregation performs model ag-
gregation as updates arrive [88], this approach can result
in low-accuracy global models in each round, necessitating
multiple rounds of training to achieve satisfactory accuracy.
To overcome this challenge, researchers have proposed dy-
namic fusion techniques based on interval time windows
or the number of clients [89,90]. For instance, FedPA [91]
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addresses the trade-off between training time and model
performance by dynamically determining the number of
aggregations in each round. Another approach involves han-
dling stale models in the aggregation process [92], where
local models with staleness exceeding a threshold are ex-
cluded from the aggregation. In terms of adaptive deadline
determination, methods such as [44,93] have been pro-
posed. These methods calculate the expected time for each
round based on the computing resources and channel con-
ditions of each mobile device, enabling the adaptation of
deadlines to improve the overall FL process. In addition to
the aforementioned client selection and dynamic aggrega-
tion methods, several other strategies have been proposed
to enhance asynchronous aggregation. These strategies in-
clude excluding clients who have not completed their tasks
in the current aggregation round and evaluating the decision
to aggregate based on a client’s historical performance and
current status [94-97]. In [98], the uplink and downlink pro-
cesses are planned to ensure a balanced influence and share
among all clients. Furthermore, some researchers [99,100]
have proposed employing temporal weight decay strategies
to achieve effective asynchronous aggregation.

Clients evaluation.

The evaluation of client performance plays a significant
role in the domain of AFL [101,102]. Due to varying signal
strengths and limited network resources, not all clients can
effectively participate in the aggregation process. Moreover,
the statistical heterogeneity of local models can negatively
impact the global model. Therefore, prioritizing clients with
better communication capabilities, higher prediction accu-
racy, or models more aligned with the optimal global model
is crucial [103]. For instance, in the Eiffel system [104], a
mobile edge computing framework, clients are selected for
aggregation based on relevant metrics such as data size,
computing power, and last update time. An overall index
is calculated to determine the priority of each client. Other
methods for client selection include sorting clients based
on the gradient update norm [105], utilizing radial-basis-
function [106], assessing model uncertainty [107], and con-
sidering the Mutual Information ratio between ground truth
and model predictions [108]. Researchers have also pro-
posed bandit learning algorithms and Lyapunov optimiza-
tion techniques to address the asynchronous client selection
problem [109]. Some studies employ the Sequential Kalman
Filter to rank the parameters uploaded by clients [110,
111]. Additionally, the quality of clients can be evaluated
using various approaches, as demonstrated in works such
as [112,113]. These evaluation methods contribute to the
selection of suitable clients for aggregation, enhancing the
performance and effectiveness of asynchronous aggregation
in FL.

Semi - asynchronous.

Semi-asynchronous aggregation serves as an intermediary
aggregation method between synchronous and asynchron-
ous aggregation [114]. In synchronous aggregation, the
server must wait for all resulting client models to arrive
before performing aggregation, leading to potential long
waiting times. On the other hand, fully asynchronous aggre-
gation addresses issues like device heterogeneity but may
result in frequent model transfers, consuming significant
communication resources. To address these challenges, re-
searchers have proposed semi-asynchronous FL mechanisms
such as FedSA [115]. With a predefined communication
budget, FedSA allows the server to perform a certain num-
ber of aggregations based on the order of client model
arrivals in each round, thus optimizing the trade-off be-
tween waiting time and resource consumption. Similarly,
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Fig. 10. Hierarchical aggregation in FL. The figure depicts the hierarchical
aggregation process through the federated IoV: vehicles are clustered into
different clusters, and upload local models to the corresponding edge servers
(i.e. roadside units), which then upload the models to the cloud for further
global model updates.

SAFA [116] is a semi-asynchronous FL protocol that in-
troduces the hyperparameter “lag tolerance” to coordinate
lagging clients and compensate for the arrival order of client
models. Additionally, [117] proposed a semi-asynchronous
aggregation strategy that fixes client selection in the first
round and subsequently selects clients based on priority.
Semi-asynchronous aggregation strikes a balance between
synchronous and asynchronous aggregation, effectively im-
proving the round efficiency of the FL process while min-
imizing resource waste. It offers a practical compromise to
leverage the benefits of both synchronous and asynchronous
approaches in FL.

4.3.3. Hierarchical aggregation

In the context of edge learning, the presence of a large number
of edge devices, such as IoT devices, can significantly impact the
efficiency of FL due to frequent model aggregation and the result-
ing high communication overhead [118]. To tackle this challenge,
researchers have proposed a hierarchical aggregation approach
that incorporates an edge layer to partially aggregate local models
from closely related client devices before further aggregation on
the cloud server [119,120]. This hierarchical approach aims to re-
duce communication overhead and the number of model transfer
rounds [121] by introducing multiple aggregation centers. Fig. 10
illustrates the architecture of hierarchical FL, where the hierarchy
optimization and client similarity clustering are two key research
focuses.

e Hierarchical optimization.
Improving the hierarchical structure of Hierarchical Feder-
ated Learning (HFL) can effectively address resource alloca-
tion and communication efficiency challenges [12,122-124].
Various approaches have been proposed to enhance the hi-
erarchical architecture of HFL and optimize its performance.
One example is the FogL architecture proposed in [125],
which adopts a tree-based federated network structure. In
this architecture, end devices are represented as leaves, and
the master server acts as the root. By employing multi-
level and multi-stage tree aggregation techniques [126,127],
FogL mitigates the risk of system overload and improves
resource allocation efficiency. In the context of the Internet
of Vehicles (IoV), HFL research [128-130] has explored the
utilization of roadside units as the middle layer and the
road traffic cloud as the cloud aggregator. This hierarchical
approach leverages the infrastructure of the IoV to facilitate
communication and coordination among vehicles. However,
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it is worth noting that traditional HFL approaches may en-
counter performance degradation for highly mobile users
in hierarchical wireless networks, as discussed in [131].
To address this challenge, the Mobile-Aware Collaborative
Federated Learning (MACFL) algorithm is proposed. MACFL
allows mobile users to download the cluster model from the
nearest edge server for local training, and if they roam to
another cell, they can upload updates to a different edge
server, thus improving communication efficiency. Incentive
mechanisms can also be introduced to enhance commu-
nication efficiency in HFL. For instance, in [132], a data
owner competition framework is proposed where partici-
pants compete for cluster head qualification, equivalent to
edge aggregators. Rewards are distributed based on their
contributions, incentivizing active participation and efficient
communication. Another approach is MaxQ [133], which
applies game theory to improve matching mechanisms in
HFL, enabling efficient collaboration and resource allocation.
Clients clustering.

The idea of clustering in Hierarchical Federated Learning
(HFL) has gained significant attention in recent research
[134,135], as it offers a promising approach for improv-
ing system performance and resource utilization. Cluster-
ing involves grouping clients with similar characteristics
or data distributions into clusters, and performing model
aggregation within each cluster.

In this context, several clustering-based approaches have
been proposed in the literature [136-138]. For example,
Lin et al. [139] divide clients into clusters based on their
communication capabilities and leverage device-to-device
(D2D) communication within each cluster. Periodic global
aggregations are then performed to update the global model.
The FedSim framework [ 140] utilizes the k-means algorithm
to measure similarity between clients and guide the ag-
gregation process. Different distance metrics, such as L1
(Manhattan distance), L2 (Euclidean distance), and cosine
distance, have been employed to quantify the similarity
between clients in clustering-based approaches [141-143].
Another line of research focuses on clustering clients based
on the distribution of their local data [144,145]. For in-
stance, the HPFL-CN framework [146] proposes aggregating
edge devices with similar environmental data distributions
and efficiently training personalized models for each clus-
ter using a hierarchical architecture. In the work by Bao
et al. [147], clients are clustered into non-overlapping coali-
tions based on the distance between their data distributions
and the volume of their data. Each client collaborates only
with clients that have similar data distributions, promoting
effective model training. Clients with less data tend to col-
laborate with a larger number of other clients to compensate
for their limited data.

4.3.4. Robust aggregation

Compared to centralized ML, FL provides greater data privacy
and security guarantees. However, recent research has identified
several security vulnerabilities in FL [148,149]. For example, in-
ference attacks can be launched by an attacker to infer the data
distribution of participants by analyzing the parameters of local
models [150], while backdoor attacks can be initiated by mali-
cious actors by introducing bad clients to the global model [21].
These safety risks have spurred researchers to devise strategies
to enhance the robustness of FL models [151]. To ensure secure
aggregation throughout the FL process, researchers recommend
the use of various encryption techniques, such as differential
privacy [152] and homomorphic encryption [153]. Differential
privacy involves adding random noise to the output to prevent
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attackers from reverse-engineering sensitive data, while homo-
morphic encryption enables basic functional operations to be
performed on encrypted data. In addition, the use of decen-
tralized model aggregation is suggested, for example, by lever-
aging blockchain technology [154] or gossip principles [155].
This decentralized approach eliminates the central server from
the system, thereby preventing single points of failure. Other
approaches include optimizing contract mechanisms [156], us-
ing robust stochastic model aggregation [157], electing a small
committee, rather than assigning sanitization factors [150] or
avoiding small group domination. Furthermore, strategies like
multi-party computation (MPC), and trusted execution environ-
ment (TEE) demonstrate the ongoing effort to address security
vulnerabilities in FL and enhance the privacy protection of the
system.

o Homomorphic encryption-based.

In homomorphic encryption (HE) based schemas, the users
encrypt their models using the same public key, which
allows the central server to add the encrypted models to-
gether using the additive homomorphic property of the
underlying crypto-system. The ownership of the secret key
is a crucial point in public-key crypto-systems used for FL
aggregation. Following the taxonomy in [158], there are
three settings of secret key management. In the first setting,
the secret key is shared among all users but kept confi-
dential against the central server, making the global model
public to all participants. Many different crypto-systems
have been adopted in this setting: RSA [159], Paillier [160],
lattice-based [161], BGN [162], ElGamal [163]. In the Sec-
ond setting, the secret key is known only by the central
server to protect the privacy of the global model [164]. The
drawback of this approach is that the server can decrypt
the encrypted models sent by users, thus breaking their
model privacy. Other privacy-preserving methodologies are
required to improve privacy guarantees, such as masking
models [165] or the use of a trusted party to manage the
secret key [166,167]. The third one can be seen as a way to
improve the security of the first setting, where a set of users
share the same secret key. More than a threshold number
of users must cooperate to decrypt an encrypted message.
Crypto-systems such as threshold Paillier [168,169], ElGa-
mal [170] are used in this setting. This setting provides
a higher security guarantee than the first setting, as the
central server must collude with more users to break the
security.

MPC-based.

Several works have explored the use of Multi-Party Compu-
tation (MPC) to enable privacy-preserving aggregation and
FL training [171,172]. In these schemes, users distribute
their locally trained models to a set of selected users/servers
referred to as agents, who subsequently aggregate them to
construct a new global model. In [173], the authors propose
the utilization of a Fast Fourier Transform (FFT) based se-
cret sharing scheme instead of the traditional Shamir secret
sharing scheme. Alternatively, verifiable sharing schemes
have been utilized in [174,175]. Furthermore, [ 176,177] pro-
pose an aggregation strategy based on a two-step process
where users first elect a committee, which then receives and
aggregates the models shared by the users. Other method-
ologies rely on sharing the models between two [178,179]
or more [174,180] servers to facilitate privacy-preserving
aggregation and FL training.

Blockchain-based.

The utilization of blockchain technology [181], which is a
decentralized and non-tamperable distributed ledger, offers



P. Qi, D. Chiaro, A. Guzzo et al.

Aw AW - AW

Global model H i
broadcast <

S
&
@

ry
§

Local model
download

Local model

Global model [ﬂ &
v download

broadcast

.§
s
N
B3
encrvnled & model model
b T@ ltlzmwluml E ltlnwnlmul

s L el i
Local model @ Local model @

. Medical 7> E

~. devices_.*

Model is
encrypted &
uploaded

Model is

~

. Medical
CTimages gt

Fig. 11. An example of blockchain-based FL.

a wide range of advantages for various research fields such
as healthcare, finance, and education [182]. In recent years,
more researchers have been exploring the combination of
FL with blockchain technology [154,183,184]. In Fig. 11, a
blockchain-based architecture for FL is illustrated where a
client (e.g., medical devices) first downloads the current
global model from the blockchain for initialization. Subse-
quently, the client encrypts and uploads the trained model
to the blockchain, which is then downloaded by the miner
server. The server aggregates the models and broadcasts the
new global model to other nodes. In a recent study [185],
each aggregation node conducts a quality test on the lo-
cal model and broadcasts the reputation evaluation to the
blockchain network. The reward distribution is based on
the combination of client contributions and reputation. This
reputation-based reward distribution algorithm, along with
blockchain technology, provides quality assurance for the
model [186,187].
o TEE-based.

A Trusted Execution Environment (TEE) is a secure area
in the main processor that enables the storage, processing,
and protection of sensitive data and code within a trusted
and isolated environment [188]. TEEs represent a secure
counterpart to the Rich Execution Environment (REE), which
is the standard operating system that the device is running.
Within FL frameworks, TEEs can be successfully used for
secure aggregation: the users encrypt their locally trained
models and transfer them to the REE. The TEE then receives
the encrypted models from the REE, decrypts them, and
aggregates them. The output is returned to the REE for
distribution to all users [189,190]. Several strategies have
been proposed to enhance the security and privacy of FL sys-
tems utilizing TEEs. These include distributing trust among
several TEEs [191], applying DP techniques to perturb users’
models before uploading them to the TEE [190], and utilizing
a TEE to add randomness by shuffling users’ models before
uploading them to the central server. Furthermore, a novel
approach for secure aggregation in FL using TEEs is to deploy
ML training algorithms inside TEEs themselves [192,193].
This approach provides an additional layer of security by
ensuring the confidentiality of data and code.

4.4. The proposed taxonomy

To provide a comprehensive overview of the emerging re-
search methods in FL, we have classified them into four categories
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and provided detailed explanations. The taxonomy is depicted
in Fig. 12, and further information can be found in Table 3,
which presents the specific details of the taxonomy along with
corresponding literature references. In general, synchronous ag-
gregation is effective in achieving good model performance when
the number of devices in the federated system is relatively small.
However, as the number of clients increases, client heterogene-
ity becomes more pronounced, leading to longer training times
as clients wait for each other. In such scenarios, asynchronous
aggregation becomes a more favorable choice. Hierarchical aggre-
gation, on the other hand, is particularly suitable for large-scale
IoT applications like the Internet of Vehicles (IoV), where a sig-
nificant number of devices require coordination. This approach
helps to reduce communication overhead and the number of
model transfer rounds. For applications with high system secu-
rity requirements, the robust aggregation method is preferred.
This approach addresses security concerns by incorporating tech-
niques such as parameter encryption or blockchain technology,
which enhance the overall security of the federated system. By
categorizing the research methods and considering their specific
characteristics and benefits, FL practitioners can make informed
decisions on selecting the most appropriate model aggregation
approach for their specific requirements and constraints.

5. Applications of aggregation methods

FL's unique advantages have made it an attractive solution
for a variety of fields, such as smart transportation, financial
business, and healthcare [198]. FL can handle data islands while
providing strong privacy protection. As FL gains more attention
in real-life applications, including smart healthcare, smart trans-
portation, smart city, smart industry, etc. In practical applications,
selecting the appropriate aggregation method is crucial since it
has a significant impact on the functionality and efficiency of
the designed FL architecture. In the following discussion, we will
explore the reasons and benefits of choosing different aggregation
methods for various industries from the perspective of practical
application.

5.1. Model aggregation in smart healthcare

In the healthcare industry, ensuring user privacy is of par-
amount importance. While the rapid development of ML has
greatly promoted the advancement of smart healthcare, the leak-
age of medical data has also caused significant problems for peo-
ple. To address this issue, multiple means of enhancing privacy
protection can be employed in FL based on robust aggregation,
thereby helping to establish a safe and secure smart medical sys-
tem [199-202]. For example, Kumar et al. propose the MediSecFed
system [203], a security framework for FL in hostile environ-
ments. The authors demonstrate that the MediSecFed system is
also robust to poisoning attacks through experimental evalu-
ations on real-world pneumonia datasets. In [10], the authors
propose an FL framework for protecting medical privacy using
blockchain technology and homomorphic encryption methods.
Evaluation experiments on medical images from CT scanners
demonstrate that the framework can strike a balance between
privacy and accuracy. In addition, the synchronization-based ag-
gregation scheme helps to improve the prediction accuracy of the
FL model. Choudhury et al. [204] conducted a study of electronic
health data to predict adverse drug reactions. Their experimental
results show that the FL model performs similarly to centralized
ML and avoids the challenges associated with the latter.
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Fig. 12. A diagram of the proposed taxonomy of model aggregation techniques in FL.

Table 3
Details of the proposed taxonomy and the corresponding literature.
Synchronous Regularization terms Weights adjustment Knowledge distillation

aggregation

Global control Local control Scoring Learning
mechanism mechanism
[34,194] [54-56] [38,59,60], [68,70,71] [73-82,195]
[63-65] [69,72]
[66,67]
Asynchronous Dynamic fusion Clients evaluation Semi - asynchronous
aggregation Aggregation Aggregation
time numbers
[44,83,86,87] [85,91,94] [101-113] [114-117,196,197]
[84,88-90] [95,96]
[92,93,99,100]
Hierarchical Hierarchical optimization Clients clustering
Aggregation Edge server Tree structure Model similarity Data
distribution
[118-121,128-130] [125-127] [134-143] [144-147]
Robust Homomorphic encryption MPC based Blockchain based TEE based
Aggregation [153,158-170] [172,173,176] [154,156,183-187] [189-191]
[174,175,177] [192,193]
[178-180]

5.2. Model aggregation in smart transportation

ML technology has been commonly used to improve trans-
portation, and recently, FL has been gaining attention in this
field. By surveying the relevant literature, we found that several
different aggregation methods are widely adopted by researchers
in the field of intelligent transportation, thanks to the differ-
ent benefits provided by each aggregation method [205]. In FL
studies based on the IoV, hierarchical and asynchronous aggre-
gation schemes are commonly used due to the large number of
vehicles involved and the need for full coordination [206]. Fur-
thermore, roadside units in IoV can provide intermediate support
for staged aggregation [207]. [208] is a FL-IoV framework based
on hierarchical aggregation, which realizes dynamic map fusion
technology without data labels. In this framework, roadside units
provide labels for local training, and cloud servers perform model
aggregation. [209], vehicle edge computing was studied using FL,

and a client selection approach was used to improve the accuracy
and efficiency of model aggregation. Specifically, by evaluating
the local image quality and computing power, a good local DNN
model is selected and sent to the central server. In [210], an asyn-
chronous aggregation method is used for local model aggregation
of vehicles in IoV. Because in each round of communication, a
large number of vehicles upload model parameters to the server
in the uplink communication phase, which will cause huge com-
munication pressure and prolong the training time, they based
their framework on the rules of partial vehicle participation,
achieving faster convergence in fewer communication rounds.

5.3. Model aggregation in smart city
FL can be used in smart cities to dynamically control environ-

mental pollution, which can help protect the lives and health of
urban residents [211]. FL can be used to train machine learning
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models on data collected from sensors, such as air quality sensors,
distributed throughout a city. By aggregating these models, FL
can provide insights into environmental pollution levels and help
improve decision-making on how to reduce pollution and protect
public health. Extensive research has been conducted on the
application of FL in smart cities, and asynchronous aggregation
has been found to be a popular method for coordinating the
aggregation of client models in FL. In FL based on asynchronous
aggregation, the aggregation of client models can be dynamically
coordinated to improve the operating efficiency of the federated
system. The study by Gao et al. [85] proposes an asynchronous
FL model aggregation method called n-softsync for air quality
prediction, which limits the number of local models when aggre-
gation to reduce time overhead. In the model aggregation step,
only n nodes are allowed to upload the latest local model in
each round; the remaining nodes that have not uploaded their
local models use their old models for the aggregation. Another
study [88] proposes an asynchronous FL framework for urban
environment perception that considers regional characteristics of
monitoring points and uses an asynchronous aggregation strat-
egy to address different bandwidth requirements and to reduce
latency. [146] proposes an edge-intermediary-cloud FL architec-
ture to achieve prediction tasks in urban environments. In this
framework, environmental data are mapped to different complex
network domains. Similarity clustering is performed by extract-
ing low-level feature representations of each edge server. The
intermediary is responsible for coordinating the model training
of the edge servers in each cluster, and periodically uploading the
weights to the cloud server for model aggregation.

5.4. Model aggregation in smart industry

In the field of the Industrial Internet of Things (IIoT), research
related to FL pays more attention to the robustness of the sys-
tem. This is because IIoT involves a large number of important
industrial devices, and if the nodes of the federal network are
attacked or damaged, the industrial system may be paralyzed.
Thus, FL based on robust aggregation is more commonly used
in IoT research [176]. Traditional FL can have a single point of
failure when the central server is damaged. To address this issue,
researchers have proposed different methods for secure and de-
centralized FL. For instance, a serverless FL framework driven by
blockchain was proposed in [212] for distributed ML in smart grid
analysis. The authors used asymmetric cryptography to encrypt
models and verified the effectiveness of the proposed method
using power grid simulation datasets. In [ 184], a framework based
on blockchain and with Intel Software Guard Extensions (SGX) is
proposed for simulating the scenario of FL in smart warehouses.
Each of these blockchain nodes hosts a trusted SGX processor for
secure aggregation of models. In this framework, each blockchain
node can verify the authenticity of the aggregated model, and the
blockchain consensus mechanism is run to ensure the integrity of
the model.

5.5. Model aggregation in other fields

FL has found applications in other domains, such as finance,
education, network security, E-commerce recommender system
[213], natural disaster prediction [214] etc. The efficient model
aggregation has brought great advances to those industries. For
example, Imteaj et al. [215] utilize asynchronous FL to predict
customers’ financial distress. In this framework, local models
learn about customers’ personal information and past financial
status, and accurate predictions are achieved by considering
clients’ local models at different epochs. Furthermore, with the
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continuous development of network technology and the popular-
ization of network applications, research on network security is-
sues based on FL has become a research hotspot. Zhao et al. [216]
proposed an intrusion detection system called DAFL. In addition
to the inherent data protection advantages of FL, the dynamic
filtering and weighting strategy achieves less communication
overhead and higher detection performance. In recent years,
online course systems have gradually become popular in the
education industry and schools, and data leakage risks have also
received a lot of attention. An integrated system of multimedia
course recommendation and data-secure FL is proposed in the
study [217], which keeps a copy of the recommended model on
each user device and coordinates the division of model aggrega-
tion communication rounds. Experiments on datasets containing
real multimedia courses demonstrate effective operation in a
privacy-preserving mode.

As a conclusion, since different application domains have dif-
ferent characteristics and situations, there are generally one or
two main aggregation methods adapted to meet application re-
quirements. Table 4 summarizes the main model aggregation
methods in different domains.

6. Challenge and future directions

FL has led to the development of several aggregation methods,
but there are still some significant challenges that need to be
addressed. In this section, we will discuss these challenges in
detail, focusing on three aspects: statistical heterogeneity, com-
munication bottlenecks, and secure aggregation. We will also
highlight potential future trends in addressing these challenges.

6.1. Statistical heterogeneity

In FL, a significant challenge in model aggregation is caused
by statistical heterogeneity [218]. The FedAvg algorithm per-
forms model aggregation by taking a weighted average of local
model parameters from all participating parties. However, this
may cause the aggregated global model to converge poorly or
even diverge. To address this issue, some studies have employed
the Bayesian non-parametric mechanism to perform model ag-
gregation through neuron matching and a combination of local
models, as seen in PFNM [219] and Claici et al. [220]. In addition,
Shukla et al. [221] proposed the Infogain FedMA algorithm, which
uses an information-gain-based sampling method to select the
parameters to be aggregated, paired with probabilistic feder-
ated neural matching. However, these methods have only been
applied to relatively simple neural network models, and general-
izing them to complex network models to improve applicability
remains a challenge that needs to be further explored.

6.2. Communication bottlenecks

Model aggregation in FL faces another significant challenge,
namely the communication problem [222]. This problem directly
affects the aggregation speed, which slows down the overall
training progress. In a typical federated system, there are usually
multiple clients, such as hundreds or thousands of devices in an
IoT-based federated system. During model aggregation, a large
number of clients need to upload their local updates to the
same network, which can cause severe communication conges-
tion problems due to limited network bandwidth [223]. This is
also a major challenge faced by FL in enterprise implementation.
While training simple models in FL can reduce the communi-
cation burden, the explosive growth of data in the internet age
means that this may not be sufficient to meet practical applica-
tion needs. Therefore, training large network models has become
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Table 4
A summary of the main aggregation methods per each application domain.
Applied domain Aggregation Paper Method Purpose
[202] Use differential privacy and Increase security level during model
Smart Robust cryptograph aggregation; Protect users’ medical privac
Healthcare Aggregation yptography. ssree ’ p Y.
[203] Exchange and encode model logits Protect the system from poisoning attacks;
instead of parameters. Protect users’ medical privacy.
[10] Utilize blockchain technology and Decentralize and secure update gradients;
homomorphic encryption. Protect medical privacy.
Synchronous [204] Assign higher weights to clients with Achieve model performance comparable to
aggregation rare events. centralized ML; improve medical disease
diagnosis accuracy while preserving medical
data.
Hierarchical [207] Roadside units as intermediate Coordinate a large number of clients
Smart Aggregation aggregators and cloud servers as final (vehicles); Ensure the orderly operation of the
. aggregators. Federal IoV.
Transportation
[208] Roadside units provide labels for Coordinate a large number of clients
local training, and cloud servers (vehicles); Ensure the orderly operation of the
perform model aggregation. Federal IoV.
Asynchronous [209] Good local models are selected for To improve the efficiency of model
aggregation aggregation by evaluating clients. aggregation; Reduce training time.
[210] Create rules for partial vehicle To reduce the pressure of uplink and downlink
participation. communication during model aggregation.
[206] Evaluate local model versions for To reduce model training time and bandwidth
aggregation. costs.
Asynchronous [88] Model aggregation is performed as Reduce invalid latency and bandwidth
Smart aggregation soon as the local model is uploaded. requirements.
City [85] Only n nodes are allowed to upload Reduce time overhead.
the latest local model in each round.
[211] The server first aggregates models Reduce time overhead; Improve the efficiency
related to regions. of model aggregation.
Hierarchical [146] Clients are clustered based on Reduce the communication overhead of the FL
Aggregation similarity, and edge servers and cloud system.
servers perform aggregation in turn.
Smart Robust [212] Asymmetric cryptography for Prevent single point of failure and improve
Industry Aggregation encryption and smart contracts in system security.
the blockchain to drive training.
[176] Two-stage secure multi-party Improve system security.
computation.
[184] Relying on blockchain and processors Secure aggregation to prevent model

with Intel Software Guard Extensions.

tampering.

a focus of several studies [125]. Correspondingly, maximizing the
use of limited resources and improving aggregation efficiency
under such conditions is an urgent problem that needs to be
solved.

There are proposed solutions to address the communication
bottleneck in FL. One such solution is FL based on over-the-air
computation (AirComp), which can achieve fast model aggre-
gation. AirComp is a non-orthogonal multiple access (NOMA)
technique that uses the waveform superposition characteristics
of multiple access channels to perform combined calculation of
data transmitted by multiple clients. Ni [224] et al. proposed to
use intelligent reflective surfaces (IRS), which is a technique to
reconfigure the wireless propagation environment, to improve
signal distortion caused by AirComp. Another proposed solution
is to deploy multiple relays to assist signal transmission and im-
prove the performance of aerial model aggregation, as suggested
by Lin et al. [225]. Additionally, the sixth generation (6G) wireless
communication is expected to be an effective method to address
the communication bottleneck in FL. Compared with previous
generations of wireless communications (4G and 5G), 6G has
higher data transmission rates, wider frequency bands, and wider
network coverage [226]. The 6G era is expected to help FL address
its model aggregation difficulties, and in turn, FL can promote the
integration of 6G into more IoT industries and Al services.
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6.3. Secure aggregation

In FL, security is a critical issue that needs attention, especially
in model aggregation. In centralized FL, the server is assumed to
be honest but curious, and the clients are honest. However, the
presence of attackers can easily disrupt this assumption [227]. In
FL, the attacker can take active and passive attacks [21]. Active
attacks include model poisoning attacks [20]. Generally speaking,
in a model poisoning attack, the attacker can modify the local
model before uploading it to the central server, thereby affecting
the aggregated global model. The idea of filtering out suspect
local models for evaluating client-side updates has emerged in
several studies [156]. When the vast majority of clients are hon-
est, filter-based approaches can lead to good aggregated results.
But when there is more than one dangerous client, there may
be a Sybil attack by multiple attackers which will cause greater
damage to the model. At this time, the filtering-based method
may also cause the loss of client information, which is a method
that is not worth the candle. How to ensure safe aggregation
without losing information is a matter of balance. On the other
hand, passive attack means that the attacker does not change the
training process of FL, but makes inferences by observing updates,
such as the inference attack. In an inference-based attack, the
model parameters are reversely deduced, which will lead to the
leakage of private data information. Both participating clients and
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malicious centralized servers in FL have the potential to launch
inference attacks.

Currently, researchers are exploring the potential benefits of
blockchain technology, such as decentralization, traceability, and
irreversibility, in addressing security concerns in model aggrega-
tion [228]. Additionally, a trusted environment is necessary for
model aggregation [229]. In addition to these technical solutions,
proper governance and regulation are also essential to ensure
the security of FL systems. This includes establishing a clear and
transparent data collection and usage policy, ensuring that data
is collected and processed lawfully, and obtaining the necessary
consent from individuals. It is also important to implement effec-
tive monitoring and auditing mechanisms to detect and respond
to security breaches. Finally, it is essential to educate both clients
and developers about the security risks associated with FL and
how to mitigate them.

7. Conclusion

In this paper, we have conducted a comprehensive survey
and discussion on the topic of model aggregation in FL. FL has
emerged as a distributed machine learning paradigm with en-
hanced privacy protection, and model aggregation plays a crucial
role in this context. OQur motivation for this paper stems from
the lack of a comprehensive survey and taxonomy of model
aggregation in FL.

We first introduced our research methodology and provided
an overview of FL and model aggregation. We categorized model
aggregation into four forms: synchronous, asynchronous, hier-
archical, and robust. We then explored the benefits of model
aggregation in practical applications, such as smart healthcare
and smart transportation.

Additionally, we discussed the current challenges in model ag-
gregation in FL and proposed potential future research directions.
Our survey is the first to provide a taxonomy of the different
forms of model aggregation in FL, serving as a foundation for
further exploration and development in this area. Through our
extensive discussions, we aim to foster more research interest in
the field of FL.
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