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a b s t r a c t 

In recent years, along with the blooming of Machine Learning (ML)-based applications 

and services, ensuring data privacy and security have become a critical obligation. ML- 

based service providers not only confront with difficulties in collecting and managing 

data across heterogeneous sources but also challenges of complying with rigorous data 

protection regulations such as EU/UK General Data Protection Regulation (GDPR). Fur- 

thermore, conventional centralised ML approaches have always come with long-standing 

privacy risks to personal data leakage, misuse, and abuse. Federated learning (FL) has 

emerged as a prospective solution that facilitates distributed collaborative learning with- 

out disclosing original training data. Unfortunately, retaining data and computation on- 

device as in FL are not sufficient for privacy-guarantee because model parameters ex- 

changed among participants conceal sensitive information that can be exploited in pri- 

vacy attacks. Consequently, FL-based systems are not naturally compliant with the GDPR. 

This article is dedicated to surveying of state-of-the-art privacy-preservation techniques 

in FL in relations with GDPR requirements. Furthermore, insights into the existing chal- 

lenges are examined along with the prospective approaches following the GDPR reg- 

ulatory guidelines that FL-based systems shall implement to fully comply with the 

GDPR. 

© 2021 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

We are now living in a data-driven world where most appli-
cations and services such as healthcare and medical services,
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vances in every aspect of lives and expected to ”change the
world more than anything in the history of mankind. More than elec-
imperial.ac.uk (K. Sun), s.wang18@imperial.ac.uk (S. Wang), 

n access article under the CC BY license 

https://doi.org/10.1016/j.cose.2021.102402
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102402&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:n.truong@imperial.ac.uk
mailto:k.sun@imperial.ac.uk
mailto:s.wang18@imperial.ac.uk
mailto:f.guitton@imperial.ac.uk
mailto:y.guo@imperial.ac.uk
https://doi.org/10.1016/j.cose.2021.102402
http://creativecommons.org/licenses/by/4.0/


2 c o m p u t e r s  &  s e c u r i t y  1 1 0  ( 2 0 2 1 )  1 0 2 4 0 2  

t
t
h
t  

s
u
t
q  

c
d
a
l
v
i
a
t
P
t
c
p
m
l
c
d

 

p
p
a  

2
r
t
i  

t
l
s
M
t
o
f
t
d
g

t
s
b
o
c
n
p
h
G  

F

c
n

f
r
i
d
s
p
t
t  

P  

b
s
p
E

w
G
c
t
t
(
t
o
r
w
b
t
p
r

2
i

2

M
l
e
g
m
s
t
c
t
c
o
p

2
O  

w  

o

ricity.”1 . However, the AI technology is yet to reach its full po- 
ential, also the realisation of such AI/ML-based applications 
as been still facing long-standing challenges wherein cen- 

ralised storage and computation is one of the critical reasons.
In most of the real-world scenarios, data, particularly per- 

onal data, is generated and stored in data silos, either end- 
sers’ devices or service providers’ data centres. Most conven- 
ional ML algorithms are operated in a centralised fashion, re- 
uiring training data to be fused in a data server. Essentially,
ollecting, aggregating and integrating heterogeneous data 
ispersed over various data sources as well as securely man- 
ging and processing the data are non-trivial tasks. The chal- 
enges are not only due to transporting high-volume, high- 
elocity, high-veracity, and heterogeneous data across organ- 
sations but also the industry competition, the complicated 

dministrative procedures, and essentially, the data protec- 
ion regulations and restrictions such as the EU General Data 
rotection Regulation (GDPR) 2 Horvitz and Mulligan (2015) . In 

raditional ML algorithms, large-scale data collection and pro- 
essing at a powerful cloud-based server entails the single- 
oint-of-failure and the risks of severe data breaches. Fore- 
ost, centralised data processing and management impose 

imited transparency and provenance on the system, which 

ould lead to the lack of trust from end-users as well as the 
ifficulty in complying with the GDPR Truong et al. (2019) . 

To overcome such challenges, Federated Learning (FL),
roposed by Google researchers in 2016, has appeared as a 
romising solution and attracted attention from both industry 
nd academia Kone ̌cn ̀y et al. (2016a,b) ; McMahan et al. (2017a,
016) . Generally, FL is a technique to implement an ML algo- 
ithm in decentralised collaborative learning settings wherein 

he algorithm is executed on multiple local datasets stored at 
solated data sources (i.e., local nodes) such as smartphones,
ablet, PCs, and wearable devices without the need for col- 
ecting and processing the training data at a centralised data 
erver. FL allows local nodes to collaboratively train a shared 

L model while retaining both training dataset and compu- 
ation at internal sites Kone ̌cn ̀y et al. (2016a) . Only results 
f the training (i.e., parameters) are exchanged at a certain 

requency, which requires a central server to coordinate the 
raining process (centralised FL) or utilises a peer-to-peer un- 
erlying network infrastructure (i.e., decentralised FL) to ag- 
regate the training results and calculate the global model. 

The natural advantage of FL compared to the tradi- 
ional cloud-centric ML approaches is the ability to reas- 
ure data privacy and (presumably) comply with the GDPR 

ecause personal data is stored and processed locally, and 

nly model parameters are exchanged. In addition, the pro- 
esses of parameters updates and aggregation between local 
odes and a central coordination server are strengthened by 
rivacy-preserving and cryptography techniques, which en- 
ance data security and privacy Bonawitz et al. (2016, 2017) ; 
eyer et al. (2017) ; Phong et al. (2018) ; Wei et al. (2020) . The
L capability could potentially inaugurate new opportunities 
1 Dr. Kai-Fu Lee, former vice president at Google, https://www. 
nbc.com/2019/01/14/the- oracle- of- ai- these- kinds- of- jobs- will- 
ot- be- replaced- by- robots- .html 
2 https://gdpr-info.eu/ . 
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or service providers to implement some sorts of ML algo- 
ithms for their applications and services without acquir- 
ng clients’ personal data, hence naturally complying with 

ata protection regulations like the GDPR. Unfortunately, de- 
pite the distributed collaborative learning model of FL em- 
owered by privacy-preserving measures, personal informa- 
ion can be stealthily extracted from local training parame- 
ers Aono et al. (2017) ; Hitaj et al. (2017) ; Melis et al. (2019) ;
hong et al. (2018) ; Zhu et al. (2019) . As a consequence, FL-
ased service providers still stay within the regulatory per- 
onal data protection framework and are still liable for im- 
lementing GDPR-compliant mechanisms when dealing with 

U/UK citizens. 
In this article, we conduct a survey on existing FL studies 

ith an emphasis on privacy-preserving techniques from the 
DPR-compliance perspective. Firstly, we briefly review the 
hallenges on data privacy preservation in conventional cen- 
ralised ML approaches ( Section 2 ) and dummyTXdummy- in- 
roduce FL as a potential approach to address the challenges 
 Section 3 ). Secondly, the state-of-the-art privacy-preserving 
echniques for centralised FL are described with the analysis 
f how these solutions can mitigate data security and privacy 
isks ( Section 4 ). Thirdly, we provide an insightful deliberation 

ith potential solution approaches of how an FL system can 

e implemented in order to comply with the EU/UK GDPR ( Sec- 
ion 5 ). Unsolved challenges hindering an FL system from com- 
lying with the GDPR are also specified along with the future 
esearch directions. 

. Privacy preservation and GDPR-Compliance 

n ML-based systems 

.1. Fundamental background 

L is a disruptive technology for designing and building intel- 
igent systems that can automatically learn and improve from 

xperience to accomplish a task without being explicitly pro- 
rammed. For this purpose, an ML-based system builds up a 
athematical model (i.e., model training process) based on a 

ample set (i.e., training data) whose parameters are to be op- 
imised during this training process. As a result, the system 

an perform better predictions or decisions on a new, unseen 

ask. Typically, an ML task can be formulated as a mathemati- 
al optimisation problem whose goal is to find the extremum 

f an objective function. Thus, an optimisation method is of 
aramount importance in any ML-based systems. 

.1.1. Gradient descent algorithm 

ne of the most widely used optimisation methods for ML,
hich is also the core of FL, is gradient descent. It is a first-
rder iterative optimisation algorithm for finding a local min- 

mum of an objective function f (θ ) parameterised by a set of 
arameters θ ∈ R 

d Ruder (2016) . Consider a samples set D = 

x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x m 

, y m 

) , and the objective function f (θ ) ; a 
odel training process uses the gradient descent method to 

pdate each parameter in the opposite direction of the gradi- 
nt of the objective function 

� 

f (θ ) regarding to the parame- 

https://www.cnbc.com/2019/01/14/the-oracle-of-ai-these-kinds-of-jobs-will-not-be-replaced-by-robots-.html
https://gdpr-info.eu/
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3 https://www.tensorflow.org/ . 
4 https://pytorch.org/ . 
ters by the following equation: 

w j ← w j − η
� 1 

m 

m ∑ 

i =1 

L ( f (x i ) − y i ) (1)

where w j refers to the j th parameter of θ , and η refers to the
learning rate hyper-parameter, i.e., the size of steps to reach
the optimal. L represents a loss function such as mean-square
error (MSE) and cross-entropy loss. The parameters update
process using Eq. 1 is iteratively carried out until either an ac-
ceptable local minimum is found or the difference of the loss
between two consecutive steps is negligible. 

2.1.2. Gradient descent variants 
Generally, there are three gradient descent methods that
are categorised based on the amount of training data used
in the gradient calculation of the objective function f (θ )
Ruder (2016) . The first category is batch gradient descent , in
which the gradients are computed over the entire training
dataset D for one update. The second category is stochastic
gradient descent (SGD) , that, in contrast to batch gradient de-
scent, randomly selects a sample (or a subset) from D and
performs the parameters update based on the gradient of this
sample only (one sample per step, the whole process sweeps
through the entire dataset). The third one is mini-batch gradient
descent in which the dataset is subdivided into mini-batches of
n training samples ( n is the batch-size); the parameters update
is then performed on every mini-batch (single mini-batch per
step). 

There is a trade-off between the accuracy of parameters
update and the efficiency of the computation in each step of
gradient descent. Generally, mini-batch gradient descent mit-
igates the problem of inefficiency in batch gradient descent
and gradient oscillation in SGD. However, it introduces the
extra hyper-parameter batch-size n , which requires expertise
and extensive trial and error and sometimes needs to be man-
ually adjusted Keskar et al. (2016) . The gradient descent nor-
mally comes along with optimisers, which are techniques for
controlling the learning rate η logistically and accurately. Such
optimisers tie together with the model parameters θ and the
loss function L in order to adjust the learning rate η in re-
sponse to the output of the loss function. The most common
gradient-based optimisers include Momentum Qian (1999) ,
Adam Kingma and Ba (2014) , RMSprop Tieleman and Hin-
ton (2012) , and Adagrad Duchi et al. (2011) . 

2.1.3. Gradient descent in distributed learning 
Although gradient descent-based optimisation methods were
successfully engaged in various ML algorithms, they have
recently re-gained much attention since the emergence of
large-scale distributed learning, including FL Bottou (2010) ;
Dean et al. (2012) . In these scenarios, a complex model, e.g.,
a deep neural network (DNN) with millions of parameters, is
trained on a very large dataset across multiple nodes. These
nodes are called compute nodes and grouped into clusters . For ef-
ficiency, the calculations in the training process should be par-
allelised using concurrency methods such as model parallelism
and data parallelism Chen and Lin (2014) . Model parallelism dis-
tributes an ML model into different computing blocks; avail-
able computing nodes are then be assigned to compute some
specific blocks only. Model parallelism requires mini-batch
data to be replicated at computing nodes in a cluster, as well
as regular communication and synchronisation among such
nodes Dean et al. (2012) . Data parallelism, instead, keeps the
completeness of the model on each computing node but par-
titions the training dataset into smaller equal size shards (also
known as sharding ), which are then distributed to computing
nodes in each cluster Ben-Nun and Hoefler (2019) . The com-
puting nodes then train the model on their subset as a mini-
batch, which is especially effective for SGD variants because
most operations over mini-batches are independent in these
algorithms. Data parallelism can be found in numerous mod-
ern ML frameworks including TensorFlow 

3 and Pytorch 4 . The
two parallelism techniques can also be combined (so-called
Hybrid parallelism) to intensify the advantages while mitigat-
ing the drawbacks of each one; as a result, a hybrid system can
achieve better efficiency and scalability Chilimbi et al. (2014) . 

2.2. Privacy preserving techniques in ML 

Generally, privacy preservation techniques for a distributed
learning system target two main objectives: (i) privacy of the
training dataset and (ii) privacy of the local model parameters
(from an optimisation algorithm such as a gradient descent
variant) which are exchanged with other nodes and/or a cen-
tralised server Shokri and Shmatikov (2015) . In this respect,
prominent privacy-preserving techniques in ML include data
anonymisation Narayanan and Shmatikov (2008) , differential
privacy Dwork et al. (2006) , secure multi-party computation
(SMC) Yao (1986) , and homomorphic encryption Gentry (2010) .

2.2.1. Data anonymisation 

Data anonymisation or de-identification is a technique to hide
(e.g., hashing) or remove sensitive attributes, such as person-
ally identifiable information (PII), so that a data subject can-
not be identified within the modified dataset (i.e., the anony-
mous dataset) Narayanan and Shmatikov (2008) . As a con-
sequence, data anonymisation has to balance well between
privacy-guarantee and utility because hiding or removing in-
formation may reduce the utility of the dataset. Furthermore,
when combined with auxiliary information from other anony-
mous datasets, a data subject might be re-identified, sub-
jected to a privacy attack called linkage attack Fung et al. (2010) .
To prevent from linkage attack, numerous techniques have
been proposed such as k-anonymity Sweeney (2002) , l-diversity
Machanavajjhala et al. (2007) , a k-anonymity -based method,
and t-closeness - a technique built on both k-anonymity and l-
diversity that preserves the distribution of sensitive attributes
in a dataset so that it reduces the risk of re-identifying a data
subject in a same quasi-identifier group Li et al. (2007) . 

Unfortunately, such privacy-preserving techniques cannot
defend against linkage attacks whose adversaries possess
some knowledge about the sensitive attributes. This defi-
ciency in the k-anonymity -based methods calls for different ap-
proaches that offer rigorous privacy-guarantee such as differ-
ential privacy . 

https://www.tensorflow.org/
https://pytorch.org/
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.2.2. Differential privacy 
roposed by Dwork et al. in 2006, differential privacy 
work et al. (2006) is an advanced solution of the perturba- 

ion privacy/preserving technique in which random noise is 
dded to true outputs using rigorous mathematical measures 
ung et al. (2010) . As a result, it is statistically indistinguish- 
ble between an original aggregate dataset and a differentially 
dditive-noise one. Thus, a single individual cannot be identi- 
ed as any (statistical) query results to the original dataset is 
ractically the same regardless of the existence of the individ- 
al Dwork (2008) ; Dwork et al. (2006, 2014) . However, there is a
rade-off between privacy-guarantee and utility as adding too 

uch noise and improper randomness will significantly de- 
reciate reliability and usability of the dataset Dwork (2008) ; 
work et al. (2014) ; Fung et al. (2010) . 

Differential privacy technique has been widely employed 

n various ML algorithms such as linear and logistic re- 
ression Chaudhuri and Monteleoni (2009) , Support Vector 
achine (SVM) Rubinstein et al. (2012) and deep learning 
badi et al. (2016) ; Chaudhuri et al. (2011) , as well as in
L-based applications such as data mining Friedman and 

chuster (2010) and signal processing with continuous data 
arwate and Chaudhuri (2013) . 

.2.3. Secure multi-party computation 

MC, also known as multi-party computation (MPC) or 
rivacy-preserving computation, was firstly introduced by 
ao in 1986 Yao (1986) and further developed by numer- 
us researchers. Its catalyst is that a function can be col- 

ectively computed over a dataset owned by multiple par- 
ies using their own inputs (i.e., a subset of the dataset) 
o that any party learns nothing about others data ex- 
ept the outputs Canetti et al. (1996) ; Cramer et al. (2000) ; 
oldreich (1998) . Specifically, n parties P 1 , P 2 , ., P n own n pieces
f private data X 1 , X 2 , . . . , X n , respectively to collectively com-
ute a public function f (X 1 , X 2 , ., X n ) = (Y 1 , Y 2 , ., Y n ) . The only

nformation each party can obtain from the computation is 
he result (Y 1 , Y 2 , ., Y n ) and its own inputs X i . Classical se-
ret sharing such as Shamir secret sharing Brickell (1989) ; 
hamir (1979) and verifiable secret sharing (VSS) schemes 
hor et al. (1985) are the groundwork for most of the SMC pro- 

ocols. 
Although the idea of SMC has been investigated and shown 

easible since late 1980s Goldreich et al. (2019) ; Yao (1986) ,
ts practicality still remains a long-standing challenge. SMC 

roundwork protocols Canetti et al. (1996) ; Cramer et al. (2000) ; 
oldreich (1998) ; Yao (1986) , which are based on zero- 
nowledge proofs, were shown to be inefficient and imprac- 
ical under the presence of malicious adversaries Jarecki and 

hmatikov (2007) . These protocols are built upon the Yao gar- 
led circuits idea in Yao (1986) which are only efficient in semi- 
onest settings. Significant research effort to achieve security 
gainst malicious adversaries while being efficient has been 

arried out; and one of the notable technique is based on cut- 
nd-choose paradigm Lindell and Pinkas (2007) . In the cut-and- 
hoose approach, as a large number of circuits are processed 

n order to prevent from adversaries, significant overheads,
oth in computation and in communication, are introduced.
o overcome this challenge, some efficient SMC protocols 
ased on the cut-and-choose paradigm have been proposed 
nd shown to be practical while achieving the same level of se- 
urity in the malicious adversaries settings Huang et al. (2013) ; 
indell (2016) . 

With such efficient SMC protocols, it is feasible to 
chieve data privacy in distributed learning wherein com- 
ute nodes collaboratively perform model training on their 

ocal dataset without revealing such dataset to others. In- 
eed, SMC has been employed in numerous ML algorithms 
uch as secure two-party computation (S2C) in linear re- 
ression Du et al. (2004) , Iterative Dichotomiser-3 (ID3) deci- 
ion tree learning algorithm Lindell and Pinkas (2000) , and 

-means clustering algorithm for distributed data mining 
agannathan and Wright (2005) . However,most of SMC proto- 
ols impose non-trivial overheads which require further effi- 
iency improvements with practical deployment. 

.2.4. Homomorphic encryption 

nother approach to preserve data privacy and security in ML 
s to utilise homomorphic encryption techniques, particularly 
n centralised systems, e.g., cloud servers, wherein data is col- 
ected and trained at a server without disclosing the origi- 
al information. Homomorphic encryption enables the abil- 

ty to perform computation on an encrypted form of data 
ithout the need for the secret key to decrypt the cipher-text 
entry (2010) . Results of the computation are in encrypted 

orm and can only be decrypted by the requester of the com- 
utation. In addition, homomorphic encryption ensures that 
he decrypted output is the same as the one computed on the 
riginal unencrypted dataset. 

Depending on encryption schemes and classes of compu- 
ational operations that can be performed on an encrypted 

orm, homomorphic encryption techniques are divided into 

ifferent categories such as partial, somewhat (SWHE),
nd fully homomorphic encryption (FHE) Acar et al. (2018) .
ome classic encryption techniques, including Rivest ǣShamir 
Adleman (RSA) , is SWHE wherein simple addition and multi- 
lication operations can be executed Acar et al. (2018) . FHE,
rstly proposed by Graig et al. in Gentry and Boneh (2009) ; 
entry and Halevi (2011) , enables any arbitrary operations 

thus, enables any desirable functionality) over cipher-text,
ielding results in encrypted forms. In FHE, computation on 

he original data or the cipher-text can be mathematically 
ransferred using a decryption function without any conflicts.

Even though homomorphic encryption offers rigorous 
rivacy-guarantee to individuals as the original data in plain- 
ext has never been disclosed, there is a practical limitation in 

erforming computation over cipher-text due to the tremen- 
ous computational overhead. As a consequence, employing 
omomorphic encryption in large-scale data training remains 

mpractical Gilad-Bachrach et al. (2016) . 

.3. The GDPR 

he new GDPR legislation has come into force from May 2018 
n all European Union (EU) countries which is a major up- 
ate to the EU Data Protection Directive (95/46/EC) (DPD-95) 

ntroduced in the year 1995. The GDPR aims to protect per- 
onal data (more comprehensive range depicted in ”Which?”
 Fig. 1 ) with the impetus that ”personal data can only be gath-
red legally, under strict conditions, for a legitimate purpose”. The 
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Fig. 1 – The GDPR legislation in a nutshell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

full regulation is described in detail across 99 articles cover-
ing principles, and both technical and admin requirements
around how organisations need to process personal data. The
GDPR creates a legal data protection framework throughout
the EU/UK member states which has impacted commercial
and public organisations worldwide processing EU/UK resi-
dents’ data ( ”Global” in Fig. 1 ). 

The GDPR clearly differentiates three participant roles,
namely: Data Subject, Data Controller and Data Processor,
along with associated requirements and obligations under the
EU/UK data protection law. While serving as a better privacy
and security framework, the GDPR also aims at protecting
data ownership by obligating Data Controllers to provide fun-
damental rights for Data Subjects to control over their data
( ”How?” in Fig. 1 ). For these purposes, the GDPR introduces and
sets high-standard for the consent lawful basis in which Data
Controller shall obtain consent from Data Subject in order to
process data. Data Controller takes full responsibility to reg-
ulate the purposes for which and the methods in which, per-
sonal data is processed under the Terms and Conditions de-
fined in the consent. 

2.4. Challenges on complying with the GDPR 

To meet stringent requirements of the GDPR, conventional
ML-based applications and services are required to imple-
ment measures that effectively protect and manage per-
sonal data adhering to the six data protection principles
in the GDPR, as well as to provide mechanisms for data
subjects to fully control their data. Although ML-based sys-
tems are strengthened by several privacy-preserving methods,
implementing these obligations in a centralised ML-based
system is non-trivial, sometimes technologically impractical
Greengard (2018) ; Wachter et al. (2017) . 

Large-scale data collection, aggregation and processing at
a central server in such ML-based systems not only entail the
risks of severe data breaches due to single-point-of-failure
but also intensify the lack of transparency, data misuse and
data abuse because the service providers are in full con-
trol of the whole data lifecycle Truong et al. (2019) . In addi-
tion, as ML algorithms operate in a black-box manner, it is
also challenging to provide insightful interpretation of how
the algorithms execute and how certain decisions are made
Mehrabi et al. (2019) ; Murdoch et al. (2019) . Consequently, most
of the ML-based systems find it difficult to satisfy the require-
ments of transparency, fairness, and automated decision-
making in the GDPR. 

Furthermore, the requirements of purpose limitation and
data minimisation are not always feasibly carried out in ML-
based systems. The majority of ML algorithms heavily rely
on data quality and quantity, thus researchers tend to col-
lect as much related data as possible. Therefore, determining
1) the purposes of data collection as well as 2) what data is
adequate, limited, and relevant only to the claimed purposes
before executing such ML algorithms are problematic chal-
lenges. These requirements overly restrict the natural opera-
tions of ML-based services and applications to a smaller range
than ever before. 

Finally, ML algorithms are essentially designed for optimis-
ing performance, whereas privacy preservation measures re-
main to be a simple disclaimer. With rigorous requirements
of the GDPR, such ML algorithms shall be redesigned inter-
nally at the algorithm level in order to accommodate sufficient
privacy-preserving techniques. This system redesign requires
enormous, or even infeasible, efforts in terms of both techno-
logical resolution and human and financial resources. In addi-
tion, the trade-off between efficiency and privacy-guarantee is
apparently a serious issue for many service providers as sacri-
ficing system performance might lead to the inability to han-
dle their existing services. 

3. Federated learning: A Distributed 

collaborative learning approach 

In many scenarios, the traditional cloud-centric ML ap-
proaches are no longer suitable due to the challenges of com-
plying with strict data protection regulations on vast aggre-
gation and processing of personal data. By nature, most per-
sonal data is generated at the edge by end-users’ devices
(e.g., smartphones, tablets, and wearable devices) which are
equipped with increasingly powerful computing capability
and Internet connectivity. Given the pervasiveness of such
personal devices along with the growing privacy concerns, the
trend of decentralised AI has naturally risen which converges
the mobile edge computing (MEC) Hu et al. (2015) with AI/ML
techniques to migrate the intelligence from the cloud to the
edge Wang et al. (2020) . 

In this regard, FL is an alternative for the cloud-centric ML
technique that facilitates an ML model to be trained collab-
oratively while retaining original personal data on their de-
vices, thus potentially mitigates data privacy-related vulner-
abilities. It is a cross-disciplinary technique covering multi-
ple computer science aspects including ML, distributed com-
puting, data privacy and security that enables end-users’ de-
vices (i.e., local nodes) to locally train a shared ML model on
local data. Only parameters in the training process are ex-
changed for model aggregation and updates. The difference
between FL and standard distributed learning is that in dis-
tributed learning, local training datasets in compute nodes are
assumed to be independent and identically distributed data (IID)
whose sizes are roughly the same. FL is, thus, an advancement
of distributed learning as it is designed to work with unbal-
anced and non-independent identically-distributed data (non-IID)
whose sizes may span several orders of magnitude. Such het-
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rogeneous datasets reside at a massive number of scattering 
obile devices under unstable connectivity and limited com- 
unication bandwidth Kairouz et al. (2019) ; McMahan et al.

2017a, 2016) . 

.1. Model training in federated learning 

L is well-suited for sorts of ML models that are formu- 
ated as minimisation of some objective functions (loss func- 
ions) on a training dataset for parameter estimation, par- 
icularly for gradient-based optimisation algorithms Kone ̌cn ̀y 
t al. (2016a) . The minimisation objective can be formulated 

s follows: 

in 

 ∈ R d 
f (w ) = 

1 
n 

n ∑ 

i =1 

f i (w ) (2) 

here the training dataset is in form of a set of input-output 
airs (x i , y i ) , x i ∈ R 

d and y i ∈ R , ∀ i ∈ { 1 , 2 , ., n } . In Eq. 2 ,
 is the number of samples in the dataset, w ∈ R 

d is the
arameter vector , and f i (w ) is a loss function. This formula- 
ion covers both linear and logistic regressions, support vec- 
or machines, as well as complicated non-convex problems 
n Artificial Neural Networks (ANN) including Deep Learn- 
ng Kone ̌cn ̀y et al. (2016a) . This problem requires an optimi- 
ation process that can be efficiently computed by using a 
radient descent algorithm with back-propagation technique 
ezende et al. (2014) ; Rumelhart et al. (1985) for minimising 
he overall loss with respect to each model parameters. 

In traditional ML approaches, this sort of algorithms per- 
orms a vast number of fast iterations over a large dataset 
omogeneously partitioned in data servers. Such algorithms 
equire super low-latency and high-throughput connections 
o the training data McMahan et al. (2017a) . Therefore, solv- 
ng this optimisation problem in the context of FL is differ- 
nt from the traditional ML approaches as such conditions do 
ot hold in FL settings. Training data in FL is unbalanced and 

on-IID, which is scattered across millions of personal mo- 
ile devices with significant higher-latency, lower-throughput 
onnections compared to the traditional techniques working 
n a cloud-centric data server. In addition, the data and com- 
uting resources in personal devices are only intermittently 
vailable for training. Therefore, to actualise FL, optimisation 

lgorithms must be well adapted and efficiently performed 

or federated settings (i.e., federated optimisation Kone ̌cn ̀y 
t al. (2016a) ). 

.2. Federated optimisation 

ne of the fundamentals of FL is efficient optimisation algo- 
ithms for federated settings wherein training data is non-IID,

assively and unevenly distributed across local nodes, first 
ntroduced by Kone ̌cn ̀y et al. in 2016 Kone ̌cn ̀y et al. (2016a) .
he distributed settings for the federated optimisation is for- 
ulated as follows. Let K be the number of local nodes, P k 

e the set of data samples stored on node k ∈ { 1 , 2 , ., K} , and
 k = | P k | be the number of data samples stored on node k . As
ersonal data in each local node is different, we can assume 
hat P k ∩ P l = ∅ if k � = l and 

∑ K 
k =1 n k = n . The distributed prob-

em formulation for the minimisation objective is defined as: 
in 

 ∈ R d 
f (w ) = 

n k 
n 

K ∑ 

k =1 

F k (w ) (3) 

here the local empirical loss function F k (w ) is defined as: 

 k (w ) = 

1 
n k 

∑ 

i ∈ P k 
f i (w ) (4) 

ere, the f (w ) = 

1 
n 

∑ n 
i =1 f i (w ) defined in Equation (1) as a con-

ex combination of the local empirical losses F k (w ) available 
ocally to node k . 

In this federated setting, minimising the number of iter- 
tions in the optimisation algorithms is paramount of im- 
ortance as there is limited communication capability of 
he local nodes. In the same paper, Kone ̌cn ̀y et al. pro-
osed a novel distributed gradient descent by combining 
he Stochastic Variance Reduced Gradient (SVRG) algorithm 

ohnson and Zhang (2013) ; Kone ̌cn ̀y and Richtárik (2017) with 

he Distributed Approximate Newton algorithm (DANE) 
hamir et al. (2014) for distributed optimisation called Feder- 
ted SVRG (FSVRG) Kone ̌cn ̀y et al. (2016a) . The FSVRG com-
utes gradients based on P k data on each local node k , ob-
ains a weighted average of the parameters from all the K local 
odes, and updates new parameters for each node after the 
ound. This algorithm is then experimented based on public 
oogle+ posts, clustered by about 10,000 users as local nodes,

or predicting whether a post will receive any comments. The 
esults show that the FSVRG outperforms the native gradient 
escent algorithm as it converges to the optimum within only 
0 iterations. 

It is worth noting that standard distributed ML algo- 
ithms are generally designed to train independent identi- 
ally/distributed (IID) data, and this assumption does not hold 

n federated settings due to the significant differences in the 
umber of data samples and data distributions among per- 
onal mobile devices. Training over non-IID data has been 

hown to be much less accurate as well as slower convergence 
han IID data in federated settings Zhao et al. (2018) . Kone ̌cn ̀y
ith his colleagues at Google went further on improving the 

fficiency of the FSVRG algorithms in distributed settings by 
inimising the information in a parameter update to be sent 

o an orchestration server Kone ̌cn ̀y et al. (2016b) . Two types of
pdates are considered called structured updates and sketched 
pdates in which the number of variables used in an ML model 

s minimised as many as possible, along with the compres- 
ion of the information in the full model updates. Another 
mbitious federated optimisation approach is that local nodes 
re independently trained in different ML models as a task in 

 multi-learning objective simultaneously Smith et al. (2017) .
enerally, local nodes generate data under different distribu- 

ions which naturally fit separate learning models; however,
hese models are structurally similar resulting in the ability 
o model the similarity using a multi-tasking learning (MTL) 
ramework. Therefore, this approach improves performance 
hen dealing with non-IID data as well as guarantees the 

earning convergence Smith et al. (2017) . 
Standing on these federated optimisation research works,

cMahan et al. proposed a variation of the SGD called Feder- 
tedSGD along with the Federated Averaging algorithm that can 



c o m p u t e r s  &  s e c u r i t y  1 1 0  ( 2 0 2 1 )  1 0 2 4 0 2  7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

train a deep network at 100 times fewer communications com-
pared to the naive FSVRG McMahan et al. (2017a, 2016) . The
catalyst of such algorithms is to leverage the increasingly pow-
erful processors in modern personal mobile devices to per-
form high-quality updates than simply calculating gradient
steps. Specifically, each client not only calculates the gradients
but also computes the local model multiple times; the coordi-
nation server only performs aggregation of the local models
from the clients. This results in fewer training rounds itera-
tions (thus fewer communications) while producing a decent
global model. These proposed algorithms well suited for sce-
narios that are highly limited communication bandwidth with
high jitter and latency. In these scenarios, the naive FSVRG al-
gorithms proposed in Kone ̌cn ̀y et al. (2016a,b) are not efficient
enough. Indeed, the algorithms are utilised for a real-world
application for text prediction in Google keyboard in Android
smartphones (i.e., G-board) 5 Yang et al. (2018) . In this system
setting, the FederatedSGD is executed locally on the smart-
phone to compute gradient descent using local data. The gra-
dient is then sent to an aggregation server. This server per-
forms the FederatedAveraging algorithm which randomly se-
lects a fraction of smartphones for each training round, and
takes the average of all gradients sent from the selected partic-
ipants to update the global model. This updated global model
is distributed to all participants; the local nodes will then up-
date their local models accordingly. 

3.3. Centralised vs. decentralised architecture 

The architecture of a distributed learning and FL-based sys-
tem can be centralised (e.g., master-slave ) or decentralised (e.g.,
ring ) Lian et al. (2017) . In a centralised architecture, slaves (i.e.,
workers) only compute gradients; a master (i.e., a parame-
ter server) obtains the parameters from all workers and dis-
seminates the latest global parameters back to the workers to
be updated in the next training round. This centralised dis-
tributed learning requires high-communication cost between
workers and a server Dean et al. (2012) . In a ring architec-
ture, there is no centralised server to coordinate the param-
eter update; instead, each node both locally computes gradi-
ents and performs parameter aggregation by communicating
with other nodes using a Gossip algorithm Daily et al. (2018) ;
Koloskova et al. (2019) ; Ram et al. (2009) . The ring archi-
tecture requires an efficient asynchronous updates strategy
among compute nodes; otherwise, model consistency cannot be
achieved Ben-Nun and Hoefler (2019) ; Lian et al. (2018) . 

Nevertheless, both centralised and decentralised archi-
tectures are required to acquire model consistency, particu-
larly when data parallelism is employed. There are numer-
ous strategies to update parameters in order to maintain the
consistency of a global model, respected to a synchronisation
model among compute nodes. In this regard, Asynchronous
Parallel (ASP) Dean et al. (2012) ; Recht et al. (2011) , Bulk Syn-
chronous Parallel (BSP) Gerbessiotis and Valiant (1994) , and
Stale Synchronous Parallel (SSP) Ho et al. (2013) are the most
common approaches to update parameters in a distributed
learning system. The BSP and the ASP update parameters once
5 https://ai.googleblog.com/2017/04/federated-learning- 
collaborative.html . 

 

 

 

receiving all gradients from a bulk of compute nodes (barrier
synchronisation) and from just any node (no synchronisation),
respectively. Generally, the BSP is relatively slow due to the
stall time of waiting whereas ASP is faster as it does not per-
form any synchronisation; as a trade-off, the convergence in
BSP is guaranteed but uncertain in the ASP Zhou et al. (2018) .
The SSP is as an intermediate solution balancing between the
BSP and the ASP that performs relaxed synchronisation. In
the SSP, compute nodes continue to the next training itera-
tion only if it is not faster than the slowest node by β steps,
(i.e., the progress gap between the fastest node and the slow-
est node is not too large), which guarantees the convergence
although the number of iterations might be large. However, as
a trade-off, the SSP introduce the β hyper-parameter which is
non-trivial to be fine-tuned Ho et al. (2013) . 

3.4. Federated learning workflow cycle 

Inspired by the research Bonawitz et al. (2016, 2017) ; Kone ̌cn ̀y
et al. (2016a,b) ; Kone ̌cn ̀y and Richtárik (2017) ; McMahan et al.
(2017a, 2016) and the real-world application (i.e., G-board) by
the Google team, most of the existing FL-related research
works have focused on the centralised FL framework (i.e., cen-
tralised FL) wherein an orchestration server plays as a con-
troller requesting and aggregating training results to/from lo-
cal nodes. However, it does not necessarily require a cen-
tralised server for reconstructing a global model; instead, local
nodes can directly exchange their training results in a peer-to-
peer manner (i.e., decentralised FL) He et al. (2018) . This decen-
tralised training approach requires a local updating scheme in
which a synchronisation scheme among local nodes must be
implemented Ferdinand et al. (2020) ; Reisizadeh et al. (2019) -
which is not always feasible in federated settings. Research
on decentralised FL is still in its early stage which is either re-
stricted to simple learning models (e.g., linear models) or with
the assumption of full or part synchronisation among partic-
ipants He et al. (2018) ; Li et al. (2020) . 

In this paper, we examine the centralised FL in which there
exists a centralised server (i.e., service provider) requests to
coordinate the whole training process. Specifically, this coor-
dination server (i) determines a global model to be trained, (ii)
selects participants (i.e., local nodes) for each training round,
(iii) aggregates local training results sent by the participants,
(iv) updates the global model based on the aggregated results,
(v) disseminates the updated model to the participants, and
(vi) terminates the training when the global model satisfies
some requirements (e.g., accurate enough). Local nodes pas-
sively train the model over their local data as requested, and
send the training results back to the server whenever possible.
The workflow cycle in a centralised FL framework consists of
four steps (illustrated in Fig. 2 ) as follows: 

1. Participant Selection and Global Model Dissemination : The
server selects a set of participants that satisfy require-
ments to be involved in the training process. It then broad-
casts a global ML model (or the global model updates) to
the participants for the next training round. 

2. Local Computation : Once receiving the global ML model from
the server, the participants update their current local ML
model and then trains the updated model using the local

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
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Fig. 2 – Workflow cycle in a centralised FL framework 
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6 https://www.technologyreview.com/2019/12/11/131629/ 
apple- ai- personalizes- siri- federated- learning/ . 
dataset resided in the device. This step is operated at lo- 
cal nodes, and it requires end-users’ devices to install an 

FL client program to perform training algorithms such as 
FederatedSGD and Federated Averaging , as well as to receive 
the global model updates and send the local ML model pa- 
rameters from/to the server. 

3. Local Models Aggregation : The server aggregates a sufficient 
number of the locally trained ML models from participants 
in order to update the global ML model (the next step).
This aggregation mechanism is required to integrate some 
privacy-preserving techniques such as secure aggregation,
differential privacy, and advanced encryption methods to 
prevent the server from inspecting individual ML model 
parameters. 

4. Global Model Update : The server performs an update on the 
current global ML model based on the aggregated model 
parameters obtained in step 3. This updated global model 
will be disseminated to participants in the next training 
round. 

This 4-step cycle is repeated until the global model has 
eached sufficient accuracy. 

It is worth emphasising that the separation of the four 
teps in the cycle is not a strict requirement in every training 
ound. For instance, an asynchronous SGD algorithm can be 
sed in which results of the local training can be immediately 
pplied to update the local model before obtaining updates 
rom other participants Chen et al. (2016) . This asynchronous 
pproach is typically utilised in distributed training for deep 

earning models on a large-scale dataset as it maximises the 
ate of updates Chilimbi et al. (2014) ; Dean et al. (2012) . How-
ver, in FL settings, the synchronous approach, which re- 
uires the coordination from a centralised server, has sub- 
tantial advantages over the asynchronous ones in terms of 
oth communication efficiency and security because it al- 

ows advanced technologies to be integrated such as aggre- 
ation compression, secure aggregation with SMC, and dif- 
erential privacy Hardy et al. (2017) ; Kone ̌cn ̀y et al. (2016b) ; 

cMahan et al. (2017a) ; Wang et al. (2019a) . 
.5. Applications 

eing able to train a global, united ML model on data from 

ultiple participants without compromising the privacy and 

ecurity of those training data; FL enables a variety of applica- 
ions in smartphone services, healthcare industry, and finan- 
ial services wherein the aggregation of data into a centralised 

ata server is infeasible due to factors such as the restriction 

n data collection and transfer, intellectual property rights, as 
ell as the rigour of complying with data protection regula- 

ions, e.g., the GDPR. 
Personalised smart services is a prospective application of 

L in which a variety of services can be customised in line with
ndividual characteristics and preferences. A typical example 
f this application is the text prediction service for Google An- 
roid Keyboard Yang et al. (2018) . Apple also utilises FL to im-
rove Siri’s voice recognition service in iPhone 6 . We believe 
L can be employed to improve a variety of existing smart 
ervices including smart retail (e.g., product recommendation 

nd sales services) and smart healthcare (e.g., daily activity,
utrition, sleep monitoring and recommendation). In these 
cenarios, miscellaneous types of data resided in end-users’ 
martphones and/or wearable devices can be utilised to boost 
he ML models in the existing services that serve the individ- 
al client the best. 

Healthcare research and industry is also a potential do- 
ain that could greatly benefit from FL. Medical data such 

s patient information, disease symptoms, gene sequences,
nd different types of medical reports are dispersed in isolated 

linical, medical centres and research institutes; and sharing 
uch healthcare information is critical challenging with rigor- 
us data protection regulations including the GDPR (in UK/EU) 
r HIPPA (in USA). Generally, it is impractical to fuse such data 

nto one single data centre for ML training purposes. Indeed,
he insufficiency of data samples have led to the poor perfor- 

ance of ML-based services and is the bottleneck that pre- 
ents the smart healthcare industry to reach its full potential.
n this respect, FL enables a new technique to train ML model 
n a vast and varied medical dataset without the need for ag- 
regating such e-health record; as well as further improves 
he performance of the conventional-trained ML models. This 
ould open a new opportunity in the development of smart 
ealthcare and might take it to a whole new level. 

. Privacy-Preservation in centralised 

ederated learning framework 

s an ML model can be cooperatively trained while retain- 
ng training data and computation on-device, FL naturally 
ffers privacy-guarantee advantages compared to the tra- 
itional ML approaches. Unfortunately, although personal 
ata is not directly sent to a coordination server in its 
riginal form, the local ML model parameters still contain 

ensitive information because some features of the train- 
ng data samples are inherently encoded into such models 
ono et al. (2017) ; Ateniese et al. (2015) ; McMahan et al. (2016) ;

https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/
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Fig. 3 – High-level concept of inference attacks against FL 
based on GANs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 http://yann.lecun.com/exdb/mnist/ . 
Melis et al. (2019) ; Phong et al. (2018) . For example, authors
in Ateniese et al. (2015) have shown that during the train-
ing process, correlations implied in the training data are con-
cealed inside the trained models, and personal information
can be subsequently extracted. Melis et al. have also pointed
out that modern deep-learning models conceal internal rep-
resentations of all kinds of features, and some of them are
not related to the task being learned. Such unintended features
can be exploited to infer some information about the train-
ing data samples. FL systems, consequently, is vulnerable to
inference attacks (i.e., membership and reconstruction attacks
Dwork et al. (2017) ). 

Furthermore, local nodes not only passively contribute lo-
cal training results but also get updated about intermedi-
ate stages of a global training model from a coordination
server. This practice enables the opportunity for malicious
participants to manipulate the training process by provid-
ing arbitrary updates in order to poison the global model
Bhagoji et al. (2019) ; Fung et al. (2018) , which calls for an in-
vestigation on security models along with insightful analy-
sis of privacy guarantees for a centralised FL framework. Ac-
cordingly, the FL framework then needs to be strengthened by
employing further privacy and security mechanisms to pro-
tect personal data effectively and to comply with intricate
data protection legislation like the GDPR. A summary of re-
lated articles in terms of attack models with associated pri-
vacy preservation methods in centralised FL is depicted in
Table 1 . Detailed descriptions along with analysis are carried
out in the following sub-sections. 

4.1. Attack models on FL 

4.1.1. Inference attacks on FL 
As aforementioned, a trained ML model contains unin-
tended features that can be utilised to extract personal
information. Thus, local ML model parameters from a
federated optimisation algorithm can be exploited by
an adversary to infer personal information, particularly
when combining with related information such as model
data structure and meta-data. This information can be
either original training data samples (i.e., reconstruc-
tion attack ) Aono et al. (2017) ; Bagdasaryan et al. (2020) ;
Fredrikson et al. (2015) ; Geiping et al. (2020) ; Hitaj et al. (2017) ;
McMahan et al. (2016) ; Nasr et al. (2018) ; Phong et al. (2018) ;
Shokri and Shmatikov (2015) ; Shokri et al. (2017) ;
Zhu et al. (2019) or membership tracing (i.e., to check if a given
data point belongs to a training dataset) Bonawitz et al. (2017) ;
Melis et al. (2019) ; Shokri et al. (2017) . 

Attackers might carry out model inversion (MI) attack to
extract sensitive information contained in training data sam-
ples, for instance, by reconstructing representatives of classes
which characterising features in classification ML models
Fredrikson et al. (2015) . MI attacks do not require the attacker
to actively participate in the training process (i.e., black-box or
passive attacks). For example, it is possible to recover images
from a facial recognition model for a particular person (i.e., all
class members depict this person) using MI by deriving a cor-
rect weighted probability estimation for the target feature vec-
tors Geiping et al. (2020) ; Shokri et al. (2017) . In this scenario,
the experiment results show that this MI attack can recon-
struct images that are visually similar to the victim’s photos
Fredrikson et al. (2015) . 

In an FL framework, attackers are not only able to ob-
serve the trained model parameters but also participate in the
training process to inspect the changes in the updated global
models in some consecutive training rounds (i.e., white-box
or active attacks), which will intensify the attack ( Fig. 3 ). It
is shown that MI attacks based on class representation are
more challenging than reconstructing from gradients for clas-
sification models Geiping et al. (2020) . In this regard, numer-
ous reconstruction attacks were proposed based on Gener-
ative Adversarial Networks (GANs) Goodfellow et al. (2014) ;
Salimans et al. (2016) to synthesise fake samples which have
the same statistics (e.g., distribution) to those in the training
set without having access to the original data. For instance,
Hitaj et al. based on GANs have developed an attack at the
user-level which allows an insider to infer information from
a victim just by analysing the shared model parameters in
some consecutive training rounds Hitaj et al. (2017) . This at-
tack can be accomplished at the client-side without interfer-
ing the whole FL procedure, even when the local model pa-
rameters are obfuscated using the DP technique. A malicious
coordination server can also recover partial personal data by
inspecting the proportionality between locally trained model
parameters sent to the server and the original data samples
Aono et al. (2017) ; Wang et al. (2019b) . 

Reconstruction attacks using MI and GANs are only feasible
if and only if all class members in an ML model are analogous
which entails a similarity between the MI/GAN-reconstructed
outputs and the training data (e.g., facial recognition of a spe-
cific person or MNIST dataset for handwritten digits 7 used in
Aono et al. (2017) ). Fortunately, this precondition is less prac-
tical in most FL scenarios. 

However, it is not necessary to fully reconstruct the trained
data; instead, inferring attributes or membership of the orig-
inal trained data from local model parameters can also in-
duce serious privacy leakage Ganju et al. (2018) ; Melis et al.
(2018, 2019) ; Nasr et al. (2018, 2019) (e.g., an attacker can
figure out whether a specific data sample (of a patient) is
used to train a model of a disease). This is the baseline for
the membership attack. Authors in Melis et al. (2018, 2019) ;

http://yann.lecun.com/exdb/mnist/
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Table 1 – Summary of Attack Models vs. Privacy Preservation Methods in centralised FL. 

Attack Models 

Privacy-preserving 
Techniques employed at 
Server-side 

Privacy-preserving 
Techniques employed at 
Client-side 

Inference Attacks Reconstruction Attacks 
Aono et al. (2017) ; 
Bagdasaryan et al. (2020) ; 
Fredrikson et al. (2015) ; 
Hitaj et al. (2017) ; 
McMahan et al. (2016) ; 
Phong et al. (2018) ; 
Shokri and Shmatikov (2015) ; 
Shokri et al. (2017) 
Geiping et al. (2020) ; 
Goodfellow et al. (2014) ; 
Nasr et al. (2018) ; 
Salimans et al. (2016) ; 
Wang et al. (2019b) ; 
Zhu et al. (2019) 

SMC & Secure Aggregation 
Bonawitz et al. (2019, 2016, 
2017) ; McMahan et al. (2017a, 
2016, 2017b) Homomorphic 
Encryption 
Phong et al. (2018) ; 
Salem et al. (2019) 

SMC & Secure Aggregation 
Bonawitz et al. (2019, 2016, 
2017) ; McMahan et al. (2017a, 
2016, 2017b) ; 
Pathak et al. (2010) 
Homomorphic Encryption 
Phong et al. (2018) ; 
Salem et al. (2019) Batch-level 
DP Abadi et al. (2016) ; 
Hitaj et al. (2017) ; 
Pathak et al. (2010) ; 
Shokri and Shmatikov (2015) 
User-level DP 
Bhowmick et al. (2018) ; 
Geyer et al. (2017) ; 
Hitaj et al. (2017) ; 
McMahan et al. (2017b) ; 
Pathak et al. (2010) ; 
Sun et al. (2020) 

Membership Tracing 
Aono et al. (2017) ; 
Bonawitz et al. (2017) ; 
Goodfellow et al. (2014) ; Melis 
et al. (2018, 2019) ; 
Nasr et al. (2019) ; 
Salimans et al. (2016) ; 
Shokri et al. (2017) ; 
Wang et al. (2019b) 

Poisoning Data Poisoning 
Biggio et al. (2012) ; 
Chen et al. (2017) ; 
Jagielski et al. (2018) ; Koh and 
Liang (2017) ; Mei and 
Zhu (2015) ; Xiao et al. (2015) 

Model Anomaly Detection ∗

Fung et al. (2018) ; 
Jagielski et al. (2018) ∗This 
solution is not feasible if Secure 
Aggregation is employed 

None 

Model Poisoning 
Bagdasaryan et al. (2020) ; 
Bhagoji et al. (2019) ; 
Blanchard et al. (2017) ; 
Chen et al. (2018) ; 
Fung et al. (2018) ; 
Mhamdi et al. (2018) 
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asr et al. (2019) have investigated membership attacks in FL 
nd demonstrated the capability of these attacks in both pas- 
ive and active approaches. For instance, the gender of a vic- 
im can be inferred with very high accuracy of 90% when con- 
ucting this attack in a binary gender classifier on the Face- 
crub dataset 8 . Other features, which are uncorrelated with 

he main task, can also be inferred such as race and facial 
ppearance (e.g., whether a face photo is wearing glasses) 
elis et al. (2019) . Nasr et al. proposed an active attack ap- 

roach called gradient ascent by exploiting the privacy vulner- 
bilities of SGD optimisation algorithms. This attack based on 

he correlation between the local gradients of the loss and 

he direction and the amount of changes of model param- 
ters when minimising the loss to fit a model to train data 
amples in the SGD algorithms. This active membership at- 
8 http://vintage.winklerbros.net/facescrub.html . 

l

ack was conducted on the CIFAR100 dataset 9 showing a high 

ccuracy of 74% compared to only 50% in passive attack Nasr 
t al. (2018, 2019) . 

.1.2. Poisoning attacks on FL 
ne of the privacy-preserving objectives of centralised FL is 

hat a coordination server is unable to inspect the data or 
dminister the training process at a local node. This, how- 
ver, prohibits the transparency of the training process; thus,
mposes a new vulnerability of a new type of attack called 

odel poisoning Bagdasaryan et al. (2020) ; Bhagoji et al. (2019) ; 
lanchard et al. (2017) ; Chen et al. (2018) ; Fung et al. (2018) ;
hamdi et al. (2018) . Generally, model poisoning attacks aim 

t manipulating the training process by feeding poisoned 

ocal model updates to a coordination server. This type of 
9 https://www.cs.toronto.edu/ ∼kriz/cifar.html . 

http://vintage.winklerbros.net/facescrub.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Fig. 4 – High-level concept of model poisoning using 
backdoor attack against FL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 – Overview of the Privacy and Security employed in a 
centralised FL framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

attack is different from data poisoning Biggio et al. (2012) ;
Chen et al. (2017) ; Jagielski et al. (2018) ; Koh and Liang (2017) ;
Mei and Zhu (2015) ; Xiao et al. (2015) , which is less effective in
FL settings Bagdasaryan et al. (2020) ; Bhagoji et al. (2019) be-
cause the original training data is never shared with a server.
Thus, this section is mainly dedicated to analysing the model
poisoning attacks in FL. 

Generally, model poisoning is conducted at the client-
side wherein an adversary controls a fraction of partici-
pants for a common adversarial goal, either (i) corrupt-
ing the global model so that it converges to a sub-optimal
which is an incompetent, ineffective one (i.e., random attack)
Blanchard et al. (2017) ; Chen et al. (2018) ; Mhamdi et al. (2018) ,
or (ii) replace it to a targeted model (i.e., replacement attack)
Bagdasaryan et al. (2020) ; Bhagoji et al. (2019) . 

Poisoned model parameters sent to a coordination server
can be generated by injecting a hidden backdoor model in-
tentionally, as illustrated in Fig. 4 . Compromised participants
analyse the targeted global model; the poisoned model is then
trained on backdoor data samples using dedicated techniques
such as constrain-and-scale accordingly, and feed the param-
eters to a coordination server as other honest participants.
The objective of this attack is that the global model is re-
placed by a joint model consisting of both the original task
and the injected backdoor sub-task while retaining high ac-
curacy on the two. The backdoor training at the adversary can
be empowered by modifying minimisation strategies such as
constrain-and-scale , which optimises both gradients of the loss
and the backdoor objective Bagdasaryan et al. (2020) . A pa-
rameter estimation mechanism is then used for generating
parameters submitted to the coordination server for honest
participants’ updates. As secure aggregation is used for pre-
venting the server from inspecting individual models, this poi-
soning model is unable to detect Bagdasaryan et al. (2020) ;
Bhagoji et al. (2019) . 

4.2. Threat model in a centralised FL framework 

As the target of both inference and model poisoning attacks,
a centralised FL framework needs to be well designed to with-
stand potential adversaries. As illustrated in Fig. 5 , the secu-
rity and privacy threats are classified into three categories:
(1) Threats at the coordinator server by insider attackers, (2)
Threats at communication medium by outsider attacker, and
(3) Threats due to malicious participants. 

4.2.1. Malicious coordination server 
The coordination server is assumed to be malicious as there
exist insider attackers who can carry out inference attacks to
infer information of a target client illegitimately. These attacks
are feasible at the server-side by analysing periodic parame-
ters updates obtained from related local nodes including the
victim (i.e., passive attack), or even purposely requesting the
victim to train modifying models with adversarial influence
(i.e., active attack) Wang et al. (2019b) . 

4.2.2. Secure communication medium 

It is assumed that the communication medium for in-
formation exchange between local nodes and a coordina-
tion server is secure regardless the information is in plain-
text McMahan et al. (2017a) or encrypted Mohassel and
Zhang (2017) . Secure communications protocols such as
SSL/TLS and HTTPS are readily integrated into the FL frame-
work to prevent man-in-the-middle attacks, eavesdropping
and tampering. Thus, in a centralised FL framework, privacy
and integrity of the exchanged information are assured while
in transit. 

4.2.3. Byzantine participants 
In most FL scenarios, local nodes are assumed to be malicious,
meaning that there is a possibility that there exists an adver-
sary controlling a fraction of local nodes to perform model poi-
soning . Moreover, such malicious participants might operate in
a Byzantine fashion, meaning that they send arbitrary training
model updates to shape the global model in a targeted man-
ner (i.e., either demolish the global model or be replaced by a
vicious one). 

Furthermore, an inference attack can also be carried out by
a malicious participant as the adversary can commit its local
update and observe the changes in the updated global model
Melis et al. (2019) . Instead, the active inference attack is only
accomplished by a malicious server. 
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Fig. 6 – Sequence diagram of the Secure Aggregation. 
Red-color processes are required to guarantee the security 

of the protocol against malicious server and participants 
Bonawitz et al. (2017) . 
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10 https://www.tensorflow.org/federated . 
.3. Privacy-preservation solutions for coordination 

erver 

ost of the existing privacy-preserving techniques for FL sys- 
ems are built upon advanced cryptographic protocols, in- 
luding SMC and differential privacy. On the server-side, such 

echniques are employed in order to (i) prevent insiders at 
he server from conducting inference attacks, and (ii) prevent 
yzantine participants from conducting model poisoning. 

.3.1. Inference attacks prevention 

everal solutions have been proposed to tackle inference at- 
acks at the server-side following the same purpose of pre- 
enting the coordinate server from inspecting parameters 
ent from a particular user during the global model train- 
ng process. Specifically, in the aggregation process, parame- 
ers sent from the clients ( gradients in Federated SGD or local 
odel weights in Federated Averaging) can be protected based 

n SMC called Secure Aggregation protocol, first proposed by 
onawitz in Bonawitz et al. (2016, 2017) . The baseline of the 
rotocol is SMC in which cryptography techniques are lever- 
ged that enable participants to jointly compute the average 
f the model parameters without revealing their inputs. As il- 

ustrated in Fig. 6 , the protocol comprises of four interactive 
ounds between participants and a coordinate server includ- 
ng public-keys advertisement and sharing (round 1), masked 

nputs computation at client-side once getting an indepen- 
ent response from the server (round 2), consistency check 
hat the model has at least t participants involved in the train- 
ng process (round 3), and unmasking once at least t partici- 
ants reveal sufficient cryptographic secrets so that the co- 
rdination server is able to unmask the global model update 

round 4). Round 3 of the protocol is required if the server is 
alicious but not necessary for an honest-but-curious one.
s a trade-off, this protocol results in increasing communi- 
ation overhead and computation complexity at both clients 
nd a coordination server. It is worth noting that the Se- 
ure Aggregation protocol has already been integrated into 
he TensorFlow Federated framework 10 , developed by Google 
onawitz et al. (2019) , to facilitate research and real-world ex- 
erimentation with FL. 

Secure Aggregation protocol is based on the fact that it only 
equires to calculate the averages of the local model weights 
rom a random subset of participants to perform SGD and 

ompute global model updates. The coordination server, thus,
oes not need to acquire local updates from individual partic- 

pants. This would prevent the server from observing individ- 
al users and carrying out inference attacks. Along with Feder- 
ted Averaging, Secure Aggregation protocol facilitates secure 
GD execution with robustness to failures and less communi- 
ation overhead in a server with limited trust. However, this 
MC-based technique only works effectively in scenarios of 
onest participants. There is no guarantee for the availability 
nd correctness of the protocol in the case of Byzantine par- 
icipants, particularly when such Byzantine participants col- 
ude with the malicious server to disclose inputs of a targeted 

lient. In case of the client-server collusion, the protocol can 

nly tolerate up to [ n 3 ] − 1 Byzantine participants whereas the 
umber of total participants involved in the training process 
hould be at least [ 2 n 3 ]+1 , ensuring the robustness up to [ n 3 ]−1
ropping out participants Bonawitz et al. (2017) . 

.3.2. Model poisoning prevention at server-side 
odel poisoning attacks are always inherent in collabora- 

ive learning including FL. As shown by Bagdasaryan et al.
n Bagdasaryan et al. (2020) , just by controlling less than 1% 

yzantine participants, an adversary can successfully insert a 
ackdoor functionality into a global model without reducing 
uch accuracy, preventing the coordination server from de- 

ecting the attack. Solutions to mitigate model poisoning at- 
ack at the server-side have to detect and filter out poisoned 

odel updates from malicious clients (i.e., model anomaly de- 
ection) Fung et al. (2018) ; Jagielski et al. (2018) . For this pur-
ose, the server needs to access either participants training 
ata or parameter model updates, which breaks the privacy- 
reservation catalyst of FL. Besides, Secure Aggregation proto- 
ol is assumed to be implemented at both client- and server- 
ide, which prevents the server from inspecting individual 
odel updates; consequently, ruling out any solutions for 
odel poisoning attacks Fung et al. (2018) . Indeed, no reso- 

utions have been proposed that effectively tackle model poi- 
oning attacks at the server-side, which imposes as a critical 
esearch topic for FL. 

.4. Privacy-preservation solutions for local nodes 

ocal nodes, along with a coordination server, should imple- 
ent Secure Aggregation protocol to mitigate the risk of pri- 

acy leakage in case there exists an inside attacker carrying 
ut inference attacks at the server Bonawitz et al. (2016, 2017) .
his SMC-based aggregation protocol can also be strength- 
ned with Homomorphic Encryption to encrypt local model 
arameters from all participants for secure multi-party deep 

earning in FL settings Zhang et al. (2017) . The coordination 

erver, hence, receives an encrypted global model which can 

https://www.tensorflow.org/federated
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only be decrypted if and only if a sufficient number of local
models have been aggregated. As a result, the privacy of indi-
vidual contributions to the global model is guaranteed. 

Furthermore, the local nodes can leverage the pertur-
bation method to prevent a coordination server and other
adversaries from disclosing model parameters updates and
original training dataset. The idea of employing the per-
turbation technique to FL is that a local node adds ran-
dom noise to its local model parameters in order to ob-
scure certain sensitive attributes of the model before shar-
ing. As a result, adversaries, in case it can successfully de-
rive such model parameters, is unable to accurately recon-
struct the original training data or infer some related infor-
mation. In other words, the perturbation method could pre-
vent adversaries from carrying out inference attacks on a local
model trained by a particular client. This privacy-preservation
method typically adopts differential privacy technique that
adds random noises to either training dataset or model pa-
rameters, offering statistical privacy guarantees for individ-
ual data Bassily et al. (2014) ; Dwork (2008) ; Dwork et al. (2014) .
Indeed, before the proposal of FL, differential privacy with
SMC has been suggested as a privacy-preserving technique
for the aggregation of independently trained neural net-
works in Pathak et al. (2010) . Since then, this technique has
been improved to return statistically indistinguishable re-
sults among participants while ensuring that such noise-
added model parameters do not affect much on the accu-
racy of the global model in FL settings Abadi et al. (2016) ;
Aono et al. (2017) ; Geyer et al. (2017) ; McMahan et al. (2017b) ;
Shokri and Shmatikov (2015) ; Song et al. (2013) . As a conse-
quence, adversaries cannot distinguish individual records in
the FL training process and do not know whether or not a
targeted client participating in the training; thus, preserving
data privacy and protecting against inference attacks. Gener-
ally, there are two types of employing differential privacy tech-
niques for local nodes in FL settings: batch-level and user-level
where random noise is added by measuring parameters’ sen-
sitivity from data points in a mini-batch and users themselves,
respectively. 

4.4.1. Batch-level differential privacy approach 

Shokri and Shmatikov in Shokri and Shmatikov (2015) have
proposed a communication efficient privacy-preserving SGD
algorithm for deep learning in distributed settings in which
local gradient parameters are asynchronously shared among
participants with an option of adding noise to such updates
for the differentially private protection of the individual model
parameters. In this algorithm, participants can choose a frac-
tion of parameters (randomly selected or following a strategy)
to be updated at each round so that their local optimal can
converge faster while being more accurate. In order to inte-
grate differential privacy technique into the algorithm, the ε
total privacy budget parameter and the sensitivity of gradi-
ent � f i for each parameter f i are taken into account to con-
trol the trade-off between the differential privacy protection
and the model accuracy. Laplacian mechanism is used to gener-
ate noise during both parameter selection and exchange pro-
cesses based on the estimation of the � f i sensitivity and the
allocated ε privacy budget. The proposed algorithm has exper-
imented on MNIST and SVHN datasets showing the trade-off
between strong differential privacy guarantees and the high
accuracy of the training model. However, with a large num-
ber of participants sharing a large fraction of gradients, the
accuracy of the proposed algorithm with differential privacy
is better than the standalone baseline. It is worth noting that
in this algorithm, local gradients can be exchanged directly or
via a central server, which can feasibly be implemented in the
FL settings. 

The authors in Abadi et al. (2016) have proposed an SGD al-
gorithm integrated with differential privacy performing over
some batches (a group) of data samples. This algorithm esti-
mates the gradient of the group by taking the average of the
gradient loss of these batches and adds noise (generated by
Gaussian mechanism ) to the group to protect privacy. This al-
gorithm is implemented to train on the MNIST and CIFAR-10
datasets showing sensible results as it achieves only 1 . 3% and
7% less accurate compared to the non-differentially private
conventional baseline algorithms on the same datasets, re-
spectively. Similar to the mechanism proposed by Shokri and
Shmatikov in Shokri and Shmatikov (2015) , the authors have
proposed a mechanism to monitor the total privacy budget
(i.e., privacy accounting) as accumulated privacy loss by ob-
serving privacy loss random variables. Based on the experi-
ment, the authors also indicate that privacy loss is minimal
for a large group size (with a large number of datasets). 

4.4.2. User-level differential privacy approach 

Geyer et al. in Geyer et al. (2017) have developed another
method to implement differential privacy for federated op-
timisation in FL settings that conceals the participation of
a user in a training task; as a result, the whole local train-
ing dataset of the user is protected against differential at-
tacks. This approach is different from the batch-level one,
which aims at protecting a single data point in a training
task. The proposed method utilises a similar concept of pri-
vacy accounting from Abadi et al. (2016) that allows a coor-
dination server to monitor the accumulated privacy budget
by observing the moment accountant and privacy loss pro-
posed in Abadi et al. (2016) . The training process is halted once
the accumulated privacy budget reaches a pre-defined thresh-
old, implying that the privacy guarantee is no further toler-
ated. The Gaussian mechanism is also used to generate ran-
dom noise which is then added to distort the sum of gradi-
ents updates to protect the whole training data. The proposed
method has experimented on MNIST dataset, and the results
show that with a sufficiently large number of participants (e.g.,
about 10,000 clients), the accuracy of the FL trained model al-
most achieves as high as the non-differential-privacy baseline
while a certain level of privacy guarantee over the local train-
ing data still holds. 

Similarly, McMahan et al. in McMahan et al. (2017b) have
leveraged the privacy accounting and moment privacy pro-
posed in Abadi et al. (2016) to integrate user-level differential
privacy into a federated averaging mechanism previously pro-
posed in McMahan et al. (2016) in order to protect local model
parameters sharing with a coordination server. The proposed
mechanism is a noise-added version of the federated averag-
ing algorithm in FL which was deployed to train deep recur-
rent models like Long Short-Term Memory (LSTM) recurrent
neural networks (RNNs). They have implemented the mecha-
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Table 2 – GDPR Roles in traditional centralised ML-based 

and centralised FL-based applications and services. 

GDPR Roles 

Traditional 
ML-based 

services 

Centralised 

FL-based 

services 

Personal Data Original training 
data 

Local model 
parameters 

Data Subject End-users End-users 
Data Controller Service Provider Service Provider 
Data Processor Service Provider, 
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ism to train the LSTM RNNs tuned for language modelling in 

 mobile keyboard. The experimental results indicate that the 
ntegration of differential privacy only causes a minor effect 
n predictive accuracy; however, it could induce a qualitative 
ffect on word predictions and tends to bias the model away 
rom uncommon words. This potential bias in the mechanism 

alls for further research on adaptive tuning mechanisms for 
he clipping and noise in order to balance between utility and 

rivacy in FL. Bhowmick et al. in Bhowmick et al. (2018) and Sun 

t al. in Sun et al. (2020) have also proposed similar user-level 
ifferential privacy in FL settings with some improvements 
uch as employing a better estimation on total privacy bud- 
et (in Bhowmick et al. (2018) ), and adding a splitting & shuf- 
ing mechanism for local model parameters before sending to 
 coordination server (in Bhowmick et al. (2018) ). 

As aforementioned, Hitaj et al. have successfully car- 
ied out inference attacks at the client-side based on GAN 

itaj et al. (2017) . In this paper, they have also shown that an FL
raining task with differential privacy employed at batch-level 
s still susceptible to the attacks; however, the user-level differ- 
ntial privacy approach could protect against such attacks. 

. GDPR-Compliance In centralised federated 

earning systems 

L emerges a new approach to tackle data privacy challenges 
n ML-based applications by decoupling data storage and pro- 
essing (i.e., local model training) at end-users’ devices (i.e.,
ocal nodes) and the aggregation of a global ML model at a ser- 
ice provider’s server (i.e., a coordination server). The privacy- 
reservation advantage of FL compared to the traditional cen- 
ralised ML approaches is undeniable: It enables to train an ML 

odel whilst retaining personal training data on end-users’ 
evices. Only locally trained model parameters, which con- 
ain the essential amount of information required to update 
he global model, are shared with a coordination server. Nev- 
rtheless, such model parameters still enclose some sensitive 
eatures that can be exploited to reconstruct or to infer related 

ersonal information as depicted in Section 4 . Subsequently, an 

L system still retains within the GDPR and is liable for com- 
lying with obligatory requirements. This section closely ex- 
mines whether a GDPR requirement should be complied with 

r inapplicable and should be waived in FL settings. Unsolved 

hallenges on fully complying with the GDPR are also deter- 
ined and discussed. 

.1. Roles and obligations 

he GDPR differentiates three participant roles, namely Data 
ubject, Data Controller and Data Processor, and designates 
ssociated obligations for these roles under the EU data pro- 
ection law. Data Controllers are subject to comply with the 
DPR by determining the purposes for which, and the method 

n which, personal data is processed by Data Processors - who 
ill be responsible for processing the data on behalf of Data 
ontrollers. Furthermore, Data Controllers should take appro- 
riate measures to provide Data Subjects with information re- 

ated not only to how data is shared but also to how data is 
rocessed in the manner ensuring security and privacy of per- 
onal data. The GDPR also clearly specifies the rights of Data 
ubjects, giving data owners the rights to inspect information 

bout how the personal data is being processed (e.g., Right to 
e informed and Right of access) as well as to fully control the
ata (e.g., Right of rectification and erasure, and Right to re- 
triction of processing). 

As depicted in Table 2 , in FL settings, personal data is 
egarded as local model parameters, not the original data 
amples as in traditional cloud-based ML systems. A service 
rovider, who implements an FL system, is Data Controller 
nd Data Processor combined as the service provider (i) dic- 
ates end-users (i.e., Data Subject) to train an ML model us- 
ng their local training data and to share such locally trained 

odel, (ii) processes the local model parameters sent from 

nd-users (i.e., aggregates and updates the global model), and 

ii) disseminates the global models to all end-users and re- 
uests the end-users to update their local models. Further- 
ore, in centralised FL settings, a service provider can only 

hare a global ML model, which can be considered as anony- 
ous information, with third-parties as it does not possess 

ny other personal data (e.g., original training data as in tradi- 
ional ML systems). Therefore, Data Processors in FL settings 
re also the service providers, but not other players (i.e., third- 
arties). The processing mechanisms in FL are also uncompli- 
ated compared to the traditional ones as they are only related 

o the aggregation of the local ML models as well as the update
f the global ML model. 

.2. GDPR Principles 

he GDPR defines 6-core principles as rational guidelines for 
ervice providers to manage personal data as illustrated in 

ig. 7 (The GDPR Articles 5–11). These principles are broadly 
imilar to the principles in the Data Protection Act 1998 with 

he accountability that obligates Data Controllers to take re- 
ponsibility for complying with the principles and implement- 
ng appropriate measures to demonstrate compliance. 

.2.1. Lawfulness, fairness and transparency 
ccording to the first principle, a service provider providing an 

L application, as a Data Controller, must specify its legal ba- 
is in order to request end-users to participate in the FL train- 
ng. There are a total of six legal bases required by the GDPR
amely (1) Consent, (2) Contract, (3) Legal Obligation, (4) Vital 

nterest, (5) Public Task, and (6) Legitimate Interest (defined in 
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Fig. 7 – 6-core principles in GDPR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the GDPR in detail). These lawful bases might need to come
along with other separate conditions for lawfully processing
some special category data including healthcare data, biomet-
ric data, racial and ethnic origin. Depending on the specific
purposes and context of the processing, the most appropriate
one should be determined and documented before starting to
process personal data. 

To ensure privacy, an FL system is designed in a way that
does not let the service provider (i.e., the coordination server)
directly access and obtain either original training data or lo-
cally trained ML models at end-users’ devices. Instead, end-
users, as participants in the FL system, will only send the
results back to the coordination server when they are ready.
An FL client-side application should offer several options for
clients to participate in the training process proactively that
allows a client to fully control the local training as well as of
the sending/receiving ML model updates to/from a coordina-
tion server. Furthermore, FL systems only process data (i.e.,
local ML model parameters) for an explicit purpose (i.e., ag-
gregates results and updates a global model), which is in ways
that clients would reasonably expect whilst having minimal
privacy impact. For these reasons, either Consent or Legitimate
Interest legal basis can be appropriate for an FL application 

11 . 
Regarding the Fairness and Transparency requirements, as

AI/ML algorithms like deep learning are normally operated
in a black-box fashion, it is limited of transparency of
how certain decisions are made, as well as limited under-
standing of the bias in data samples and training process
Ananny and Crawford (2018) ; Doshi-Velez and Kim (2017) ;
Mehrabi et al. (2019) ; Murdoch et al. (2019) . An FL system is not
an exception. Generally, if the training data is poorly collected
or intentionally prejudicial and fed to an ML, including FL, sys-
tem, the results turn out to be biased. If the trained model is
then utilised for an automated decision-making system, then
it probably leads to discrimination and injustice. Furthermore,
the nature of preventing service providers from accessing the
original training dataset as well as the inability to inspect in-
11 https://ico.org.uk/for-organisations/guide-to-data-protection/ 
guide- to- the- general- data- protection- regulation- gdpr/ 
lawful- basis- for- processing/ . 

 

 

 

 

 

dividuals’ locally trained ML model due to the Secure Aggre-
gation mechanism amplifies the lack of transparency and fair-
ness in FL systems. As a result, an FL system finds it problem-
atic to transparently execute the training operations as well
as to ensure any automated decisions from the system are im-
partially performed. This, consequently, induces impractical-
ity for any FL systems and fails to fully comply with the GDPR
requirements of fairness and transparency. 

These unsolved challenges appoint much more research
on transparency, interpret-ability and bias for AI/ML algo-
rithms as well as demand the GDPR supervisory boards to
relax the requirements on AI/ML including FL systems. An-
other promising solution to comply with this GDPR principle
is to design a new type of ML models with associated algo-
rithms that are inherently interpretable, which encourages re-
sponsible ML governance Harder et al. (2020) ; Li et al. (2017) ;
Molnar (2020) ; Rudin (2019) . 

5.2.2. Purpose limitation 

This purpose limitation principle can be interpreted that an FL
service provider needs to clearly inform clients about the pur-
pose of a global ML model training as well as how clients’ lo-
cal personal data and devices’ computation are used to locally
train a requested ML model provided by the service provider.
The principle also states that the service provider can further
process the data for other compatible purposes. In this re-
spect, FL systems fully satisfy with the principles if sufficient
privacy-preserving mechanisms such as Secure Aggregation
and differential privacy are readily implemented into the sys-
tems. This is because locally trained ML models from clients
are aggregated only for the global model updates and cannot
be individually extracted and exploited (by the coordination
server) for other purposes. 

However, as described in Section 4.1 , a malicious service
provider or Byzantine participants can inject a hidden back-
door model for an unauthorised training purpose. Currently,
there is no solution for any model anomaly detection mecha-
nism at the server-side for this type of attack due to the use of
secure aggregation in centralised FL; this, as a consequence,
remains an unsolved challenge for an FL system to fully com-
ply with the GDPR. 

5.2.3. Data minimisation 

The data minimisation principle in the GDPR necessitates a
Data Controller (e.g., a service provider) to collect and process
personal data that is adequate, limited, and relevant only to
claimed purposes. In traditional centralised ML algorithms,
this data minimisation requirement is a challenge as it is
not always possible to envision what data and the minimal
amount of data are necessary for training an ML model. In
this regard, FL appears as a game-changer as an FL system
does not need to collect and process original training data; in-
stead, a service provider only needs to gather local ML models
from participants for assembling the global model. Generally,
with privacy-preserving techniques introduced in Section 4 , an
FL system can assure that the coordination server obtains ag-
gregated local model parameters from participants for global
model updates only (i.e., the claimed purposes) while acquir-
ing nothing about an individual’s contribution. The aggrega-
tion mechanism also assures that the global model itself con-

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/
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12 https://ico.org.uk/for-organisations/guide-to-data-protection/ 
guide- to- the- general- data- protection- regulation- gdpr/ 
individual- rights/right- to- be- informed . 
ains no individual sensitive features that can be exploited by 
dversaries to extract or infer any personal information. 

Similar to the purpose limitation principle, back-door at- 
acks are feasibly carried out to inject an unauthorised pur- 
ose. In this scenario, local ML model parameters obtained 

rom participants is no longer minimal for the original pur- 
ose but also another unauthorised sub-task. This injected 

ub-task might be exploited to expose the personal informa- 
ion of the participant, imposing an unsolved challenge for FL 
ystems. 

.2.4. Accuracy 
he purpose of this principle is to ensure that a Data Con- 

roller should keep personal data correctly, updated, and not 
isleading any matter of fact. In centralised FL settings, a co- 

rdination server does not store any individual locally trained 

L model parameters except the aggregated results from a 
atch of participants, and the anonymised global ML model.
his information is stored and processed (i.e., for updating the 
lobal model) in its original form without any changes, and 

pdated for every training round. For these reasons, FL sys- 
ems automatically satisfy the GDPR accuracy principle. 

.2.5. Storage limitation 

his principle ensures that a Data Controller does not keep 

ersonal data for longer if the data is no longer needed for 
he claimed purposes. In this case, data should be erased or 
nonymised. There is an exception for data retention only if 
he Data Controller keeps the data for public interest archiv- 
ng, scientific or historical research, or statistical purposes. 

Regarding the centralised FL settings, an FL system imple- 
enting Secure Aggregation does not store any individual ML 
odel updates from participants except the global model - 
hich can be assured to contain no individual sensitive fea- 

ures to be exploited for inference attacks. Even in the case 
f a malicious server holding aggregated contributions from 

any FL training rounds for further analytic (e.g., inference 
ttacks), with secure aggregation and differential privacy inte- 
ration, such aggregated information is protected and pseudo- 
nonymised. In other words, an FL system with appropriate 
rivacy-preserving mechanisms can be fully compliant with 

he storage limitation principle. 

.2.6. Integrity and confidentiality (security) 
his principle obligates Data Controllers to implement appro- 
riate measures in place to effectively protect personal data.
hus, in order to comply with this principle, a centralised FL 
ystem requires to implement security and privacy mecha- 
isms not only at a coordination server but also at end-users’ 
evices as the FL system itself does not guarantee security and 

rivacy. 
Along with the privacy-preserving techniques such as Se- 

ure Aggregation, differential privacy, and Homomorphic En- 
ryption designated for protecting local ML parameters, the 
L client application installed at end-users’ devices must be 
ecure to prevent unauthorised access, cyber-attack, or data 
reach directly from the devices or from the communications 
etween the users’ devices and a coordination server. This 
recondition is the same as any other systems in which a va- 
iety of security and privacy techniques are readily integrated 
nto FL applications, as well as secure communications proto- 
ols such as IPSec, SSL/TLS and HTTPS to protect data in tran- 
it between clients and the server. 

.3. Rights of data subject 

he GDPR requires Data Controllers to provide the following 
ights for Data Subjects if capable (The GDPR Articles 12–23): 
1) Right to be informed, (2) Right of access, (3) Right to rectifi- 
ation, (4) Right to erasure (Right to be forgotten), (5) Right to 
estrict processing, (6) Right to data portability, (7) Right to ob- 
ect, and (8) Rights in relation to automated decision making 
nd profiling. 

.3.1. Right to be informed 
he challenge to provide this right to Data Subjects is that the 
DPR demands the Data Controller to concisely, intelligibly,
nd specifically specify what and how the local ML model is 
sed in the FL training, along with expected outputs of the 
echanism 

12 . Same as many complex ML mechanisms, FL is 
s a black-box model; thus, it cannot be precisely interpreted 

f how it works and predicting the outcomes. The GDPR su- 
ervisory board recognises the challenges and relaxes the re- 
uirement for AI/ML mechanisms by accepting a general ex- 
lanation as an indication of how and what personal data is 
oing to be processed. As a result, for an FL system, the right
o be informed is achieved as privacy information including pur- 
oses for processing local ML model (i.e., to build a global 
L model), retention periods (i.e., no longer in use after each 

raining round), and who it will be shared with (only the co- 
rdination server) can be determined as in Terms and Condi- 
ions when a client accepts to participate in an FL system. 

.3.2. Rights in relation to automated decision making and 
rofiling 
 Data Subject is assumed to have the right ”not to be subject

o a decision based solely on automated processing, includ- 
ng profiling” - (1), the GDPR. Therefore, an FL client, as a Data 
ubject, has the right to receive meaningful information and 

xplanation about whether the result of the processing (i.e., a 
lobal ML model) used in an automated decision-making sys- 
em will produce legal effects concerning the client or simi- 
arly significantly affects the client. Unfortunately, due to the 
lack-box operation model and the limitation of the trans- 
arency in ML, including FL, training process, results (e.g., a 
lobal ML model in FL) are generally generated without any 
roper explanation Wachter et al. (2017) . Thus, it is infeasi- 
le to predict whether outcomes of an ML model might affect 
he legal status or legal rights of the Data Subject, or negatively 
mpact its circumstances, behaviour or choices. Consequently,
ny FL system fails to comply with the GDPR requirements of 
he data subject’s right to control automated decision mak- 
ng. Fortunately, this requirement can be neglected if a Data 
ontroller explicitly mentions the lack of automated decision 

aking and profiling right when asking for Data Subject’s con- 
ent to process personal data. 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/individual-rights/right-to-be-informed
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Fig. 8 – Workflow of the GDPR-compliance inspection and 

punishment procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 https://en.wikipedia.org/wiki/GDPR _ fines _ and _ notices . 
5.3.3. Other rights 
The nature of decoupling between data storage and process-
ing at client-side and global ML model aggregation at server-
side in centralised FL leads to the unnecessity of providing the
(2) Right of access, (3) Right to rectification, (4) Right to era-
sure, (5) Right to restrict processing, (6) Right to data portabil-
ity, and (7) Right to object. For instance, regarding the ”Right
to erasure”, if a user requests to delete its data (i.e., local
ML model parameters sent to an FL server), literally, the only
way to fulfil the user’s request is to thoroughly re-train the
global model without using user’s data from the round that
the user first participates Ginart et al. (2019) . This is unneces-
sary and impractical in FL settings as only local ML model pa-
rameters (possibly privacy guarantee-strengthened with dif-
ferential privacy) in aggregated encrypted forms (by using
Secure Aggregation and other advanced cryptography tech-
niques) are shared with a coordination server. Consequently,
it is worthless for a Data Subject to have control over its lo-
cal ML model as (i) the model parameters are protected by
privacy-preserving techniques from inference attacks; (ii) the
server is unable to separate the user’s data from the others, the
server also does not store the model once it is aggregated to
update the global model; and (iii) the global model is wholly
anonymised and cannot be exploited to extract or infer any
individual information. 

5.4. GDPR-Compliance investigation and demonstration 

The GDPR establishes supervisory authorities in each mem-
ber state which are independent public authorities called Data
Protection Authorities (DPAs). DPAs are responsible for super-
vising and inspecting whether a Data Controller is compliant
with the data protection regulations whilst the Data Controller
is responsible for demonstrating the compliance. The ques-
tions are judiciously raised: How can an FL system be inves-
tigated and validated by DPAs, and how can it demonstrate
compliance? 

5.4.1. DPA’S supervisory competence 
As illustrated in Fig. 8 , the investigation of non/compliance
and decision of punishment are carried out by DPAs once
there is a suspicion or a claim filed by a customer. The
compliance inspection will conduct some analysis to see
whether a suspicious organisation follows the legal require-
ment of Privacy&Security-by-design approach and satisfies
some standard assessments such as Data Protection Im-
pact Assessment (DPIA) and Privacy Impact Assessment (PIA),
which are essential parts of the GDPR accountability obliga-
tions. 

The GDPR establishes heavy punishment for
non/compliance as failing to comply with the GDPR can
be penalised by both financial fine (up to € 20 M , or 4% of
global annual turnover, whichever is higher) and reprimand,
ban or suspension of the violator’s business ( Fig. 8 ). A number
of criteria specifically defined by the GDPR (Articles 77–84)
are taken into account when determining the punishment
such as the level of cooperation during the investigation,
type of personal data, any previous infringement, and the
nature, gravity, and duration of the current infringement.
For instance, Facebook and Google were hit with a collective
$8.8 billion lawsuits (Facebook, 3.9 billion euro; Google, 3.7
billion euro) by Austrian privacy campaigner, Max Schrems,
alleging violations of GDPR as it pertains to the opt-in/opt-out
clauses. Specifically, the complaint alleges that the way these
companies obtain user consent for privacy policies is an
”all-or-nothing” choice, asking users to check a small box
allowing them to access services. It is a clear violation of the
GDPR’s provisions per privacy experts and the EU/UK. A list
of fines and notices (with non-compliance reasons) issued
under the GDPR can be found on Wikipedia 13 

Normally, DPAs might require a variety of information with
a detailed explanation from the Data Controller to perform the
analysis including documents of organisational and techni-
cal measures related to the implementation of the GDPR re-
quirements as well as independent DPIA and PIA reports fre-
quently conducted by the Data Controller. DPAs may also re-
quire to be given access to data server infrastructure and man-
agement system including personal data that is being pro-
cessed. In this respect, besides the legal basis such as consents
from end-users, an FL service provider can only provide doc-
umentation of how FL-related mechanisms are implemented
along with privacy-preserving technical measures such as se-
cure aggregation, differential privacy, and homomorphic en-
cryption. Other inquiries from DPAs such as direct access to
the FL model training operations and inspection of individual
local model parameters from a particular end-user are tech-
nically infeasible for any FL systems. 

5.4.2. Compliance demonstration 

In order to build and demonstrate the GDPR compliance,
AI/ML-based service providers should realise DPIA and PIA
from the beginning of the project and document the processes
accordingly which are designed to describe and clarify the
whole data management processes along with the necessity
and proportionality of these processes. Such assessments are
important tools for accountability and essential to efficiently

https://en.wikipedia.org/wiki/GDPR_fines_and_notices
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anage the data security and privacy risks, to demonstrate 
he compliance, as well as to determine the measure have 
een taken to address the risks. However, carrying out a DPIA 

r PIA is not mandatory for every data processing operation.
t is only required when the operation is ”likely to result in a 
igh risk to the rights and freedoms of natural persons” (NS/ > (1)).
he guideline for the criteria on the DPIA/PIA obligatory is de- 
cribed under (3), 35(4) which are adopted by DPAs to carry out 
uch assessments. 

In this respect, any FL service providers should perform 

he following steps for the DPIA/PIA to ensure the GDPR- 
ompliance as well as to demonstrate the compliance once 
equired by DPAs: 

1. A systematic description of data processing operations, as- 
sociated purposes, along with clarification and justification 

of the operations. For instance, the operation of asking the 
Data Subject’s consent for local ML training and sending 
the ML model parameters to a coordination server should 

be documented in detail. 
2. An assessment of the necessity and proportionality of each 

operation, given its associated purposes. For instance, a Se- 
cure Aggregation mechanism is necessary to implement 
whereas a differential privacy mechanism is proportion- 
ally required. 

3. An assessment of the data security and privacy risks that 
might be induced by each operation, along with the tech- 
nical measures implemented to mitigate and manage the 
risks. For instance, in an FL system, the operation of send- 
ing local ML model parameters to a coordination server 
for global ML model update might be the target of infer- 
ence attacks, thus, inducing privacy leakage. The measures 
called Secure Aggregation and Homomorphic Encryption 

mechanisms are implemented along with the technical re- 
port. Even though such privacy-preserving methods are 
implemented to strengthen FL systems, there exist some 
risks that can be exploited for illegitimate purposes such 

as model poisoning with back-door sub-tasks. These pos- 
sible attacks, which lead to non-compliance with the GDPR,
should be addressed. 

Foremost, same as any AI/ML-based system, an FL system 

s based on black-box complex ML models (e.g., deep learn- 
ng and neural networks) with limited transparency, making 
t troublesome for both service providers and DPAs to com- 
rehend and to inspect hidden operations taking place inside 
he system. Therefore, conducting DPIA/PIA on an FL system 

eems to be superficial, which requires much effort to discover 
reaches of the regulations, so as to avoid risky operations and 

o impose better privacy-preserving measures. 

. Recap and outlook 

I/ML-based applications and services are high on the agenda 
n most sectors. However, the unregulated use or misuse of 
ersonal data is dramatically spreading, resulting in severe 
oncerns of data privacy. A series of severe personal data 
reaches such as Facebook’s Cambridge Analytica scandal,
long with urgent mobile applications during the SARS-CoV2 
andemic for large-scale contact tracing and movement track- 
ng Ienca and Vayena (2020) trigger worldwide attention re- 
pecting to a variety of privacy-related aspects including al- 
orithm bias, ethics, implications of politic settings, and le- 
al responsibility. This leads to a critical demand for effective 
rivacy-preserving techniques, particularly for ”data-hungry”
I/ML-based systems, wherein FL is a prospective solution.
he decoupling between local storage and processing at end- 
sers devices and the aggregation of processing results at the 
erver-side in FL undoubtedly mitigate the risk of massive 
ata breaches in a traditional centralised system while giving 
ull control of personal data back to the users. 

Although FL is in its infancy, we strongly believe that the 
ollaborative computation with decentralised data storage as 
n FL systems has tremendous advantages to facilitate a va- 
iety of AI/ML-based applications without directly accessing 
nd-users’ data. Thus, FL systems are presumed to naturally 
omply with strict data protection legislation such as the 
DPR. However, such FL systems still stay within the GDPR 

egulatory data protection framework as the local processing 
esults sent to a server from end-users (e.g., locally trained ML 

odel parameters) conceal some sensitive features that can 

e exploited to infer personal information of the end-users.
ccordingly, FL systems are the target of some types of attack 
uch as inference attacks and model poisoning, which could 

ead to infringements of the GDPR. Therefore, the systems 
ust be strengthened by applicable privacy mechanisms such 

s SMC, differential privacy, and encrypted transfer learning 
ethods Salem et al. (2019) . We present a systematic sum- 
ary of the threat models, possible attacks, and the privacy- 

reserving techniques in FL systems, along with the analy- 
is of how these techniques can mitigate the risk of privacy 
eakages. Furthermore, insightful analysis of how an FL sys- 
em complies with the GDPR is also provided. Obligations and 

ppropriate measures for a service provider to implement a 
DPR-compliant FL system are examined in details following 

he rational guidelines of the GDPR six principles. 
As FL is in the early stage, a fruitful area of 

ulti/disciplinary research is commenced in order to flourish 

he technology and to comply with the GDPR fully. Firstly, ef- 
cient cryptographic and privacy primitives for decentralised 

ollaborative learning must be further developed, particularly 
or counteracting model poisoning and inference attacks.
urthermore, as these privacy-preserving techniques such 

s SMC impose non-trivial performance overheads, further 
ffort on how to efficiently utilise such techniques on FL 
pplications are required. Secondly, research on transparency,
nterpret-ability and algorithm fairness in FL systems should 

e profoundly carried out. Even though a substantial amount 
f research has been conducted in centralised AI/ML settings,
here is still an open question of whether these approaches 
ould be employed and how to sensibly adapt them to the 
ecentralised settings where training data is highly skewed 

on-IID and unevenly distributed across sources. The sam- 
ling constraints should be investigated to see how much 

xtend they affect and how to mitigate the bias of the global 
raining model. For instance, the agnostic FL framework 
ntroduced in Mohri et al. (2019) naturally yields good-intent 
airness as it modelled the target distribution as an unknown 

ixture of the distributions instead of the uniform distri- 
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bution in typical FL training algorithms. This agnostic FL
framework, as a result, can control for bias in the training ob-
jective. Thirdly, it requires more research on interpretable and
unbiased ML models and algorithms that can be employed
over encrypted settings to well consolidate with advanced
encryption schemes in FL systems. Besides, the trade-offs
between privacy utility, accuracy, interpretability, and fairness
in an FL framework need to be thoroughly explored. 

If these requisites are successfully settled, it will assure
to inaugurate responsible, auditable and trustworthy FL sys-
tems; as a result, complying with stringent requirements of
the GDPR whilst bolstering the universal recognition of the
secure decentralised collaborative learning solutions by both
end-users and policymakers, including the GDPR supervisory
authority. 
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