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Abstract 

In the traditional distributed machine learning scenario, the user’s private data is transmitted between 
clients and a central server, which results in significant potential privacy risks. In order to balance the 
issues of data privacy and joint training of models, federated learning (FL) is proposed as a particular 
distributed machine learning procedure with privacy protection mechanisms, which can achieve multi- 
party collaborative computing without revealing the original data. However, in practice, FL faces a variety 
of challenging communication problems. This review seeks to elucidate the relationship between these 
communication issues by methodically assessing the development of FL communication research from 

three perspectives: communication efficiency , communication environment , and communication resource 
allocation . Firstly, we sort out the current challenges existing in the communications of FL. Second, 
we have collated FL communications-related papers and described the overall development trend of the 
field based on their logical relationship. Ultimately, we discuss the future directions of research for 
communications in FL. 
© 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

With the advances in deep learning (DL) models, recent years have witnessed a dawn of
 new era of artificial intelligence. DL is now utilized in a variety of industries, including
utonomous driving [1–3] and intelligent healthcare [4–6] . However, as the size of datasets
nd the complexity of the newly proposed neural networks increase, training DL models be-
omes significantly difficult. Consequently, several methods are offered so as to accelerate the
raining process of DL. For one thing, maximizing the use of hardware processing resources
nder appropriate software control is an excellent way to shorten training time, such as data
arallelism [7,8] . For another, distributed machine learning is devised to address this issue
y separating the large-scale learning process on one workstation into several small learn-
ng processes on a number of distributed workstations, which has been the most frequently
dopted method in recent years. Notwithstanding, training data is usually fragmented and
hared with different clients in most distributed machine learning procedures, whereas some
ata cannot be aggregated into a single central server since they are privacy-sensitive in na-
ure. For instance, user behavior data in some online shopping websites may directly contain
ensitive information, such as personal age, race, address; or it may indirectly carry implicit
ensitive information, such as personal web browsing records and user political inclinations
mplied by content preferences. With the promulgation of privacy and data protection laws
nd regulations such as the General Data Protection Regulation (GDPR) and the improvement
f people’s awareness of privacy protection, more and more attention has been paid to the
rivacy and security of user data. 

Thus, federated learning (FL) [9] is developed as a data privacy-aware distributed machine
earning framework. Specifically, the client utilizes its own private data to train a local model
nd transmit it to the server side. Subsequently, the server aggregates these parameters to
ompute the global parameter and sends it back to all clients. Through the multiple rounds
f learning and communication described above, FL eliminates the need to collect all private
ocal data on a single central server, overcoming privacy and communication challenges in

achine learning tasks, as the data are retained locally throughout the training process. Since
he private property of FL, it is widely used in our daily life, such as mobile keyboard
rediction [10] , financial fraud detection [11] , and precision medicine [12] . 

Despite the benefits that FL brings to us, it also faces several challenges. First of all, since
he model information is high-frequently exchanged between clients and the server, the process
s highly restricted by the communication conditions in FL. Therefore, the communication
verhead is the main bottleneck of FL. Second, client drift is also a huge issue in FL. As an
xample, the clients suffer from: 1) statistical (data) heterogeneity: the data of each client may
e not independent and identically distributed (non-iid); 2) model heterogeneity: the model
tructure of each client may be various. 3) resource heterogeneity: the computation, storage,
nd communication resources of clients may vary from one to another. These heterogeneities
ake the entire Fl system challenging to train. For instance, the statistical heterogeneity may

imit the model convergence rate; the model heterogeneity may prevent the low bandwidth
lients from receiving the cumbersome global model, resulting in the straggler issue; and the
esource heterogeneity may also cause the straggler and dropout problems. Moreover, one
asily overlooked but equally important challenge is the privacy issue in FL. Most people
hink that conveying the model parameters or model gradients instead of privacy data will
ot cause privacy leakage. Nonetheless, it has been demonstrated that this view is incorrect
13] , and not transmitting privacy-sensitive local data still leaves security gaps. Therefore, a
2 
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onsummate trusted-FL system needs privacy-preserving techniques to prevent the leakage of
ocal data. However, most proposed security strategies are very time-consuming [14] , which
lso demonstrates the necessity of efficient protection approaches. 

In this survey, we mainly discuss the first challenge, i.e., communications in FL. Some
revious reviews have identified the main problems in FL communication from different view-
oints and classified existing research correspondingly. Shahid et al. [15] considered commu-
ication costs and provided an overview of related current methods such as client selection,
ocal updating, and compression schemes. Moreover, Xu et al. [16] focused on compressed
ommunication and introduced four compressors (quantization, sparsification, hybrid, and low-
ank) in detail. Considering the training workflow of synchronized federated learning, Jiang
t al. [17] discussed methods that aim to improve the training efficiency during different
hases (client selection, configuration, and reporting) respectively. In addition to tackling the
fficiency issue, Yang et al. [18] explored FL’s applications in wireless communication and
roposed to address some key open problems in wireless communication by FL methods,
ncluding communication delay, energy, reliability, and massive connectivity. 

This work aims to provide a comprehensive description of communication problems in FL
ystems, and summarized the state-of-the-art research in all aspects involved so far. Specifi-
ally, we will cover the following aspects of the communication process: a) communication
fficiency, b) communication environment, and c) communication resource allocation. The
ain contributions of this paper are trifold: 

• We present a taxonomy of recent FL communication approaches and summarize the FL
communication system framework with listed specific techniques in each field. 
• We provide a comprehensive summary of recent communication algorithms in a table

and sort them out in terms of method , communication , and evaluation objects. 
• We propose some potential future research directions in the field of FL communications.

. Problem statement and challenges 

.1. Federated learning 

Assume an FL system contains N clients and all the training data and labels con-
titute an input space {X 1 , . . . , X N } and a target space {Y 1 , . . . , Y N } . The i th device in
his FL system has its own local input space X i ∈ {X 1 , . . . , X N } and target space Y i ∈
Y 1 , . . . , Y N } , and will sample m i instances with n i features to build a local training dataset
 i = { ( x 

(1) , y (1) ) , . . . , ( x 

(m i ) , y (m i ) ) } sampled from the local distribution P i (X i , Y i ) , where
 

(i) ∈ R 

n i and y (i) ∈ R . In traditional distributed machine learning, these training datasets
re collected in a central server, while all private data are stored on the client’s own devices
n FL. 

In FL, a group of clients train their local model W i on their local private dataset D i and
hen transmit the training results (e.g., model parameters or gradients) to the central server.
ubsequently, the server will aggregate the received results to update the global parameter or
radient and send it back to the corresponding clients, in order to facilitate their local model
pdates. The whole procedure of FL is illustrated in Fig. 1 and the optimization problem of
his FL system could be formulated as follows: 

in 

W 

f ( W ) = 

N ∑ 

i=1 

p i f i ( W ) , f i ( W ) = E ( x (ζi ) , y (ζi ) ) ∼D i 

[
L 

(
F i 

(
x 

(ζi ) ;W 

)
, y (ζi ) 

)]
, (1)
3 
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Fig. 1. Typical FL communication framework. The left part illustrates the training procedure of FL and proposes 
five dominating challenges of FL communication. The right shows the related works to tackle the aforementioned 
issues. After each client calculates its gradient g k i at kth global epoch, a compression method could be selected to 
efficiently train a global model. Finishing compression, clients could apply some privacy preservation algorithms to 
protect their gradient information further. Since the communication environment may be imperfect and the resource 
of each client may be imbalanced, the server could choose dynamical allocation strategies to mitigate their severe 
influence to FL system convergence. 
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here f denotes the global empirical risk, p i denotes the aggregated weight of client i, f i
enotes the local empirical risk, W denotes the model parameter which optimizes the above
bjective function, p i is the aggregation weight of each client (usually 1 /N ), L and F i are
he loss function and the neural network function of i th client, respectively, and ( x 

(ζi ) , y (ζi ) )

enotes the mini-batch samples of local dataset D i . In the most common FedAvg algorithm
9] , the optimization objective W represents the global parameter W g aggregated by the model
arameter { W i } N i=1 of all clients. The whole FL training process (transmitting model parameter)
s shown in Algorithm 1 . Note that the optimal solution of the global empirical risk f and
he local empirical risk f i could be different. We define f ∗ = min W g f ( W g ) = f ( W 

∗
g ) and

f ∗i = min W i f i ( W i ) = f i ( W 

∗
i ) = E ( x (ζi ) , y (ζi ) ) ∼D i 

[
[ L 

(
F i 

(
x 

(ζi ) ;W 

∗
i 

)
, y (ζi ) 

)]
. 

.2. Recent communication challenges in FL 

• Statistical (data) heterogeneity. Most traditional deep learning techniques, such as
face recognition [19,20] and object detection [21] , assume that the training data are
independent and identically distributed (iid). However, in practice, most of the training
data are non-iid, and they will significantly influence the convergence rate of the entire
FL process, potentially exacerbating communication overhead. In the FL setting, non-
iidness means that the training data distributions of clients are different: 

P i (X i , Y i ) � = P j (X j , Y j ) , (2)
4 
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Algorithm 1 An example of FL training procedure (sending model parameters). 

Input: The entire N clients are indexed by i ∈ { 1 , 2, . . . , N } ; D i = 

{(
x 

(i) , y (i) 
)}n i 

i=1 is the 
local dataset of client i; T g and T loc is the number of global epochs and local epochs, 
respectively, and α is the learning rate. 
Server executes: 

Initialize W 

0 
g 

for each round t = 1 , 2, . . . , T g do 

for each client i in parallel do 

W 

t+1 
i ← Client U pdat e (i, W 

t 
g ) 

end for
W 

t+1 
g ← 

1 
N 

∑ N 
i=1 W 

t+1 
i 

end for 
ClientUpdate ( i, W 

t 
g ): 

for each local epoch from 1 to T loc do 

W 

t+1 
i ← W 

t 
g − α∇ f i ( W 

t 
g , D i ) 

end for
Return W 

t+1 
i to the server 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for different i th and j th client. Moreover, some research [22] also considers that the
data are non-iid if the expectation of local gradients and global gradients are different:

E 

[∥∥g 

t 
i − ḡ 

t 
∥∥] � = 0, (3)

where g 

t 
i denotes the uploaded gradient of the i th client and ḡ 

t denotes the average
global gradient. 
• Model heterogeneity. Since the resources of participants in FL vary widely, the size

of the model they are able to train can also be different. Therefore, in each epoch, the
uploaded model structure may be different: 

shape ( W i ) � = shape ( W j ) , (4)

where the t ext shape (·) operator outputs the shape of each input model W i . 
• Resource heterogeneity. Due to the variety of different clients and communication

environments, FL will be challenged in different ways. For example, the transmission
channel may be noisy and fading, and the bandwidth B of the channel may be limited.
Furthermore, the energy consumption E and time latency T of each participant may
be constrained. Specifically, the energy consumption contains the energy of transmitting
data E 

U , receiving data E 

R , and local computation and training E 

C . Moreover, the time
latency may also include uploading time T U , receiving time T R , and computing and
training time T C . Thus, the optimization problem can be formulated as follows: 

min f ( W g ) 

s.t. B ≤ ˜ B 

E 

U + E 

R + E 

C ≤ ˜ E 

T U + T R + T C ≤ ˜ T , (5)

where the ˜ B , ˜ E , ˜ T denote the bandwidth, energy and time budget, respectively. 
5 
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Fig. 2. The primary structure of this review’s body part based on the categorization of communications in FL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Communication overhead. As the size of recently proposed neural networks in-
creases, the communication process in FL becomes slower and slower. Thus, many
communication-efficient FL algorithms are proposed to tackle this issue, and their pat-
tern could be summarized as follows. Suppose client i has a dense model parameter W i

to transmit, and Q denotes the compression operator to compress W i to a sparse one
Q( W i ) and thus reduce communication cost. The optimization problem for a compres-
sion strategy Q and model parameters W i could be formulated as: 

min 

Q, W i 

f Q 

i ( W i ) + λBit (Q( W )) + μ‖ W i − Q( W i ) ‖ 2 2 , (6)

where f Q 

i denotes the ith client’s loss function of the compressed network, Bit (·) denotes
the summation of transmitted bits, and λ, μ > 0 represent tuning hyper-parameters. The
above problem seeks to optimize the model performance while subject to the constraint
of a compression error regularizer. To solve this multi-goal optimization problem, a
common method is the alternating direction method of multipliers (ADMM) [23] instead
of stochastic gradient descent (SGD) [24] . 
• Communication environment. In a realistic communication environment, the commu-

nication channel is not perfect, and it may be noisy and fading, which slows down the
convergence of model aggregation and reduces the performance of the global model.
Assuming the transmitted global model is W g and the received global model of clients
is W g 

′ , then the channel condition could be denoted as: 

W g 
′ = h W g + z, (7)

where h denotes the coefficients of the fading channel and z represents the additive
channel noise. The remainder of this review is illustrated in Fig. 2 . 
6 
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. Communication efficiency 

In this section, we summarize three types of most commonly used communication-
fficient FL methods into three parts, which are quantization-based, sparsification-based, and
istillation-based strategies. Specifically, for quantization-based methods, we focus on the
iverse designs of quantization operators, which give various ways of transforming a floating-
oint of 64/32 bits to a lower precision and thus determine the intrinsic property as well as the
heoretical foundation for different FL frameworks featuring quantization. For sparsification-
ased methods, we classify existing works from the viewpoint of framework design, which
rovides different solutions to determine nonzero components. Moreover, given the special
hallenge of privacy protection in FL systems, the distillation-based strategies are classi-
ed into data-additional and data-free categories based on distinct levels of potential privacy

eakage. Note that most of these communication methods are conducted to the transmitted
radients rather than model parameters. Additionally, there is also an extra section for other
inor methods that are not frequently used. Finally, we elucidate the comparison of the cited
ethodologies in Table 1 . 

.1. Quantization 

Quantization [25] is a technique that decreases the model size by representing the bit
idth from a floating-point of 32 bits to a lower precision meanwhile retaining the model
erformance. Particularly, in the FL scenario, most quantization methods are proposed to
ompress the continuous model gradient value of each client into a discrete set after the local
raining process so as to reduce the representing bit. 

Stochastic quantization . The stochastic quantization (SQ) is introduced in Alistarh et al.
26] , which uses a gradient quantization method called QSGD to improve the communication
ransmission problem in parallel SGD computing, and focuses on solving the trade-off between
he transmission channel bandwidth and convergence time. Specifically, the quantizer Q SQ 

in
listarh et al. [26] is defined as: 

 SD 

( g i ) = ‖ g ‖ 2 · sign ( g i ) ·
{
�/s, with probability 1 − g i 

‖ g ‖ 2 s + � 

(� + 1) /s, o.w. 
, (8)

here s ≥ 1 , 0 ≤ � < s are two tuning hyperparameters and ‖ · ‖ 2 is the l 2 -norm. By doing so,
t preserves the statistical properties of the primary vector and introduces minimal variance.
hen some QSGD-based variation algorithms are proposed. Reisizadeh et al. [27] introduce a

ramework called FedPAQ, which quantizes model updates by QSGD under a restricted partial
lient participation circumstance and reduces communication rounds by setting the synchro-
ization of each client with the parameter server periodically. As an extension of FedPAQ,
addadpour et al. [28] utilize the historical information of global models and theoretically

nalyze the proposed FedCOM under both homogeneous and heterogeneous local data. Fur-
hermore, Das et al. [29] consider both heterogeneous local data and various noises of local
tochastic gradients and propose FedGLOMO to reduce the variance of local updates by global
ggregation with momentum. Dai et al. [30] present hyper-sphere quantization (HSQ) to build
 global cookbook and quantize local updates based on this cookbook and SQ quantizer to
educe the communication cost further. 

However, in the paper mentioned above, the quantization level could not dynamically
hange during the entire FL training process. To this end, Jhunjhunwala et al. [31] propose
7 
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Table 1 
Classification and comparison of surveyed FL work on communication efficiency. Amount/Round means the strategy reduces the amount of communication or the 
rounds. Partial node indicates whether the mentioned method supports the situation that some clients participate while some clients drop the line. Down/Up implies 
the effectiveness of the cited method is on the downstream or the upstream. 

Method Communication Evaluation 

Compression 
level 

Ref. Theoretical 
guarantee 

non-iid Amount/ 
round 

Partial 
node 

Down/Up Datasets # of devices FL baselines 

[27] 
√ 

✗ Amount 
√ 

Both MNIST, CIFAR-10 50 QSGD 

[121] 
√ √ 

Amount ✗ U MNIST 25 SignSGD, QSGD, 
D-DSGD 

[29] 
√ √ 

Amount ✗ U CIFAR10, FMNIST 50 FedAvg,FedPAQ 

mid [30] 
√ 

✗ Both 
√ 

U ILSVRC-12, CIFAR-10, 
CIFAR-100 

1000, 10% QSGD, TernGrad, 
SignSGD, SGD 

[31] 
√ √ 

Both ✗ U CIFAR-10, FMNIST 4, 8 NULL 

Stochastic 
Quantzation 

high [28] 
√ √ 

Amount 
√ 

U MNIST, CIFAR-10, 
FMNIST, EMNIST 

100 FedAvg, FedPAQ, 
SCAFFOLD 

low [35] ✗ ✗ Both ✗ U Geolife, MDC, Privamov 42, 14, 448 Geoi, TRL, PROM 

mid [36] 
√ 

✗ Both ✗ Both CIFAR-10, CIFAR-100, 
Shakespeare 

50, 50, 10 Hadamard, QSGD, 
EDEN 

Rotation-based 
Quantization 

high [34] 
√ 

✗ Amount ✗ U MNIST, EMNIST, 
CIFAR-10, Shakespeare, 
Stack Overflow 

10 FedAvg, TernGrad, 1-bit 
SQ 

low [38] ✗ ✗ Amount ✗ U Gaussian iid matrix from 3 to 15 Uniform quantizer 
[39] 

√ 

✗ Amount ✗ U MNIST, CIFAR-10 100/15, 10 FedAvg, QSGD, 
Uniform quantizer 

mid [40] 
√ 

✗ Both ✗ U MNIST, Finger 
Movement 

15 QSGD, Uniform 

quantizer 
[42] 

√ √ 

Amount ✗ Both MNIST, CIFAR-10 31 SignSGD 

( continued on next page ) 
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Table 1 ( continued ) 

Method Communication Evaluation 

Compression 
level 

Ref. Theoretical 
guarantee 

non-iid Amount/ 
round 

Partial 
node 

Down/Up Datasets # of devices FL baselines 

Lattice-based 
Quantization 

high [43] 
√ 

✗ Amount ✗ Both MNIST, CIFAR-10 100 BAA 

low [46] ✗ 
√ 

Both 
√ 

Both MNIST, FMNIST 10 FedAvg, SignSGD 

mid [45] 
√ 

✗ Amount 
√ 

U CIFAR-10, ImageNet from 2 to 16 Random k , Top k , 
Threshold TernGrad, 
Adaptive Threshold 

[47] 
√ 

✗ Amount ✗ Both MNIST 10 NULL 

Quantized 
Compressed 
Sensing 

high [48] ✗ 
√ 

Amount ✗ Both MNIST 30 QCS-QIHT, QCS-Dither, 
SignSGD 

low [63] 
√ √ 

Both 
√ 

Both MNIST, CIFAR-10 32, 16 ADACOMM, ATOMO 

mid [61] 
√ √ 

Both ✗ Both FEMNIST, CIFAR-10 156, 100 Periodic- k , Top- k , 
FedAvg 

Adaptive 
Sparsification 

high [62] 
√ 

✗ Amount ✗ U MNIST, CIFAR-10, 
CIFAR-100, ImageNet, 
PTB, Wikitext-2 

from 4 to 400 FedAVG 

[65] 
√ 

✗ Amount ✗ U MNIST, CIFAR-10, 
ImageNet 

2, 4, 8 TernGrad 

[67] 
√ √ 

Amount 
√ 

Both CIFAR-10, MNIST, 
FEMNIST, KWS 

100, 10% FedAvg, SignSGD 

[68] ✗ ✗ Amount ✗ U CIFAR-10, ImageNet, 
Penn Treebank corpus 

from 4 to 128 S-SGD, Top- k 

mid [69] 
√ 

✗ Amount ✗ Both CIFAR-10, ImageNet, 
Stack Overflow 

56 FedAvg, Top- k

Bidirectional 
Sparsification 

high [70] ✗ ✗ Amount ✗ Both CIFAR-10 10 Top- k

low [78] 
√ 

✗ Both ✗ U CIFAR-10, ImageNet, 
PTB 

16 MGS-SGD, Topk-SGD, 
P-SGD, LAGS-SGD 

( continued on next page ) 
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Table 1 ( continued ) 

Method Communication Evaluation 

Compression 
level 

Ref. Theoretical 
guarantee 

non-iid Amount/ 
round 

Partial 
node 

Down/Up Datasets # of devices FL baselines 

Layer-wise 
sparsification 

mid [74] 
√ 

✗ Amount ✗ U CIFAR-10, Inception-v4, 
ImageNet, PTB 

16 SLGS-SGD, Dense-SGD. 

[80] ✗ 
√ 

Amount ✗ D MNIST, FMNIST 

CIFAR-10, CIFAR-100 
NULL NULL 

Data-additional 
FD 

low [86] ✗ 
√ 

Amount ✗ U MNIST 30 FedAvg, AFA, 
FedMGDA, FedDF 

[81] ✗ 
√ 

Amount 
√ 

U CIFAR-10, CIFAR-100, 
ImageNet, AG News, 
SST2 

50, 40% FedMD, FedAvg, 
FedProx 

[87] ✗ 
√ 

Both ✗ Both STL-10, CIFAR-10 20 FedAvg, FedDF 
[83] ✗ 

√ 

Amount ✗ Both MNIST, FMNIST 0 FedAvg, FD 

mid [85] ✗ 
√ 

Both 
√ 

U MNIST, FMNIST, 
CIFAR-10 

10, 80% FedMD, DS-FL, MHAT 

[82] ✗ 
√ 

Both ✗ Both MNIST, EMNIST, 
CIFAR-10, STL-10 

20 FedAvg, FD 

high [84] ✗ 
√ 

Both 
√ 

U STL-10, CIFAR-100, 
SVHN, ImageNet 

100 FedDF, FedAvg 

[88] ✗ 
√ 

Amount ✗ Both MNIST NULL FAug 
mid [89] ✗ 

√ 

Amount ✗ U MNIST, CIFAR-10 NULL FedAvg 
Data-free FD high [91] ✗ 

√ 

Both 
√ 

Both MNIST, EMNIST, 
CELEBA 

20, 50% FedAvg, FedProx, 
FedEnsemble, 
FedDfusion, FedDistill 

[92] 
√ √ 

Both 
√ 

Both CIFAR-10, CIFAR-100, 
ImageNet, AG News, 
SST-5 

NULL FedAvg, FedProx, 
MOON, FedDistill, 
FedGen 

[93] ✗ 
√ 

Both 
√ 

Both CIFAR-10, CIFAR-100 100, 10% FedAvg, FedProx, 
SCAFFOLD, FedDyn, 
MOON, FedGen, FedDF 

( continued on next page ) 
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Table 1 ( continued ) 

Method Communication Evaluation 

Compression 
level 

Ref. Theoretical 
guarantee 

non-iid Amount/ 
round 

Partial 
node 

Down/Up Datasets # of devices FL baselines 

[9] ✗ 
√ 

Rounds 
√ 

U MNIST, Shakespeare 100,10% NULL 

low [112] ✗ 
√ 

Rounds 
√ 

U Adult, FMNIST from 23 to 
1101 

AFL 

mid [113] ✗ 
√ 

Rounds 
√ 

U CIFAR-10, CIFAR-100, 
CINIC-10, Shakespeare 

100,16% FedAvg, FedProx, 
SCAFFOLD 

Reduce rounds high [114] 
√ 

✗ Both ✗ Both MNIST, ijcnn1, covtype 10 GD,QGD,LAG 

mid [115] ✗ ✗ Amount 
√ 

U CIFAR-10, Reddit 
dataset 

100 NULL 

Low-rank 
Approximation 

high [90] ✗ 
√ 

Amount ✗ Both MIND, ADR, CADEC, 
ADE, SMM4H 

1, 2, 3, 4 FetchSGD, FedDropout, 
SCAFFOLD, FedPAQ 

11
 



Z. Zhao, Y. Mao, Y. Liu et al. Journal of the Franklin Institute xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FI [m1+; January 17, 2023;2:19 ] 

a  

e  

l  

l  

p  

t
 

e  

S  

t  

E  

q  

i  

D  

r  

o  

t  

o  

q  

p  

w  

e  

F  

r
 

d  

t  

t

Q  

S  

c  

t  

q  

m  

i  

i  

t
 

m  

e  

g  

m

Q  
n adaptive quantization algorithm called AdaQuantFL, considering the trade-off between
rror and communication bits and allowing clients to automatically adjust the quantization
evel s of QSGD during the entire FL training process. Moreover, Amiri et al. [32] propose a
ossy FL (LFL) approach to quantize both the global model parameters and the client model
arameters to reduce the communication cost further, while most previous work assumes that
he broadcast of the global model is perfect. 

Rotation-based quantization . Although SQ is an efficient and convenient quantization strat-
gy to assign each vector coordinate to a finite set of possibilities, recent research shows that
Q is sensitive to the vector distribution and the gap between the largest and smallest en-

ries in the vector. Therefore, lots of studies concentrate on solving the Distributed Mean
stimation (DEM) problem. Specifically, Suresh et al. [33] devise a biased and deterministic
uantization framework by applying a structured random rotation before quantization. Follow-
ng this method, Vargaftik et al. [34] introduce a biased and unbiased compression technique,
RIVE, which could quantize the original vector into a 1-bit quantization level by random

otation in DEM. Although the previous work mostly defines the quantization through a set
f discrete quantization points, Vargaftik et al. [35] build the theory on an interval-wise quan-
ization and proposes EDEN, in which each coordinate is quantized to its interval’s center
f mass rather than the nearest quantization point. Therefrom, it decreases the entropy of the
uantized vector and obtains a better estimation given a communication budget. Nonetheless,
revious work requires that each client has an independent rotation matrix from other clients,
hich asymptotically increases the decoding time as the server must invert the rotation for

ach independent vector in every iteration. Basat et al. [36] propose a strategy named QUIC-
L to speed up the aggregation, which enables all clients to utilize the same rotation matrix,
esulting in only a single inverse rotation on the server side. 

Lattice-based quantization . Zamir and Feder [37] first introduce the lattice quantization with
ithers to optimize every point to its closest lattice, which is much simpler and more efficient
han optimal vector quantizers. Shlezinger et al. [38] firstly bring the lattice quantization into
he FL framework. Let L be the lattice set, then the lattice quantizer Q L is defined by: 

 L ( g ) = l x if 
∥∥g − l g 

∥∥ ≤ ‖ g − l ‖ for every l ∈ L . (9)

ubsequently, Shlezinger et al. [39] take a more realistic and comprehensive situation into
onsideration and offer a universal vector quantization in FL called UVeQFed. Specifically,
hey consider the rate-constrained channels and implement the subtractive dithered lattice
uantization to tackle the throughput-limited uplink problem and finally induce only a mini-
um distortion. Furthermore, except for channels with restricted rates, Chen et al. [40] further

ncorporate lattice quantization by selecting a subset of clients according to their probabil-
ty of connection to the server and allowing the server to allocate bandwidth to minimize
ransmission delay and optimize the usage of wireless channels. 

1-bit(sign) quantization . Previous quantization work usually compresses model updates or
odel gradients into a low-precise bit width, such as 8 bits or 4 bits. Despite this, Bernstein

t al. [41] introduce a 1-bit quantization method named signSGD that represents the original
radient by its sign meanwhile maintaining the testing accuracy and convergence rate of the
odel, and its quantizer Q sign is defined as: 

 sign ( g ) = 

g √ 

g 

2 
. (10)
12 
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in et al. [42] propose sto-signSGD that the quantization result of the gradient is a random
ariable corresponding to its sign rather than always fix, and then combine it with the ma-
ority vote rule to ensure the robustness of sto-signSGD under the client data heterogeneity
ituation in FL. Zhu et al. [43] employ the signSGD for Federated edge learning (FEEL) and
esign a sophisticated FEEL framework termed OBDA based on over-the-air majority-vote,
hich incorporate 1-bit gradient quantization and QAM modulation to archive communication

fficiency. 
Quantized compressed sensing (QCS) . By taking advantage of the sparsity of the signal,

ompressed sensing (CS) [44] combines the sampling and compression stages of traditional
ignal processing methods into one step, thereby greatly reducing the number of samples
equired for accurate signal recovery. Specifically, CS first utilizes the matrix transformation
o obtain a sparse representation of the primary dense signal and then reconstructs it from
he observed data information by solving an optimization problem. Abdi and Fekri [45] first
ombine CS with quantization in a distributed deep learning scenario to obtain arbitrarily
arge compression gains. In particular, this paper introduced the QCS framework to solve the
ncreasing gradient variance and the decrease in the convergence rate induced by quantization.
i et al. [46] and Fan et al. [47] develop a 1-bit QCS by utilizing binary iterative hard

hresholding (BIHT) to reconstruct model updates/gradients rather than simply minimizing
he mean squared error (MSE) [45] . However, since these two algorithms only use 1-bit
uantization, they have a large quantization error due to this limitation. Therefore, Oh et al.
48] turn to study the multi-level scalar quantization method, which develops a framework
alled Q-EM-GAMP based on the expectation-maximization (EM) algorithm to serve as the
econstruction strategy to reduce the reconstruction error significantly. 

Others . With the exception of the quantization algorithms mentioned above, there is still a
ariety of quantization For instance, without directly using the sign of the model gradient, He
t al. [49] establish a non-uniform cosine-based quantization called CosSGD, which quantizes
he angle vector with respect to the model gradient by incorporating cosine functions and the
ange of its minimal and maximal value. In addition, Malekijoo et al. [50] design FedZip
hich uses the quantization with k-means clustering as well as combining Top-z sparsifica-

ion and Huffman encoding to maximize the compression rate. What’s more, in order to solve
he non-iid problem in FL, Philippenko and Dieuleveut [51] present Artemis which first com-
resses the model gradient by its memory term and then utilizes s-quantization to compress
he difference. They find that using the memory mechanism could improve the convergence
erformance under the non-iid training data scenarios. 

Chen et al. [52] consider the heterogeneous FL scenario that local clients hold various
uantization levels (precision) and propose FedHQ to assign different aggregation weights
o clients by optimizing the convergence upper bound. Cui et al. [53] design the MUCSC
lgorithm to compress the uploads by soft clustering and provide some theoretical properties
f MUCSC. In addition, they also introduce a boosted MUCSC to tackle the situation with
ather scarce network resource. 

.2. Sparsification 

Sparsification techniques transform a full gradient to a sparse one with a subset of impor-
ant elements and set other insignificant coordinates to zero. In a federated learning regime,
op- k sparsification and rand- k sparsification are two commonly adopted methods [54] . In
op- k sparsification, the subset of remained elements consists of k percent of the sparsifica-
13 
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ion target with the greatest absolute values, while the remained values are selected randomly
n rand- k sparsification. Although rand- k sparsification is an unbiased compression operator
55,56] , it leads to larger compression errors and therefore has worse practical results com-
ared to top- k sparsification in the high compression regime [54,57] . Generally speaking,
parsification techniques reduce communication overload in a more aggressive manner com-
ared to quantization. For example, the top- k sparsification with error feedback can maintain
he desired convergence rate and accuracy even with 99 % -99.9 % gradient elements zeroed
ut [58,59] . 

In contrast to sparsification in centralized learning, sparsification in federated learning
as to consider not only the computation and storage efficiency but also the communication
fficiency among distributed clients throughout the learning process. Therefore, most of the
L research on sparsification focus on improving existing sparsification techniques like top- k
parsification to meet the needs for frequent communications better. 

Adaptive sparsification . In Sahu et al. [60] ’s work, top- k is proven to be the communication-
ptimal sparsifier with a given k element budget per iteration from the optimization per-
pective, but a different hard-threshold sparsifier is further developed to consider optimality
hroughout the training instead of per iteration optimality. The proposed hard-threshold spar-
ifier adaptively determines the degree of sparsity k by a constant hard threshold and has
een proven to be the optimal sparsifier that theoretically minimizes the compression error
nder a given budget throughout the FL training process [60] . Similarly, the adaptation of the
parsity degree k to minimize the overall training time has been proposed [61] . It is achieved
y adjusting the degree of sparsity to come close to achieving the ideal balance between
omputation and communication in an online learning manner. 

Some other work on adaptive sparsification focuses not only on adjusting the sparsity
evel d but also on co-adjustment with some other factors in federated learning, such as
ocal update iterations and partial participation. For example, Sattler et al. [62] provides an
nformation-theoretic way to analyze communication delay and error-accumulating sparsifica-
ion techniques, both of which achieve information compression by delaying some updates
nd gathering gradient information before actual transmission. On the basis of these theoret-
cal perspectives, the proposed Sparse Binary Compression (SBC) method adaptively trades
ff the temporal sparsity and gradient sparsity. Similarly, Nori et al. [63] considers both lo-
al update and sparsity budgets to characterize learning error and adaptively adjusts these
wo components to yield Fast FL (FFL). As another line of work, Abdelmoniem and Canini
64] design an adaptive compression control mechanism that better trades-off between training
peed and accuracy by coupling network delays and compression control. The superiority of
his method is demonstrated with top- k and rand- k. 

To overcome the staleness of updates resulting from sparsified communication Li et al.
65] propose a General Gradient Sparsification (GGS) framework which performs gradient
orrection on the accumulated insignificant gradients for adaptive optimizers and updates the
atch normalization layer with clients’ local gradients. This method alleviates the impact of
elayed gradient elements and thus further improves the performance of FL with sparsity. As
nother line of work, the linear FetchSGD sketch proposed by Rothchild et al. [66] allows
rror accumulation to be moved from local clients to the central server, eliminating the need
or local client states. FetchSGD is an effective strategy to address the challenges of partial
articipation in FL systems. 

Bidirectional sparsification . The aforementioned sparsification methods primarily consider
ompressing the upstream communication from clients to the central server. Due to the het-
14 
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rogeneity of local data, the sparsity patterns of updates from different clients can be very
ifferent. Sattler et al. [67] have claimed that if the amount of clients is larger than a threshold,
he downstream update will be dense. To solve this problem, the sparse ternary compression
STC) framework is specifically designed to extend the top- k sparsification for enabling down-
tream compression. Shi et al. [68] introduce a global Top- k (gTop- k ) sparsification method,
hich utilizes a tree structure to determine the global k largest absolute values of all clients.
his method overcomes the challenge of the irregular non-zero gradient indices from different
lients during aggregation and, therefore, successfully compresses the downstream communi-
ation as well. 

Another way to achieve bidirectional communication compression is to reduce the extra
udget caused by specifying non-zero location indices. Xu et al. [69] develop a synergis-
ic combination of various compressors for both gradient values and indices. The proposed
loom-filter-based index compressor can reduce 50 % of transmission compared against raw
 key, value 〉 sparse representation. Besides, it is also effective to put limitations on transmitting
ew non-zero positions [70] . In this work, the proposed time-correlation sparsification (TCS)
cheme utilizes the correlation between consecutive sparse representations in FL training to
educe the transmission of newly-computed non-zero indices. This method has been shown
o achieve a higher compression level in downstream communication compared to upstream
ommunication. 

Layer-wise sparsification with pipeline . With the aim of further improving the communi-
ation efficiency of FL in terms of accelerating the entire training process, some works on
L with sparsity have considered making use of the models’ layered structure to parallelize

he communications with computations, which is referred to the pipeline [71–73] . To com-
ine gradient sparsification with the idea of the pipeline, Shi et al. [74] develop a layer-wise
daptive gradient sparsification (LAGS) scheme, where the subset of remaining values for
ach layer is selected independently according to a given ratio, and the transmission of any
parsified gradient of any layer l + 1 ’ can be parallelized with the gradient calculation and
parsification of layer l , instead of waiting for the completion of the entire back-propagation
efore transmitting a single sparsified gradient. 

However, an existing drawback of LAGS is that the sparsified gradient of each layer will
nvoke one independent communication, and thus the layer-wise communications require high
ommunication start-up costs [74,75] . One intensively-studied way to alleviate the startup
verload is merging gradients from multiple layers for one communication, but it will also
ause more computation and waiting time [74–77] . To further trade-off gradient computation
nd layer-wise gradient sparsification, an optimal merging scheme named Optimal Merged
radient Sparsification (OMGS) has been developed [78] . It formulates the trade-off as an
ptimization problem and minimizes the iteration time by maximizing the overlap between
parsified gradient computation and communication during training. 

.3. Distillation 

Knowledge distillation (KD) [79] is further employed to FL to alleviate the communication
ottleneck. Precisely, in order to reduce the model size, KD aims to transfer the information of
 large model (teacher/mentor) to a small model (student/mentee) without adversely impacting
he model’s precision and convergence. Therefore, the teacher network is typically a network
ith a large number of parameters and a complicated structure, with excellent performance

nd generalization ability, whereas the student network has a modest number of parameters
15 
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nd a simple structure. Since the shape sizes of different student models’ outputs are identical
nd irrelevant to the structure of student models, KD could be utilized to tackle the model
eterogeneity issue as aforementioned by uploading the output of the local model without
oftmax (i.e., the logit vector) other than the model itself, and such method is called federated
istillation (FD). In this section, we give a taxonomy of FD based on whether the client will
pload a small subset of their private data to build a public dataset on the server side and
ivide FD into the data-additional FD (need to construct an addition dataset jointly) methods
nd the data-free FD methods. 

Data-additional FD . At first, Li and Wang [80] propose FedMD that each client first
rains the local models on a labeled public dataset and uploads their class scores (i.e., logit
ector) rather than model parameters to the server, and subsequently, the server integrates
hem to obtain the knowledge from all clients. However, the training process of FedMD is
imultaneously on both labeled public data and private data, which necessitates a considerable
mount of local computation and is not suitable for resource-limited devices. Furthermore,
he creation of public datasets necessitates careful deliberation and thus lacks generalization.
onsequently, Lin et al. [81] propose FedDF to train the global model through an unlabeled
ataset in an ensemble distillation manner and prove that FedDF is robust to the selection
nd combination of the FD dataset. Especially, the selection of an auxiliary dataset is set
n the server side and effectively mitigates the computational pressure of local clients. Since
he public dataset is unlabeled, the privacy leakage of FedDF is also much less than the
edMD’s. Nonetheless, although the selection of the public dataset is moved to the server
ide, there are still no criteria for determining the size of the dataset. In Sattler et al. [82] , they
stablish the Compressed Federated Distillation (CFD) developing “entropy”, “certainty”, and
margin” standards to determine the size of the public distillation dataset. Afterward, they also
tilize a uniform quantization algorithm and delta coding to reduce the communication cost
urther. 

The previous work mainly concentrates on reducing the communication cost of FD by
ither changing the size of the public dataset or the size of logit vectors, but none of them
onsiders modifying the aggregation strategy . By contrast, Itahara et al. [83] propose DS-
L, which attempts to aggregate the local models via an entropy reduction strategy. Since

he existence of data heterogeneity in FL, the entropy of global logits is quite high, which
ndicates the difficulty of training a model with high performance in non-iid scenarios. DS-FL
educes the entropy of global logits sharpening logits by adding the temperature factor T to
he softmax to accelerate and stabilize the DS-FL. In addition, another aggregation algorithm
amed FedAUX is created by Sattler et al. [84] , which calculates the certainty of each client’s
ogits by contrastive logistic scoring and uses this certainty to determine the aggregation
eights to yield a strong empirical performance on data with high distinction. Moreover, Li

t al. [85] construct an adaptive aggregation strategy named pFedSD to dynamically modify
he weight of each participant and improve the quality and performance of the global model.
pecifically, it exploits the Jensen-Shannon divergence between the transmitted model outputs

n two adjacent rounds as the weight of clients to measure the similarity of local models.
imilarly, Sturluson et al. [86] also develop an adaptive aggregator named FedRAD based on
edian scores to reinforce the global model. 
Combining both public dataset selection and non-trivial aggregation methods, Liu et al.

87] present FAS to actively sample client data to ameliorate the convergence of the training
rocess under client-drift situations and provide its theoretical analysis. Specifically, they solve
he non-iid problem by weighted logistic scores based on the discrepancy of clients’ data and
16 
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hen add the differential privacy mechanism to the aggregation algorithm to preserve the safety
f the local private data coupled with restricting the privacy loss. 

Data-free FD . Although in the data-additional FD category, transferring logits can greatly
educe the communication overhead, it requires each client to sacrifice a part of its own
rivate data to construct a public dataset, which might be unacceptable in some extremely
rivate cases, such as a user’s private information data on their personal devices. Therefore,
ata-free FD algorithms are proposed without sharing any private data to further preserve the
ecurity of all clients. The first data-free FD algorithm is developed by Jeong et al. [88] to
andle the non-iid problem, in which clients periodically send their average local logits to the
erver and afterward receive the globally aggregated logit as the teacher’s output to help train
he local student model. However, the issue of model heterogeneity is not addressed in this
esearch. To this end, Jiang et al. [89] present FedDistill and solve this problem by forcing the
lient to share a global model of the same structure while training another customized local
odel. Concretely, each client holds two models: a personalized large model that serves as the

eacher model and is trained on local data, and a small global model received from the server.
n each iteration, student models with the same structure are transmitted to the server and
ggregated, which could still obtain all clients’ information with arbitrary personalized large
odel structures. Following FedDistill’s lead, Wu et al. [90] introduce FedKD including three

ifferent loss functions to encourage the training of the global model and matrix factorization
o further reduce the communication overhead. Specifically, they utilize the Kullback–Leibler
KL) divergence loss to adaptively distill the knowledge of both teacher and student models.

Nevertheless, directly aggregating the global model might still be heavily affected by the
eterogeneity issue, and its performance might be unsatisfactory. Thus, Zhu et al. [91] propose
edGEN to train a generator on the server side based on the transmitted classifiers received
rom clients. Specifically, in each FL iteration, clients convey their local label count infor-
ation to the server and regularize the local training after obtaining the global lightweight

enerator. 
After the release of FedGEN for training a generator to facilitate the FD procedure, some

ther recent work focuses on improving the performance of the generator model. For exam-
le, Yao et al. [92] propose FedGKD to utilize the averaged parameters of historical global
odels for the ensemble, which mitigate the client-drift problem caused by the non-iid local

ataset. In addition, Zhang et al. [93] propose FedFTG that first generates pseudo-data to
rain the generator and then utilizes the hard samples to train the global model simultane-
usly. What’s more, facing the data distribution shift issue, they also devise customized label
ampling and label-wise ensemble algorithms to boost the convergence of the FD process. 

Applications . Thanks to its special teacher-student fashion, other than employed to
ommunication-efficient scenarios, KD is also frequently used in addressing the heterogeneity
ssues of clients, which is also called personalized FL . Cho et al. [94] propose a weighted
onsensus KD framework dubbed Fed-ET, which utilizes consensus distillation with diver-
ity regularization to better extract the model knowledge based on heterogeneous scenarios.
dditionally, Zhu et al. [95] devise a personalized framework FedResCuE, which trains a
umber of sub-models by pruning the full global model corresponding to a pruning sequence.
n this way, each client just selects the pruning weight closing to its own local model and
nly receives a tiny model rather than the cumbersome global model. Besides, Zhang et al.
96] introduce a knowledge agnostic KD framework (even without any prior knowledge) called
edZKT transmitting a “personalized” generator based on the local model structure of each
lient and reducing the communication cost further. Furthermore, Ozkara et al. [97] develop
17 
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c  
 compressed personalized KD algorithm called QuPeD, which applies a soft quantization
ethod by solving an optimization problem and utilizes KD to tackle the resource hetero-

eneity issue. 
On account of the impressive feasibility and compression ability, KD has been wildly

mployed in massive FL scenarios. For instance, due to the high communication and compu-
ation overhead in FL protection methods such as local differential privacy (LDP) [98] and
ecure multi-party computation (SMPC) [99] , it is complicated to incorporate these secure
ompute methods into real-world FL applications. Therefore, a variety of current research
100–106] considers combining KD with secure computation to boost the whole training pro-
ess and privacy-preserving medical prediction [107,108] . Moreover, KD is also used in IoT
nd edge learning [109–111] to reduce communication costs. 

.4. Minors 

Reduce communication rounds / fast convergence . In this article that proposes federated
earning [9] , they propose FedAvg to perform global aggregation after multiple iterations
f local updates rather than directly collecting the model gradient in each iteration, which
ugely reduces the communication frequency. Moreover, Li et al. [112] introduce q-FedAvg to
ynamically select a subset of all clients and achieve faster convergence in terms of communi-
ation rounds. Subsequently, Hyeon-Woo et al. [113] boost the convergence rate via low-rank
adamard product parameterization. Furthermore, [114] propose a criteria framework named
AQ to only update the compressed model gradient when the variation of the local model is

arge enough, and thus reduce the number of communication rounds. 
Low-rank decomposition . Konečnỳ et al. [115] consider uploading structured models in

L and propose modifying the updated matrix to a sparse low-rank matrix to save com-
unication cost, allowing the low-rank approximation in FL communication. Furthermore,
u et al. [90] discover that the updated gradients have low-rank properties and thus utilize

he singular value decomposition (SVD) [116] to decompose the model gradient matrix into
maller matrices, which significantly mitigates communication overhead. Additionally, Azam
t al. [117] propose to recycle the gradients between communication rounds by utilizing the
ow-rank property, which reduces the transmission of model parameters to single scalars. 

Topology design . Unlike the client-server architecture we mainly concentrate on, the topo-
ogical network design for cross-silo FL [118] is also an area of interest. Marfoq et al.
119] claim that the high-speed access links are more efficient in exchanging information in
ross-silo scenarios and introduce a novel topology design by optimizing the minimal cycle
ime problem and obtaining the largest throughput. Furthermore, Guo et al. [120] propose HL-
GD utilizing the device-to-device(D2D) communication capabilities to divide clients into a
et of separate clusters with high D2D communication bandwidth and speeding global model
onvergence, without losing the model performance. 

.5. Comparison and discussion 

In these aforementioned subsections, we mainly introduce three kinds of communication-
fficient strategies. However, each of them has its own merits and demerits. For quantization
ethods, since most of the time quantizers are defined explicitly, the convergence analysis

an be performed directly on them. Moreover, sparsification is more empirical and sometimes
an mitigate more communication costs than quantization methods. Nevertheless, we cannot
18 
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rovide some theoretical analysis of this method. For knowledge distillation, it has an excel-
ent performance in heterogeneous FL scenarios. But similar to sparsification, no theoretical
nalysis we can derive. 

. Communication environment 

In the previous section, most of the papers assume that the communication channel is
erfect and do not consider the resources of clients, such as the devices’ energy and band-
idth. Furthermore, although the previous work proposes to compress the updated model or

educe the communication rounds to reduce the overall communication time, none of them
tudy the problem under a time-limited scenario. In this section, we discuss the impact of
ifferent communication environments on model performance and convergence rate in FL and
ummarize the comparison of mentioned methods in Table 2 . 

.1. Unreliable networks 

In FL, mobile devices may frequently drop offline due to unreliable network factors such as
nstable network links, insufficient device power supply, and slow device training, resulting
n a decrease in the performance and convergence rate of the entire FL system. As such,
u et al. [125] consider the unreliable network situation that all communication links have a
ertain packet loss rate to fail, and gives a theoretical analysis of this problem. However, it
ight be unreasonable to assume that each communication link has the same loss rate since it

aries from the duration and packet size of different packets in reality. Consequently, Zhang
t al. [126] design a new algorithm called ACFL to adaptively compress the information
rom the shared model based on the physical conditions of the current network, taking into
ccount the drop rate and the total number of transmitted packets. Moreover, Salehi and
ossain [123] propose a different method to calculate the success probability of each link.
pecifically, they utilize stochastic geometry tools to compute the loss rate and apply different
eights depending on the scheduling policy and its transmission success probability to each

lient during global aggregation for better performance. Furthermore, Wu et al. [122] propose
hat SAFA facilitates the influence of straggling clients and outdated models in heterogeneous
cenarios. In particular, trendy and deprecated clients take the most recent global model as the
ase model for the subsequent round of training, but tolerated clients can continue processing
heir old local findings. 

Since the network’s physical condition is hard to measure, Wu et al. [124] propose a
eliability-agnostic framework called HybridFL, which explores the situation that the reliability
f clients is agnostic under strong privacy-preserving conditions and tackles it by adding
egional slack factors and adjusting client selection regionally. 

The previous work reckons the unreliable network issue at the physical layer level, whereas
ome work discusses it from the point of view of the transport layer level. As an example, Ye
t al. [127] , Mao et al. [141] consider the unreliable communication protocol, such as the user
atagram protocol (UDP), rather than the reliable transportation layer protocol, such as the
ransmission control protocol (TCP) using a link reliability matrix to optimize mixed weights.
urthermore, the gossip-based averaging protocol is the most commonly used fault-tolerant

arge-scale framework [142] . Nevertheless, the complexity of gossip would grow linearly with
he number of clients, decelerating the convergence of FL and increasing the communication
verhead. Thus, Ryabinin et al. [143] propose Moshpit All-Reduce which permits clients to
19 
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Table 2 
Classification and comparison of surveyed FL work on the communication environment. Client selection indicates whether this method performs the client selection 
process. Limited bandwidth implies whether this strategy takes the limited bandwidth constraints into account. 

Down/ 
Up 

Ref. Methods Communication Evaluation 

Theoretical 
guarantee 

non-iid Client 
selection 

Limited 
bandwidth 

Partial 
node 

Datasets # of devices FL baselines 

[122] ✗ 
√ √ √ √ 

Boston Housing, MNIST, 
KDD Cup’99 

5, 100, 500 FedAvg, FedCS 

Unreliable 
Network 

Down [123] 
√ √ √ 

✗ 
√ 

MNIST 100 FedAvg 

[124] 
√ 

✗ 
√ √ √ 

Aerofoil, MNIST 15, 500 FedAvg, HierFAVG 

Both [125] 
√ 

✗ ✗ ✗ 
√ 

CIFAR-10, ATIS 16 NULL 

[126] 
√ √ √ √ √ 

FEMNIST, Shakespeare 3500, 2288 FedAvg, C-FedAvg 
[127] 

√ 

✗ ✗ ✗ 
√ 

CIFAR-10 8/16/24 DSGD 

Noisy fading 
channel 

Down [128] 
√ √ √ 

✗ ✗ MNIST 200 BAA 

[121] ✗ 
√ 

✗ 
√ 

✗ MNIST 25 SignSGD, QSGD 

[129] 
√ √ 

✗ ✗ ✗ MNIST 10 FedAvg, COTAF 
[130] ✗ 

√ 

✗ ✗ ✗ MNIST 10 NULL 

[131] 
√ √ 

✗ ✗ ✗ Random Gaussian matrix 5 One-bit. Open-loop 
[132] 

√ 

✗ ✗ ✗ ✗ Million Song 100 LAQ-WK, FDM-GD, 
ECESA-DSGD 

[133] 
√ 

✗ ✗ ✗ ✗ MNIST 20 NULL 

[134] ✗ 
√ 

✗ ✗ ✗ FMNIST from 2 to 40 FedAvg, Error-free 
channel 

( continued on next page ) 
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Table 2 ( continued ) 

Down/ 
Up 

Ref. Methods Communication Evaluation 

Theoretical 
guarantee 

non-iid Client 
selection 

Limited 
bandwidth 

Partial 
node 

Datasets # of devices FL baselines 

Up [135] 
√ 

✗ 
√ 

✗ 
√ 

Random Gaussian matrix 100 GBMA 

[136] 
√ √ 

✗ 
√ 

✗ MNIST 40 NULL 

Both [137] ✗ 
√ 

✗ ✗ ✗ Random Gaussian matrix 5 MAP bound, 
Model-based detection, 
CL, NL 

[138] 
√ √ 

✗ ✗ 
√ 

MNIST, CIFAR-10, 
Shakespeare 

2000 10%, 
100 10%, 
300, 10% 

Noise-free channel, 
Equal power allocation 

[139] ✗ ✗ 
√ 

✗ 
√ 

MNIST 100 LFL 

[140] 
√ √ 

✗ 
√ 

✗ MNIST 30 NULL 
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ynamically select the group to which they belong, and each client only influences its current
roup after dropout. 

.2. Noisy fading channels 

Recently, more and more research has focused on FL in practice, particularly over-the-air
L (OTA-FL), in which all devices transmit their data signals simultaneously through the
AC and perform computations through the wireless channel. OTA-FL could simultaneously

tilize complete spectral and temporal resources and thus reduce the communication overhead
n FL. However, it suffers from the noisy fading channel problem since it may cause serious
roblems, such as dropped packets or incorrect packet information. 

Most related research aims to optimize over the uplink noisy fading multiple access chan-
el (MAC). Zhu et al. [128] first assume the noisy fading channel following the iid Rayleigh
ading and then design a fundamental aggregation algorithm called broadband analog aggrega-
ion (BAA) to utilize the wave superposition property of MAC for efficient update aggregation
nd resistance of fading channel. As an extension of BAA, Amiri and Gündüz [121] propose
wo more powerful and robust algorithms to tackle the fading channel issue. They create a
igitally distributed SGD (D-DSGD) to select a single device for transmission in each itera-
ion, whereas the D-DSGD lacks robustness. Thus, they develop compressed analog DSGD
CA-DSGD) to accelerate computation through sparsity and allocate the power alignment
f each client at the server side for better efficiency and robustness. Nevertheless, the CA-
SGD’s power alignment procedure could not be applied to the heterogeneous scenarios and

ontrolled by each client. Subsequently, Yang et al. [129] consider the convergence impact
f noise on OTA-FL in non-iid and heterogeneous conditions and proposes a more flexi-
le framework ACPC-OTA-FL to permit each client to adaptively calculate its transmit power
evel and a number of local update rounds in order to maximize the utilization of computation
nd communication resources. In addition, Zhang and Tao [130] adjust the transmit power of
 device on the fly depending on aggregated gradient estimates that have been collected in
he past for high-performance and reliable over-the-air computation (AirComp) over fading
hannels. Another gradient aggregation algorithm called analog gradient aggregation (AGA)
131] adaptively change the receiver’s parameter based on data and channel state information
CSI) under fading channel conditions. More directly, Sery and Cohen [132] claim that their
roposed Gradient-Based Multiple Access (GBMA) framework does not need any power con-
rol or beamforming to get rid of fading effects, including Rayleigh, Rician, and Nakagami
ading models. Instead, GBMA takes effect directly with noise distortion gradients. 

Except for optimizing the problem of noisy fading uplink channel via the aggregation
ethod and allocating transmit power, Hellström et al. [133] use retransmissions after the

ailure of communication to reduce such estimation errors and increase the convergence rate.
urthermore, Lin et al. [134] investigate the problem of stragglers in fading channel situations
nd solves it by assigning relays to permit clients to upload their models to the relay server
nd mitigate the problem of stragglers. 

Although most work considers the uplink as the key to communication bottleneck and sup-
oses the downlink is error-free, imperfect downlink transmission could still tremendously
ffect the convergence and performance of FL. Xia et al. [135] develop FedSplit to solve
he ill-conditioned problem over noisy fading channels and recover the aggregation of local
pdates calculated by the end devices through AirComp. Moreover, Mashhadi et al. [137] es-
ablish a data-driven universal symbol detection procedure under the downlink fading channel
22 
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nd a new neural network based on the maximum a-posteriori probability (MAP) detector.
urthermore, Amiri et al. [136] tackle downlink fading broadcast downlink by organizing a
igital approach to quantize the global model update and provides a theoretical convergence
nalysis for analog downlink transmission. 

Comprehensively, some studies also simultaneously investigate both the noisy fading down-
ink and uplink channels. For instance, Wei and Shen [138] provide a rigorous convergence
nalysis toward standard FedAvg under non-iid client dataset, partial client participation, and
oisy fading downlink and uplink channels conditions. Amiri et al. [139] select a subset of
lients with the highest channel gain over both the uplink and downlink fading channel con-
itions, which results in better global performance and more accurate information exchange.
owever, the previous work does not consider the stochastic delay existing in time-varying

ading channels. In order to solve the problem, Li et al. [140] examine the delay distribution
or wireless FL systems with uplink and downlink transmission using both synchronous and
synchronous downlink transmission strategies by exploiting the combination of saddle point
pproximation, extreme value theory (EVT), and large deviation theory (LDT). 

. Communication resource allocation 

Due to the difficulty posed by the heterogeneity of each device’s resources, how to effi-
iently communicate model information in such scenarios has become a hot topic in recent
ears. In this section, we classify each related article according to the target of their objective
unctions because most of the research in this field utilizes the optimization method to solve
he problem, and we list the comparison of these strategies in Table 3 . 

Global loss function . Shi et al. [144] establish an associated client scheduling and band-
idth allocation strategy based on optimizing the trade-off between latency and the number
f training rounds. Additionally, Yu et al. [145] consider the hybrid vertically and hori-
ontally partitioned client dataset and optimize both the communication and computational
nergy consumption to develop a scheduling optimization problem for a participant jointly
nd then minimize the global loss function. Furthermore, Mahmoudi et al. [146] propose
n iteration-termination criterion FedCau by optimizing the computation and communication
atency. Furthermore, they also combine FedCau with Top-q and LAQ compression methods
o further reduce communication overhead. 

However, the above papers may lack some generality since they all specify the type of
esources, such as bandwidth and computational energy. To this end, Wang et al. [147] propose
 more general method to dynamically minimize the loss function under a resource budget
onstraint without specifying a resource type and analyze the convergence bound for federated
earning with a non-iid dataset. 

Time consumption . Chen et al. [148] simultaneously minimize the communication time and
onvergence time to construct a user selection and power allocation framework. However, it
nly considers the transmission time constraint. Subsequently, Yang et al. [149] take the
omputation time into account and also develop a bisection search algorithm to find the
ptimal solution. Furthermore, Lu et al. [150] also consider the cost of the block validation
rocess and introduce the digital twin wireless networks (DTWN) to alleviate the resource-
onstrained FL task in real-world environments. 

Client selection . A greedy scheduling strategy is proposed by Nishio and Yonetani [151] ,
hich schedules as many devices as possible within a given time frame in each round.
owever, the deadlines are chosen experimentally, and it is tough to adapt to dynamic channels
23 
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Table 3 
Classification and comparison of surveyed FL strategies on communication resource allocation. Constraints implies the constraints of the objective function optimized 
in each paper. 

Ref. Method Communication Evaluation 

Theoretical 
guarantee 

non-iid Client 
selection 

Constraints Partial 
node 

Datasets # of devices FL Baselines 

Global loss function [144] 
√ √ √ 

Time budget, 
Client subset 

√ 

MNIST, 
CIFAR-10 

20 Random Proportional fair 

[145] ✗ ✗ ✗ Energy budget ✗ MNIST 50 Loss, time 
[146] 

√ √ 

✗ Latency budget ✗ MNIST 50, 100 LAQ, Top- k
[147] 

√ 

✗ ✗ Different types of 
resources 

✗ MNIST from 5 to 500 SVM, K -means 

Time consumption [148] 
√ 

✗ 
√ 

Different 
resources, Client 
subset 

√ 

MNIST from 3 to 20 FedAvg 

[149] 
√ 

✗ ✗ Bandwidth, Time 
budget, Uploaded 
data size, 
Transmit power 

✗ Real open 
blog feedback 
dataset 

50 EB-FDMA, FE-FDMA, 
TDMA 

[150] ✗ ✗ ✗ Digital twins, 
Subchannel, 
Training batch 
size 

✗ CIFAR-10 100 FedAvg 

Client selection [151] ✗ 
√ √ 

Time budget, 
Communication 
rounds 

√ 

CIFAR-10, 
FMNIST 

1000, 10% FedLim 

[152] 
√ √ √ 

Power budget, 
Bandwidth, Time 
budget 

√ 

MNIST 10 FedAvg 

( continued on next page ) 
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Table 3 ( continued ) 

Ref. Method Communication Evaluation 

Theoretical 
guarantee 

non-iid Client 
selection 

Constraints Partial 
node 

Datasets # of devices FL Baselines 

[153] ✗ ✗ ✗ Bandwidth, Time 
budget 

✗ MNIST, 
FMNIST 

30 BBA 

Energy consumption [154] ✗ ✗ 
√ 

Bandwidth, Time 
budget 

√ 

MNIST 50 Optimal/ uniform 

bandwidth allocation 
[155] ✗ 

√ √ 

Bandwidth, Time 
budget 

√ 

Real open 
blog feedback 
dataset 

50 TDMA 

Hybrid objective [156] ✗ ✗ 
√ 

Resource 
availability, Trust, 
Client subset 

√ 

MNIST 12 NULL 

[157] ✗ ✗ ✗ Time budget, 
Energy budget 

✗ MNIST 50 Loss, energy 

25



Z. Zhao, Y. Mao, Y. Liu et al. Journal of the Franklin Institute xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FI [m1+; January 17, 2023;2:19 ] 

a  

l  

c  

i  

o  

m
 

c  

a  

e  

r  

i
 

i  

r  

i  

o  

t  

a

6

 

d  

i  

t  

c
 

t  

e  

d
 

t  

a  

f  

d
 

s  

s  

t  

s
 

t
 

r  

a  

r  
nd device computing power. To this end, Chen et al. [152] propose CEFL to reuse outdated
ocal model parameters for client scheduling and theoretically analyze its convergence and
ommunication characteristics. Nonetheless, the previous articles do not consider channel state
nformation (CSI). Thus, Zhao et al. [153] propose two bandwidth allocation methods based
n CSI and particle swarm optimization (PSO) and transform the optimization problem from
inimizing global loss into maximizing the number of active clients. 
Energy consumption . Zeng et al. [154] propose an energy-efficient joint bandwidth allo-

ation and scheduling strategy by minimizing the total energy consumption. However, they
ssume that all clients have the same model structure and thus ignore the computational
nergy. Nevertheless, Yang et al. [155] further consider the computational energy and de-
ive closed-form solutions for computation and transmission resources of a low-complexity
teration algorithm. 

Hybrid objective . In the meanwhile, some research focuses on optimizing multiple objects
n the objective function. For example, Imteaj and Amini [156] try to optimize the client
esources such as memory, bandwidth, and battery life under the malicious client and straggler
ssue, but no theoretical guarantees are provided. Comprehensively, Zaw et al. [157] aim to
ptimize the global loss function and the entire communication and computation time and
hen reformulate the problem as a Generalized Nash Equilibrium Problem (GNEP) to establish
 comprehensive theoretical convergence analysis. 

. Conclusions and future directions 

Due to the complex wireless network environment, the heterogeneity of device data, the
ifference of device capabilities, and other factors, how to efficiently perform FL training
n the edge network is a key issue currently facing. In this review, we discuss the solutions
o this issue in three aspects: communication efficiency, communication environment, and
ommunication resource allocation. 

First, we present the communication efficiency strategies in FL. Specifically, we dive into
he three main communication-efficient FL approaches: quantization, sparsification, and knowl-
dge distillation. For each strategy, we examine its benefits, drawbacks, and prospective logical
evelopment trend in order to make the entire paragraph logically coherent. 

Second, we discuss the influence of the harsh FL communication environment. We divide
he harsh environment into two parts: 1) unreliable network: the connections between clients
nd servers are not guaranteed to succeed and thus may cause clients to go offline; 2) noisy
ading channels: the communication channels have noise and fade along with the transmission
istance. 

Finally, we present the communication resource allocation algorithms, which mainly target
olving an optimization problem based on some realistic constraints. Therefore, we classify
uch algorithms according to the optimization objective of the optimization problem. In par-
icular, we find that the global loss function, time consumption, energy consumption, client
election, and hybrid objectives are the most frequently used objectives. 

Even if the existing research is continually being refined, there are still some future direc-
ions we can investigate in this subject. 

Computation consumption . As mentioned earlier, many communication compression algo-
ithms run on the client side. Although there are some studies discussing computing time
nd computing power consumption in Section 5 , few studies work on the specific computing
esource consumption in the compression algorithm, which is exactly significant for resource-
26 
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imited mobile devices. One work Mishchenko et al. [158] is related to this field, in which
hey propose a quantized parallel SGD where the gradient coordinates are rounded after scal-
ng. Further work can be performed to extend it to popular optimization methods such as
dam. 
A comprehensive communication system . Most of the previous studies considered only

ne compression method, and some studies considered the combination of two compression
ethods. However, it is possible that this combination is not the most efficient. In future
ork, the integration of multiple model compression methods to formulate an overall FL

ompression system and finding the balance of each compression method theoretically may
ecome the next outlet for communication-efficient FL. 

Exploring privacy while compressing . Privacy is also a widely studied field in FL. As
entioned in the introduction section, FL without privacy-preserving procedures may never-

heless leak local private information through the transmission of model parameters or model
radients. In order to solve this kind of data privacy leakage problem, some existing research
ses cryptography to encrypt the model parameters sent by each participant to defend against
odel inference attacks, such as LDP and SMPC introduced in Section 3.3 . In addition,

ther protective strategies, such as VerifyNet [159] and adversarial training [160] , are effec-
ive during the training stage and preserve clients’ privacy. Nonetheless, a substantial quantity
f local calculation overhead will make the entire FL process extremely sluggish. Due to
he heterogeneity of local client computing resources, some clients may take a long time to
erform encryption algorithms while other clients can only wait, thereby further causing com-
unication congestion. Consequently, the demand for efficient privacy-preserving strategies

s increasing. Combining compression techniques and privacy-preserving techniques is one
ay to make the entire FL framework both efficient and secure. As an illustration, federated
istillation only needs to transmit a few fully-connected layers or even logits between clients
nd the server, which simultaneously compresses the updated information and protects the
ata privacy. 

Asynchronous aggregation . In this review paper, we mostly concentrate on synchronous
L aggregation. However, due to the fact that the available computation, communication, and
ata volumes on many work nodes are sometimes distinct, the time that work nodes transmit
odel parameters of local training at each round may vary from one to another. This will

ause the parameter server to prolong the training time due to waiting for the slow node to
pload the parameters (i.e., the straggler problem). In addition, since the local data on multiple
ork nodes usually may not follow the same probability distribution and their local models
ay also be different, it will cause the local models of different work nodes to converge in

ifferent directions, reducing the overall training speed. Therefore, the asynchronous aggregate
pdate algorithm should also be considered when considering the communication overhead
o make the model converge faster and obtain better model performance. 

Integration with 5G and beyond . The rapid advances in wireless communication technolo-
ies also enhance the development of FL technologies. The bandwidth and processing speed
onstraints of FL are expected to be lifted by the expansion of the 5G network across the
lobe [161] . 5G network is estimated to provide a 10 − 100x increase in bandwidth and a
 − 10x decrease in latency, enabling more devices on the Internet of Things (IoT) and the
nternet of Vehicles (IoV) devices to learn from each other with federated learning. For ex-
mple, China Mobile proposed the integration of FL with the distributed intelligent network
rchitecture [162] . Internationally, industrial standards on FL in 5G networks have also been
roposed in 3GP [163] . 6G communications can achieve ultra-low delay, superior reliability,
27 
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nd high energy efficiency [164] . Since 5G and 6G networks will enable a massive number of
eterogeneous devices of higher intelligence learned from explosive data, the optimization of
ommunication efficiency over the entire FL network will undoubtedly be more challenging.
eterogeneity in device capabilities, network connectivity, and energy level will also lead to

omplex network behaviors and cause more vulnerabilities and failures [165] . Therefore, it
s important to perform real-life simulations and efficient training to accelerate convergence
nd identify bottlenecks in key applications and environments, such as AR/VR and intelligent
ransportation [166] , to address these issues. 
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